
Source Code Analysis of GitHub Projects from E-Commerce and Game Domains

Doga Babacan
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkiye

email: dogababacan96@gmail.com

Tugkan Tuglular
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkiye

email: tugkantuglular@iyte.edu.tr

Abstract— The nature of domains, such as e-commerce, affects
the software development process and the resulting software.
Various domains may have similarities and differences with
respect to each other under source code analysis. This research
project examines the similarities and differences between game
and e-commerce domains. With the technology now available
to everyone, finding and examining public repositories is more
straightforward. The domains chosen for this project are game
and e-commerce since they are two of the most popular topics.
In this research, inspections are made on 25 projects, 15 from
the e-commerce domain and ten from the game domain.
Developing a repository mining program that works with a
software analysis tool and returns the results of this analysis is
also validated within this research.

Keywords-static source code analysis; repository mining; e-
commerce software; game software.

I. INTRODUCTION
Static source code analysis is a way to analyze the code

without running it. Nowadays, many tools help software
developers to perform this process. In the literature, research
was not found that utilizes these tools to inspect multiple
repositories simultaneously and compares the results
depending on their similarities and differences. If automation
like inspection is possible for various repositories with these
kinds of tools, it may be used in many types of research for
many reasons. The SonarQube is utilized for this research. It
measures technical debt, number of bugs, classes, functions,
complexity, cognitive complexity, etc. These values may be
used in many ways and inspected for relations between them.
With these values in our hands, domains in software
development, like e-commerce and game, can be studied,
focusing on how they behave according to the results,
whether they act similarly or not.

The main objective of this research project is to find out
if automation applies to these kinds of tools during research
with software, which clones many projects and, analyzes
them, retrieves the results. Doing sample research utilizing
this software will be another task to do. Each value in the
results will be another attribute to compare and inspect. The
sample research looks at the behavior of game and e-
commerce domains, considering their results from the source
code analyses tool. Each domain will be examined
separately, and there will be a comparison. Public
repositories of GitHub will be used for this purpose since it

is one of the most popular code-storing and managing
platforms.

The proposed solution uses Python language to create
software that clones repositories from each domain, namely
game, and e-commerce, to local with the get requests and
python library for GitHub and upload them to SonarQube by
utilizing the Python package SonarQube Client to analyze
those repositories. After analyzing the repositories with
SonarQube, the proposed solution continues by getting each
project source code analysis result with the SonarQube
Client package, inspecting those results with correlation
matrices for each domain, and choosing specific attributes to
examine the relation between them depending on the
correlation matrix.

Java projects from GitHub in the e-commerce and game
domains are the focus of this research. Some of the projects
cannot be analyzed by SonarQube and they are excluded
from research. Projects with other programming languages
from the same domains will be considered in the future.

The paper is organized as follows: Section II presents the
related work. Section III explains the proposed approach.
Section IV presents the result and discussion, and the last
section concludes the paper.

II. RELATED WORK
Sokol et al. [1] researched software mining tools, how

they work, and the alternatives for this type of program.
Research mainly focuses on Metric Miner’s results and adds
some points on Sonar.

Spadini et al. [2] developed a mining software repository
program PyDriller, using Python language and put it against
Python Framework GitPython. With fewer lines of code and
less complexity, the results of both programs are compared.

Dabic et al. [3] developed another mining software for
GitHub projects named GitHub Search. This program works
in ten languages. It is a dataset that contains information
about more than 700.000 public repositories in GitHub.

Dueñas et al. [4] introduced GrimoireLab, an open-
source set of Python tools used in repository mining,
analyzing, and visualizing. Third parties can also use the
tool, designed as a modular toolset.

Koetter et al. [5] utilized SourceMeter to calculate chosen
student project metrics. For each project, a Python tool
developed by the article’s authors was used for the
benchmark calculation. With the gathered results, they made
comparisons.

35Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Jarczyk et al. [6] worked on determining two metrics that
indicate the quality of GitHub projects. The initial statistic is
derived from the ratings assigned to a project by other
members of GitHub, while the second metric is derived
through the application of survival analysis techniques to
issues reported by users of the project. Following the
development of the metrics, they proceeded to collect data on
various attributes of many GitHub projects. Subsequently,
they conducted an analysis utilizing statistical regression
techniques to examine the impact of these attributes on the
overall quality of the projects.

Yalçın and Tuglular [7] worked on 21 projects from
GitHub with multiple versions of a tool the author created.
JSoup and Selenium are utilized in the mining process. For
each project, the author looked at whether the executable and
test codes are increasing in sync, whether updates affect the
co-evolution of test and executable data. In using GitHub
software projects from different angle, AlMarzouq et al. [8]
highlighted the challenges and opportunities of using GitHub
as a data source in both research and programming
education.

Gousios and Spinellis [9] found that the acquisition of
data from GitHub is not a straightforward task, the suitability
of the data for various research purposes may be limited, and
the misuse of this data can potentially result in biased
outcomes. Our findings match with their findings.

III. PROPOSED APPROACH
The proposed approach is composed of three steps:

1. Data Collection from GitHub
2. Source Code Analysis using SonarQube
3. Data preparation
4. Data analysis

The first three steps are explained in detail in this section.
The fourth step is presented in the following section with
results and discussion.

A. Data Collection from GitHub
The primary way of searching for software projects in

GitHub is performed with a get request, through Python,
such as “https://api.github.com/search/repositories?q=e-
commerceis:featured+language:java&sort=stars&order=desc
&per_page=100&page=1”. The “is: featured” part of the
string helps for searching topics in GitHub. If this part is not
used, the result will return as a general search instead of
topics. “language” filters for the asked language. ”sort” lets
the user choose which attribute to sort. In this research, the
number of project stars is focused on finding a more reliable
project on GitHub. “per_page” is the number of projects to
be returned on request.

We intend to inspect the code metrics such as code
smells, bugs, security hotspots, duplications, etc. We write a
code that clones each release of a GitHub project and lists
them as files in a folder if it did not have a release history to
download; the code looks into previous tags of the project in
GitHub, if it had tags, program clones each tag’s repository
and list as each of the version with its project name and its
tag next to it. Also, it creates each version’s SonarQube
project under SonarQube.

By utilizing the “OS” library already included in Python,
the directory for each repository can be created with a chosen
name with “os. mkdir(path)”. Here path is the whole path to
the location, including the directory name such as
“C:/Programming/RepositoryInspectionProject/3091E-c-o-
Mshopizer”.

When cloning from GitHub, the code ”git clone
{repo_url} {directory_name}” is written inside “os.
system()” because it needs to be written as a console
command. “repo_url“ refers to the cloning URL of the
repository, and “directory_name” is the name pattern that
was chosen before as “3091E-c-o-Mshopizer”. After cloning
each project, there is a second step for them to upload these
Maven projects to SonarQube for inspection. First, the
creation of the project on the SonarQube is needed. This is
performed through the utilization of the SonarQube Client
library on Python. The package can be used by entering the
username, password, and URL of the SonarQube installed on
the computer. To create projects, the line
“sonar.projects.create_project()“ project name is placed as an
argument where it is chosen as the directory name.

After creating the projects placed on SonarQube,
repositories can be uploaded. This is achieved by utilizing
the line, “mvn clean verify sonar : sonar -D maven.test.skip
= true -D sonar.projectKey = {projectKey} -D sonar.host.url
= http://localhost:9000 -D sonar. login =
************************************”, here we skip
tests by using “maven.test.skip = true” because tests could
not be followed when trying automation on this research
project.

B. Source Code Analysis using SonarQube
SonarQube is one of the best static source code analysis

tools [10]–[12]. SonarQube is a Sonar Source product, and
approximately seven million people utilize Sonar Source
products currently [13]. SonarQube works with more than
thirty languages, and one of them is Java.

