
Three-step Decision Framework for Planning Software Releases

José del Sagrado
University of Almerı́a

Almerı́a, Spain
email: jsagrado@ual.es

Isabel M. del Águila
University of Almerı́a

Almerı́a, Spain
email: imaguila@ual.es

Alfonso Bosch
University of Almerı́a

Almerı́a, Spain
email: abosch@ual.es

Abstract—We propose a framework that connects the pre-
viously solved problems, which are involved in the setting of
the next release goal. A complete workflow has been defined in
order to manage the need to properly set the release goal when
different, conflicting stakeholders define numerous requirements.
Since they cannot all be satisfied by the available resources it
necessary to reach an agreement that can be supported by our
framework.

Keywords—stakeholder identification; next release problem; re-
quirements negotiation.

I. INTRODUCTION

Today, systems are no longer isolated local applications;
they are large and complex systems with an increasing number
of connections to other similar applications. These large-scale
software systems are developed worldwide, involving teams
of software developers, designers, testers, project managers,
and other stakeholders working together to deliver a software
solution that meets specific requirements [1].

In this context, requirement engineering is not only about
capturing and managing requirements but also about fostering
collaboration, responding to evolving needs, and adapting to
changing project circumstances in order to deliver a success-
ful software solution [2]. It focuses on understanding and
defining the needs and expectations of the software system
being developed, taking into account multiple stakeholders
and a wide range of functionality, expressed and modelled as
requirements that may or may not be included in the product
being developed.

In addition, due to the limited resources available for
the next release of the current project, not all stakeholders’
requests can be included in the next product to be delivered,
and some will be left for later releases. At this point, software
development teams need to manage and review data from mul-
tiple sources and make decisions based on the risk associated
with each requirement, the cost of delivering it, the benefits
the candidate will provide, or some other issues. Timelines,
dependencies, resource constraints, and other factors affect this
management task [3].

All these factors are estimated or assessed, usually subjec-
tively, by a large group of stakeholders who affect or will
be affected by the software under construction. We consider
these stakeholders as a source of data to be managed in order
to obtain the best set of requirements according to the various
criteria defined for the project. However, the best solution is
not always the one chosen to maximize objectives, and some

kind of agreement, sometimes negotiation, is required [3].
Therefore, three questions should be considered:

• Who assesses the attributes of the requirements?
• What is the best set of requirements?
• Do we have an agreement to build the release?
In this paper, we propose a framework to answer these three

questions (see Figure 1). Each of the processes involved in
the workflow shown can be treated as a separate problem. The
identification of stakeholders, the selection of requirement sets
to be included in the next software release, and the process
of reaching agreement on the release goal. The three stages
are problems that have been previously studied and for which
separate solutions have been proposed. Our contribution is
the framework that connects all three earlier solved problems,
defining a complete workflow to manage the need to properly
define the release goal when different, conflicting stakeholders
define numerous requirements that cannot all be covered by
the available resources.

The remainder of the paper is structured as follows. Sec-
tion II presents the architecture of the proposal, including
the description of the three stages: stakeholder identification,
elicitation of candidate requirement sets, and the next release.
In Section III, these stages are applied to a case study. A
discussion of the limitations and scope of the framework,
including what we add to previous proposals, is included in
Section IV. Finally, Section V includes the conclusion and
future work,

II. SOFTWARE RELEASE PLANNING FRAMEWORK

To address the three issues raised, the framework is divided
into three phases or stages (see Figure 1). The first phase
(stakeholder identification) deals with the identification of the
relevant stakeholders in the software project who will be taken
into account when proposing the requirements that will be
used to define the next release goal. In the second phase
(elicitation of candidate requirement sets), the requirements
proposed by the relevant stakeholders are collected and, based
on their assessments, an optimization problem is defined, from
which different alternatives (i.e., candidate requirement sets)
for the next release are obtained. Finally, in the third phase
(next release agreement), the aim is to reach agreement on the
set of requirements that will make up the next version of the
software, selecting one of the candidate sets of requirements
found in the previous stage on the basis of productivity
indicators and the degree to which stakeholder suggestions
have been taken into account,

20Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Figure. 1. Workflow defined for the framework.

