
Design Elements for a Space Information Network Operating System

Anders Fongen
Norwegian Defence University College (FHS)

Lillehammer, Norway
email: anders@fongen.no

Abstract—Space Information Networks (SIN) have quite differ-
ent characteristics from ordinary distributed systems and clouds.
Therefore, the middleware and operating systems governing the
service provision in SIN spacecrafts must manage the resources
involved, as well as the lifecycle of the components that depend on
these resources. This paper goes into detail in the distinguishing
characteristics and proposes a blueprint for software design.

Keywords—LEO satellites; space information networks; dis-
tributed OS; mobile computing.

I. INTRODUCTION

The term Space Information Network (SIN) describes a set
of satellites that cooperatively offer services for information
processing and sharing, as well as traditional communication
services. SIN is regarded as a natural evolution of satellite
services, from radio mirrors in geostationary orbit and Low
Earth Orbit (LEO) constellation for communication services
(e.g., Iridium) [1][2]. Among expected benefits from a SIN
is (1) very low end-to-end latency, as low as 3 ms, and (2)
global coverage. A SIN is likely to drive new applications
which require these properties.

In a series of previous publications, different aspects of SIN
operation (architecture [3], security [4], cache management
[5], routing [6], session state management [7]) and data
sharing [8] have been addressed. Building on these studies,
this position paper proposes a design blueprint of a middle-
ware/operating systems, which offers the necessary services
and defines Application Programming Interfaces (APIs) to
ground based clients, service components and service contain-
ers operating in each spacecraft. Within the presented article,
the term “Space Information Network Operating System” will
be abbreviated “SIN-OS”.

The perspective of the presented analysis is that of Dis-
tributed Computing. Technical and physical properties of
satellites related to energy management, antenna design, mod-
ulation, coding, jamming resistance etc., are not taken into
consideration.

The remainder of the article is organized as follows: In
Section II, some of the characteristics of SIN operations are
identified as premises for the analysis, and Section III presents
the components and services of the proposed SIN-OS design.
The specific details of the proposed API are discussed in
Section IV. For future study, the software simulator to be used
is briefly presented in Section V, and the article draws its
conclusion in Section VI.

II. OVERARCHING DESIGN CONSIDERATIONS

Central to the efforts presented in this manuscript are
architectural properties, which heavily influences the software

design. A selection of these properties are listen in the follow-
ing paragraphs:

A. The N-layer Structure

The N-layer structure of service producers and service
consumers is a typical property of any distributed systems,
which also applies to a SIN. Any entity which offers services
to a client may be a client to a service at a “deeper” level, and
these relations form a tree structure rooted in the spacecraft,
which connects to the surface client.

Some rules are chosen to simplify the design slightly:
• A surface client can only access one single service

endpoint, and therefore connects to a single tree of service
providers.

• There is a distinction between servers and clients at
the surface. A space client can access a surface service,
but not the other way around. Surface clients will never
receive service requests.

B. Handover Operations

Surface based clients are stationary, while the orbiting
elements are not, which causes a series of handover operations
to take place for the sake of link maintenance. While the link
budget for inter-satellite links to some extent can be estimated,
the link from a surface client is dependent on nearby buildings
and terrain and cannot be easily calculated in advance. The
general problem of handover, whether between spacecrafts or
from a surface client, are approached with the following rules:

• A handover operation is always initiated from the client
side

• A handover operation is prepared and conducted by the
server side, subsequent to a client request.

The following steps indicate the necessary actions taken during
a handover operation: (1) The client notifies the server that a
handover is requested, (2) The server decides which server is
the best candidate to take over, and (3) transfer the session
state to this candidate, then (4) inform the client of the new
endpoint to use. Finally, (5) the client establishes a connection
to the new server as indicated in step (4) and resumes the
dialogue.

Handover is a solved problem in satellite constellations
that offer stateless communication services, e.g., Iridium.
This manuscript will therefore focus on problems related to
handover operations where stateful and collaborate services
are offered. In that case, handover also involves the migration
of all data that constitutes the session state.

26Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

A handover request are likely to create cascades of new
handover requests propagating through the tree of service
providers. Client-server relations between spacecrafts are as-
sumed to take place between units orbiting in the same
direction, which may cause handover operations in one link
to initiate handovers in the next link of the service chain, in
the worst case, through all the orbiting units involved in the
service provision.

C. Stateful Migration

A stateful service component in a spacecraft needs to
migrate its units of execution during a handover operation.
Stateless services are easily migrated if migration takes place
between service invocations, not during the invocation process-
ing. Given that the components are stateful, session objects,
familiar from web programming, should be the data unit
for migration [7]. Data elements are not migrateable if they
represent operating system resources like open files, sockets
or locks (cf. the serializable interface in Java).

Migration of service components requires the implementa-
tion of callback methods for life cycle management, since only
the component itself will know how to prepare its session state
into a representation fit for migration.

D. Resource Needs and Load Predictability

Since the grid of spacecrafts are orbiting the Earth in a
predictable manner, both the available communication links
and the expected offered load from surface clients can be
estimated in advance. The population density and technolog-
ical advancement of any area of the Earth is well known, so
the expected offered load can be estimated based on position
and time (night/day, etc.), or subject to a machine learning
algorithm.

The population density on Earth is highly concentrated
within small areas, and an orbiting spacecraft will spend
most of its time over uninhabited areas. Figure 1 shows the
population number within the footprint of a satellite during
three consecutive orbits. It has been an essential idea in the
SIN study that busy satellites should be able to share their
workload with idle satellites in the vicinity [5].

Due to these properties, there is less need for discovery
protocols related to link or peer availability. Service discovery
mechanisms are likely still to be necessary since the migration
and activation pattern of services are independent from orbital
elements and population density data.

E. Fail-over Arrangements

What is not predictable, however, are fail and crash of ser-
vices or entire spacecrafts. A simplistic fail-over arrangement
would be to redirect client requests to redundant servers, while
a more elaborate approach would also deal with the recovery
of atomic transactions through, e.g., checkpoints or idempotent
operations. For many applications, the simplistic approach
suffices. The fail detection mechanism must produce the same
result for all clients, for the sake of sharing and cooperation
between clients. The fail management should therefore be

 0

 2x10
8

 4x10
8

 6x10
8

 8x10
8

 1x10
9

 1.2x10
9

 1.4x10
9

 1.6x10
9

 1.8x10
9

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

P
o
p
u

la
ti
o

n
 n

u
m

b
e
r

w
it
h
in

 f
o
o
tp

ri
n
t

Seconds into orbit

Figure 1. The population number inside the footprint of a satellite during
three subsequent orbits.

conducted in the system/network management plane and the
necessary fail-over information distributed to all spacecrafts.

F. Security and Trust Management

The SIN exposes a high number of service access points,
and surface clients as well as customer code running in
services inside the spacecrafts are not to be trusted. The links
between spacecrafts running SIN-OS instances carry applica-
tion traffic, as well as communication related to management
and maintenance (cache replication, state migration, software
updates, etc.). Application and administrative communication
must be kept strictly separate through, e.g., Virtual Private
Network (VPN) technology. VPN also contributes to relaxed
IP address management for SIN customers.

With regard to trust management (a term that includes
credential management and validation), the analysis published
in 2021 [4] concluded that (1) the standard PKI model is
not well suited due to connectivity and capacity demands,
and (2) that both authentication and authorization control
should happen in the same invocation, using the same set of
credentials [9].

III. SIN-OS OVERVIEW

The different software components of a SIN-OS are shown
in Figure 2 with their relations indicated by arrows. The
executing component both on the server and the client side has
been placed in containers, as a middleware layer for useful
abstractions of the host API, as well as the control of the
component’s life cycle. On the client side, the management
of handover operations is likely to demand a cross-layer
connection to the radio hardware in order to detect when a
handover is necessary. Event notifications are found in the
Component API, for life cycle management purposes. No need
for event notifications from the host OS to the container was
identified at this stage of study.