The process for source code analysis starts when the
cloning and uploading process is completed. To retrieve the
results from SonarQube, SonarQube Client is utilized. Data
for the following metrics [14] are collected:

Complexity: Complexity (cyclomatic complexity) is a
metric where the number of paths in a code is calculated, and
the minimum value of the function is 1. When the control
flow of a piece of code diverges, the complexity increases.
This calculation may differ depending on the language being
used.

Cognitive Complexity: Cognitive complexity is a more
detailed way of inspecting the complexity of a code. It is not
a quantitative way of measuring as it is in cyclomatic
complexity; it also counts in the degree of
interconnectedness and abstraction or indirection in a piece
of code. Cognitive complexity shows how understandable
the code is and how much it is easy to maintain.

Issues: If any piece of code breaks the coding rule, it will
be counted as an issue. There are three types of issues,
which are bug, vulnerability, and code smell.

36Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Violations: Any form of issue is also called a violation.
Prefixes change depending on the importance of the
violation; it can be blocker, critical, major, minor, and info.

Security Hotspots: A piece of code that is security
sensitive; however, it is not as crucial as vulnerability; these
hotspots may not impact the whole software, unlike the
vulnerability.

Lines: Number of physical lines.
Lines of Code: The number of physical lines that contain

at least one character. However, this character will not be
counted if it is whitespace, tabular space, or part of a
comment.

Functions: Number of functions.
Statements: Number of statements.
Comments: Number of comment lines in code.
Duplicated Lines: Number of duplicated lines in code.

C. Data Preparation
After source code analysis finished, then the data is

normalized. The values for the metrics are placed in a
dictionary and converted into a data frame to save as a CSV
file, which are given in Table 1 and Table 3. By doing this, it
becomes easier to work with the results on the Jupyter
Notebook. On the Jupyter Notebook, after opening the CSV
file, the data is converted to the data frame again to work on
the values. All of the data (except star count and lines of
code) is divided by a line of code because we want our
values to be independent of the line of code of the
repositories. Then, all the values are scaled to fit between 0
and 1. When the data preparation is finished, the correlation
matrix is created to see the relationships among all attributes
as shown in Table 2 and Table 4.

IV. RESULTS AND DISCUSSION
The correlation matrices for the e-commerce and game

domains are shown in Table 2 and Table 4. When we
compare these two matrices, we see some differences
between them. Positive and negative relations are different
for game and e-commerce domains. The results are expected
for the e-commerce domain; for instance, it is likely that with
the decreasing number of classes, we expect a higher number
of bugs which means there should be a negative relation
between those two values. However, this does not apply to
the game domain. This can be due to some outliers. The
diagram lets the user see which attributes have positive and
negative relations.

First, pair of attributes are selected. The first pair will be
the number of comment lines and the number of code smells.
It is a fact that code should explain itself without needing
much of an explanation. These explanations are done with
comment lines in the code. Code smells also tells us the
software developer does not have much experience in
writing code, most probably not following specific rules,
does not apply tests, etc. A positive relationship is expected
between them. The second pair is chosen as the number of
bugs and the number of classes. If the number of classes
increases, software may be thought to be cleaner and more
organized and may be considered leading to fewer bugs.

When starting with the first pair of attributes, comment
lines, and code smells, the correlation matrix in Table 2
shows a positive relation which was expected; the value of
0.61 is close to value 1, which means the relationship is
strong even though it is not the strongest in the matrix. When
a scatter graph is drawn, it shows each data point. There are
outlier-like values on the diagram. To be sure, box plots are
utilized. With the boxplots it is decided that two outliers
need to be removed. After removing the outliers, the linear
regression line is drawn in Figure 1 with (1). Also, the linear
regression line shows us the positive relation better since the
line has a visible positive slope.

y = 0.294 x + 0.1 (1)

Figure 1. Linear Regression Line of Number of Comment Lines vs.

Number of Code Smells of E-Commerce Domain.