A. Stakeholders Identification

Stakeholder identification ensures that all individuals,
groups, or organisations with a valid interest in the project
are considered, as they are the main source of requirements.
This is even more evident in large projects where there is a
huge community of stakeholders to consider. Their demands
are likely to be diverse and conflicting.

An alternative is to reduce the number of stakeholders to
manage, but maintain stakeholder coverage [4]. Identifying key
stakeholders would reduce the effort required to define the
release goal by focusing on the most influential stakeholder
representative.

Let Stk = {sk1, sk2, . . . , skq} be the set of stakeholders to
consider. They represent candidate stakeholders who may be
involved in the definition of new features for the next version
of a given product.

Each stakeholder is characterised by its salience based on
power, legitimacy and urgency as salience components [5].
These values are revealed, usually through interviews, by
people involved in the project, who may or may not be
stakeholders. Each interviewee could assign a value to the
three salience components, but this is not necessary for all
of them, and the sets of interviewees for the components
can be disjoint. There are h, k and q interviewees about
power, legitimacy and urgency respectively, where wpij , wlij
and wuij are the values that the interviewee i gives to the
stakeholder j in Stk. The power, legitimacy and urgency of
a stakeholder j could be defined by aggregating the values
obtained from the interviewees.

pj =
∑h

i=1 wpij ,

lj =
∑k

i=1 wlij ,
uj =

∑q
i=1 wuij .

(1)

We can define different strategies to select the most in-
fluential stakeholders, for example, by clustering them [4]
or giving them a weight according to the number of groups

identified [6]. As a result, we have a set of m stakeholders
who are allowed to propose the requirements that will define
the next release goal.

So we can answer the first question in the affirmative,
because this stage, stakeholders identification, certainly has
the ability to define who assesses the attributes of the require-
ments.

B. Elicitation of Candidate Requirement Sets
Let R = {r1, r2, . . . , rn} be the set of requirements to

be considered. These represent new functionalities of the
current system suggested by a set of m stakeholders, Stk =
{sk1, sk2, . . . , skm}. R represents the candidates for inclusion
in the next software release. The stakeholders are responsible
for setting the preference value of the requirements by defining
a value matrix, where each vij is the subjective value that
the stakeholder ski ∈ Stk assigns to the requirement rj . The
stakeholders to be considered are those that have been selected
in the process described in the previous section, and since they
do not all have the same importance to the project, it is also
defined and W = {w1, w2, . . . , wm} as the set of weights
representing the importance of stakeholders, these values may
or may not be calculated based on the salience components.
Thus, for a given requirement rj ∈ R, its satisfaction sj is:

sj =

m∑
i=1

wi ∗ vij . (2)

In addition, each rj has an associated cost ej , which
indicates the development effort required to develop it, as
estimated by the developers, resulting in the set E =
{e1, e2, . . . , en}. Each software release has a cost limit B,
which represents the amount of available resources that cannot
be exceeded.

We are able to formulate an optimization problem to be
solved in order to obtain the candidate requirement sets, U,
to be included in the next release using Pareto dominance as
[7]:

21Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Figure. 2. 12 Stakeholders selected.

max
∑

j∈U sj ,
min

∑
j∈U ej ,

subject to
∑

j∈U ej ≤ B.
(3)

In addition to the effort-bound constraint (B), alternative
formulations may also include constraints associated with re-
quirement relationships or interactions. Specifically, structural
interactions impose a particular implementation order, thereby
downsizing the NRP feasible solution set [8]. Implication,
combination and exclusion dependencies are the functional
interactions most commonly studied in the NRP literature:

• Implication interaction, (ri implies rj), models that a re-
quirement ri must be implemented before the requirement
rj .