The Connection Management and Communication Subsys-
tem, shown in the bottom part of Figure 2, are comprehensive
components which handle packet forwarding, route planning,
handover planning and execution, fail-over execution, etc. For
the services offered by the SIN-OS, shown on the right side
of Figure 2, the following comments apply:

27Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Non-Volatile Storage
For storage of data across the duration of client
sessions. This service is more than a simple file
service, since it may scatter data on several storage
tiers based on their access frequency. The API for
the service may employ different access semantics:
Flat files, Relational Database Management System,
Tuplespace, etc.

Shared data segments
Clients should be able to collaborate through shared
data segments offered through a service interface,
which ensures the chosen semantic properties: trans-
actional context, update ordering, etc. The service
may choose to spread the data across several space-
crafts according to their access frequencies in order
to reduce the overhead of handover operations [8].

Cooperative caching
A caching service used by one or more clients for
lookup on immutable data elements. The service
employs a cluster of neighborhood satellites for load
balancing purposes, and replication of data between
cache clusters to improve cache hit-rate [5].

Session State objects
The application component may keep its session state
in a separate session object, which must be migrated
to new nodes subject to a handover operation. It
is the responsibility of this service to associate a
running session with a specific object to determine
the migration operation. Studies have shown that, in
the same manner as a shared object, the data elements
can be “left behind” during handover and migrated
on demand as they are being accessed from the new
space location [7].

Discovery Services
Application components may need to invoke services
elsewhere in the SIN. The interface of the dependent
service is known at compile time and necessary stubs
generated, etc., but the location of their endpoint
must be determined in run time. The discovery
service serves this purpose, and application services
notify the discovery service about their new endpoint
as they are migrated to new endpoints.

Certificate & Key store
Certificates should be kept in a safe storage after
they have been validated, and private keys should
not be exposed outside a trusted environment. This
particular service is shown not to reference the
communication subsystem, it is a local service which
offers a client to sign a hash value or a secret key
with the encapsulated private key. The implementa-
tion of this service has not been decided, but should
employ suitable hardware based solutions (e.g., the
Trusted Platform Module).

IV. API COLLECTION

The different software components involved in the SIN
service will need APIs related to the specific tasks that the
component is assigned to. Three distinct APIs will be briefly
presented, together with a suggested set of service calls. Please
observe that there is no call to establish an authenticated
session, so necessary credentials and validation parameters
for two-ways authentication and authorization control must be
given as parameters in the service call. The reason for this
design choice is to keep transactions atomic and idempotent.
If either of the two parties fail to provide necessary credentials
the actual service call will not be executed.

A. Client API

The client API is implemented as a container layer in the
surface based client computers, it serves requests from “end”
clients (clients that do not provide services to satellite based
processes). The same API is used by application owner, who is
allowed to start/stop/update the service, and application user,
who are allowed to connect/invoke the service. The proposed
service calls are:

uploadApplication
Deploy new and updated applications

startApp, stopApp
Reserved for the application owner

connectApp, invokeService
Used by application user

requestHandover
A handover is not initiated by user commands, but
by the communication stack

B. Container API

The container is responsible for the creation of a runtime
environment for the service application component, as well
as the interface to the host resource management and the
migration of components. The API offered to the container
by the SIN-OS will not include calls across the interface
between the container and the component. These calls will
be introduced with the component API. The suggested calls
are:

loadApp, startApp, suspendApp, destroyApp
Call to allocate resources and load code segments

executeHandover
Call to the host to find a new candidate service and
to move the state representation there. The container
must identify to the host the resources that must be
migrated.

The container architecture is inspired by the Docker Swarm
project [10], but its simplistic approach to load balancing,
where the requests are distributed without regards to the
networking costs/latency, must be replaced with a mechanism
which takes the workload on intermediate nodes into consid-
eration.

28Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Figure 2. The components of a SIN-OS and their relations

C. Component API

The application components need access to services essen-
tial to their execution, including
open, read, write, append, close, delete

Access to non-volatile memory
open, close, read, write

Access to shared segments [8]
open, lookup, add, close, delete

Creation/access to cooperative caches [5]
findService, invokeService

Discovery/invocation of dependent services
socket, read, write, close

Access to communication sockets
init, destroy, suspend, resume

Life-cycle management callbacks
For service components, compile-time resources are also
needed for the access to dependent services: Naming conven-
tion, stub object generations, etc.

V. THE SOFTWARE MODEL

This position paper presents a design proposition for a SIN-
OS design, but the design should be subject to a closer study
through a realistic software model of the satellite constellation.
Previous efforts in this series of SIN studies have employed
a software model programmed in Java for this purpose. A
screenshot of this model is shown in Figure 3 for a constella-
tion of 150 satellites at 500 km altitude. The colored backdrop
in the figure indicates the population density inside the satellite
footprint at a given location, based on gridded population data
from NASA [11]. This data set has also been used to calculate
the graph in Figure 1. The author prepares this model with
additional logic for testing the API design as a further study.

VI. CONCLUSION

This article has proposed a design for a SIN-OS, based on a
series of studies into a range of operational problems related
to SIN-OS operation. Both a component/service map and a
list of APIs have been presented. The proposed design is a
part of an ongoing feasibility study on SIN development, and

Figure 3. Screenshot from the satellite constellation model.

there are still many details in need for a further study. This
will be the focus for further research effort in the field of SIN
operation.

REFERENCES

[1] S. Briatore, N. Garzaniti, and A. Golkar, “Towards the internet for space:
Bringing cloud computing to space systems,” in 36th International
Communications Satellite Systems Conference (ICSSC 2018), 2018, pp.
1–5.

[2] L. Bai, T. de Cola, Q. Yu, and W. Zhang, “Space information networks,”
IEEE Wireless Communications, vol. 26, no. 2, pp. 8–9, 2019.

[3] A. Fongen, “Application services in space information networks,” in
CYBER 2021. Barcelona, Spain: IARIA, Oct 2021, pp. 113–117.

[4] A. Fongen, “Trust management in space information networks,” in
SECURWARE 2021. Athens, Greece: IARIA, Nov 2021, pp. 14–18.

[5] A. Fongen, “Cooperative caching in space information networks,” in
INTERNET 2022. Vienna, Italy: IARIA, May 2022, pp. 1–5.

[6] A. Fongen, “Population-based routing in leo satellite networks,” in
MOBILITY 2022. Porto, Portugal: IARIA, June 2022, pp. 1–4.

[7] A. Fongen, “Transfer of session state between satellites in a space
information network,” in INTERNET 2023. Barcelona, Spain: IARIA,
March 2023, pp. 1–4.

[8] A. Fongen, “Data sharing services in a space information network,” in
EMERGING 2023, The Fifteenth International Conference on Emerging
Networks and Systems Intelligence. Porto, Portugal: IARIA, September
2023, pp. 1–4.

[9] A. Fongen, “Optimization of a public key infrastructure,” in IEEE
MILCOM, Baltimore, MD, USA, Nov 2011, pp. 1440–1447.

[10] A. Modak, S. D. Chaudhary, P. S. Paygude, and S. R. Ldate, “Techniques
to secure data on cloud: Docker swarm or kubernetes?” in 2018 Second
International Conference on Inventive Communication and Computa-
tional Technologies (ICICCT), 2018, pp. 7–12.

[11] “Gridded population of the world v.4.11,” [Online; retrieved 8-
Oct-2023]. [Online]. Available: https://sedac.ciesin.columbia.edu/data/
collection/gpw-v4/sets/browse

29Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