The second pair of attributes, namely the number of bugs
and the number of classes, are drawn on another scatter
graph. Again, boxplots are utilized for each attribute to check
the outliers, and it is verified that there are no outliers in this
data set. The linear regression line is shown in Figure 2. The
line has good visibility and a negative slope, showing a
negative relation with (2).

y = -0.63 x + 0.772 (2)

Figure 2. Linear Regression Number of Bugs vs. Number of Classes of E-

Commerce Domain.

37Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

The first pair of attributes of the game domain are code
smells and comment lines. Since there seems to be outliers
on the scatter graph, so they are checked with the boxplots of
each attribute. The boxplot showed that the two values with
the number of comment lines value close to 1.0 are the
outliers. After removing the outliers, a linear regression line
is drawn in Figure 3 with (3).

y = 0.315 x - 0.025 (3)

The slope can be seen on the graph as positive and the

equation as positive. So, as expected, if the comment lines
increase, more code smells can be expected in the software.

Figure 3. Linear Regression Line of Number of Comment Lines vs.

Number of Code Smells of Game Domain.

The scatter graph shows how the data points are spread
on the last pair of attributes set of game domain, number of
classes, and number of bugs. When the outliers are checked
with boxplots of each attribute, on each attribute, there is a
different outlier; the number of outliers is decided as two.
After removing the outliers, the scatter graph in Figure 4 is
drawn with a linear regression line as in (4).

y = -2.586 x + 0.755 (4)

Figure 4. Linear Regression Number of Bugs vs. Number of Classes of

Game Domain.

The negative slope can be seen on the graph and the
equation, which means the relationship between the two
attributes is negative.

There are concerns related to the generalization of
results. First, all attributes should be interpreted relative to
the local context; there are no absolute always correct
interpretations. Second, although the projects are coded in
Java, they are not necessarily object-oriented. Therefore, the
results cannot be generalized to object-oriented projects. The
generalizability of the research findings is limited both
within the specific areas under investigation and to other
domains for the following reasons. The research employs a
limited sample size, and the findings lack sufficient
statistical significance to generalize to the broader
population. The study sample may lack representativeness in
relation to the entire population. The research employs a
non-random sampling technique, which has the potential to
induce bias. The present study used a proprietary instrument
devised by the researchers, which may potentially exhibit
certain flaws or limits.

V. CONCLUSION
In this research, a software is developed to clone

repositories and analyze them using SonarQube. Two
domains, namely e-commerce and game domains, are
analyzed. The correlation matrices showed that there is a
difference between the two domains. The difference in the
game domain can be due to structure and developers in
general. However, in e-commerce, the developers follow
specific rules and patterns while developing software which
is common in software development. Two pairs of attributes
from each domain are examined individually. The linear
regression line is drawn, and the equation of the linear
regression lines is shown. In conclusion, this project showed
that automation could apply to repository mining, analyzing
the source code, and retrieving the results of this analysis.

In this research, we first learned that the projects in
GitHub are not necessarily well structured. Fetching the
projects automatically was not simple and easy. Moreover,
only some of the Java projects were analyzable by
SonarQube. Therefore, we choose Java projects with Maven.
Still, we cannot analyze all projects in the selected domains.
Another source code analyzer may be used. A pluggable
pipeline would be nice to have. We expected both domain
projects we analyzed to be more fit to software engineering
principles and best practices, but it wasn’t the case.

For future work, we first plan to include more projects
from the same domains and then perform cluster analysis to
find the natural groups in the datasets, which can show
trends, structures, or groupings that aren't obvious at first
glance. This way, we plan to obtain useful insights for root
causes and predictions. We also plan to figure out the
dependencies between attributes.

The free version of SonarQube is employed in this
research and it is limited. We would like to use the paid
version for further analysis. We also plan to include other
source code analysis tools such as ChatGPT and GitHub
Copilot. Furthermore, some software engineering analysis
tools will be included into the future research. They might

38Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

give us some perspectives from software engineering point
of view, such as how many people did PRs on the same part
of the source code, whether there are any correlations
between the design patterns or technical debt and code
quality, and whether code quality is related to the
organizational structure of the project team.

Moreover, we plan to expand this research to include
projects from the same domains with different programming
languages as well as other domains, such as IoT, Healthcare,
Sports.

REFERENCES
[1] F. Z. Sokol, M. F. Aniche, and M. A. Gerosa, “MetricMiner:

Supporting researchers in mining software repositories,” in
2013 IEEE 13th International Working Conference on Source
Code Analysis and Manipulation (SCAM), Sep. 2013, pp.
142–146. doi: 10.1109/SCAM.2013.6648195.

[2] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python
framework for mining software repositories,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering, in ESEC/FSE 2018. New York, NY,
USA: Association for Computing Machinery, Oct. 2018, pp.
908–911. doi: 10.1145/3236024.3264598.

[3] O. Dabic, E. Aghajani, and G. Bavota, “Sampling Projects in
GitHub for MSR Studies,” in 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories
(MSR), May 2021, pp. 560–564. doi:
10.1109/MSR52588.2021.00074.

[4] “GrimoireLab: A toolset for software development analytics
[PeerJ],” Retrieved: July, 2023 [Online]. Available from:
https://peerj.com/articles/cs-601/.

[5] F. Koetter, et al., “Assessing Software Quality of Agile
Student Projects by Data-mining Software Repositories:,” in
Proceedings of the 11th International Conference on
Computer Supported Education, Heraklion, Crete, Greece:
SCITEPRESS - Science and Technology Publications, 2019,
pp. 244–251. doi: 10.5220/0007688602440251.

[6] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and A.
Wierzbicki, "Github projects. quality analysis of open-source
software," in Social Informatics: 6th International
Conference, SocInfo 2014, Barcelona, Spain, November 11-
13, pp. 80-94. Springer International Publishing, 2014.

[7] A. G. Yalçın and T. Tuglular, “Studying the Co-Evolution of
Source Code and Acceptance Tests,” Int. J. Softw. Eng.
Knowl. Eng., pp. 1–27, Apr. 2023, doi:
10.1142/S0218194023500237.

[8] M. AlMarzouq, A. AlZaidan, and J. AlDallal, "Mining
GitHub for research and education: challenges and
opportunities," International Journal of Web Information
Systems 2020, 16, no. 4, pp. 451-473.

[9] G. Gousios, and D. Spinellis, "Mining software engineering
data from GitHub," in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C),
pp. 501-502. IEEE, 2017.

[10] “TOP 40 Static Code Analysis Tools (Best Source Code
Analysis Tools),” Retrieved: July, 2023 [Online]. Available
from: https://www.softwaretestinghelp.com/tools/top-40-
static-code-analysis-tools/.

[11] “Best Static Code Analysis Tools in 2023 | Compare Reviews
on 90+ | G2,” Retrieved: July, 2023 [Online]. Available from:
https://www.g2.com/categories/static-code-analysis.

[12] L. Zelleke, “6 Best Static Code Analysis Tools for 2023 (Paid
& Free),” Comparitech, Sep. 05, 2021. Retrieved: July, 2023
[Online]. Available from: https://www.comparitech.com/net-
admin/best-static-code-analysis-tools/.

[13] “Clean Code Tools for Writing Clear, Readable &
Understandable Secure Quality Code,” Retrieved: July, 2023
[Online]. Available from: https://www.sonarsource.com/.

[14] “Metric definition,” Retrieved: July, 2023 [Online]. Available
from: https://docs.sonarsource.com/sonarqube/ latest/user-
guide/metric-definitions/.

TABLE I. MINED DATA FROM GITHUB FOR E-COMMERCE DOMAIN

TABLE II. CORRELATION TABLE OF E-COMMERCE DOMAIN ATTRIBUTES

39Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

TABLE III. MINED DATA FROM GITHUB FOR GAME DOMAIN

TABLE IV. CORRELATION TABLE OF GAME DOMAIN ATTRIBUTES

40Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