• Combination interaction, (ri combined with rj), indicates
that both requirements must be developed in the same
iteration.

• Exclusion interaction. The interaction (ri excludes rj)
reveals that both requirements are incompatible. That is,
they could not be developed in the same product.

Next, an optimization algorithm is used to obtain the set of
Pareto optimal solutions, which we call candidate requirement
sets because all the solutions on the Pareto front are feasible to
be considered as the next release goal. There are many solving
techniques that have been applied in order to find this set of re-
quirements, including algorithms based on genetic inspiration,
the use of nature-inspired optimization, linear programming,
clustering approaches or even exact methods for finding the
entire Pareto front. A detailed study of their quality is beyond
the scope of this paper [9]. Since it is possible to obtain
the candidate requirement sets, we can use them to identify
the best requirement set, which provides a positive answer to
the second research question. Finally, after an analysis of the
alternatives obtained, the one to be implemented is chosen by
reaching an agreement on the release objective.

C. Next Release Agreement

The task of software release planning does not end when
the Pareto front is obtained. To answer the last question, “Do
we have an agreement to build the release?”, the development
team must choose which of the alternative sets of requirements
(i.e., Pareto optimal solutions) will be implemented.

Due to the black-box nature of optimization algorithms [10],
Human experts in charge of decision making need to be
supported by additional analysis of optimization results. Al-
though there are well known quality indicators to measure
the performance of algorithms [9] and Pareto fronts (such
as Hypervolume or Spread), we propose the use of quality
indicators that, correctly displayed by some kind of tool,
guide decision makers when comparing solutions [11] at the
software level. Thus, in addition to the data resulting from the
optimization algorithms (such as the number of requirements
in a solution, the detailed list of requirements, and the values
achieved by the solutions in the objective functions), some
other useful indicators can be calculated.

The first is Productivity. Let U ⊆ R be the solutions under
analysis, then

prod(U) = sat(U)/eff(U), (4)

is the benefit obtained by the solution, expressed in terms of
how much satisfaction is obtained per unit of effort.

Another indicator is the measure of the amount covered
by a solution with respect to everything that is raised by
the stakeholder (i.e., stakeholder fairness), which is called
coverage [11]. Thus, given a stakeholder ski ∈ Stk, this
measure associated to a solution U ⊆ R with respect to all
the requirements valuated by her/him is

stcovi(U) =
∑
j∈U

vij/
∑
j∈R

vij , (5)

where vij is the value that the stakeholder ski assigns to
requirement rj .

22Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Figure. 3. Pareto front.

III. CASE STUDY

In order to show how this framework can be used in
a real-world project, we have included a case study of its
application. The dataset used to investigate the validity of
the research questions is the Replacement Access, Library
and ID Card project (RALIC). This was a software project
to improve the existing access control system at University
College London (UCL). The project combined several UCL
access control mechanisms (such as access to the library and
fitness centre) into one, eliminating the need for a separate
library registration process for UCL ID card holders [12]. This
is a widely studied dataset within the domain of Requirements
Engineering, and has been used in several works with many
different approaches.

RALIC identifies stakeholders by creating a network of
recommendations. Each recommender selects a set of other
stakeholders, gives them a level of influence on the projec,
thus defining a network. The RALIC project involves 144
stakeholders in the network, some of whom only act as recom-
mendees. However, not all recommendees or recommenders
have proposed an enhancement or new functionality to be
included in the software to be built.

The project includes 138 requirements as increases to
the actual access, library, and ID card system, which are
arranged in three levels: objectives (10), requirements (48),
and specific requirements (104); they are represented by
R = {r1, r2, . . . , rn}. Their effort range varies from 4 to
7000 persons-hour. Only 75 RALIC stakeholders use the
100-point method (each stakeholder receives 100 points that
can be used to vote for the most important requirements)
to prioritise the requirements they are interested in; pointsij
represents the votes that the stakeholder i assigns to the
requirement rj that can be used to calculate the satisfaction
of the requirements. However, stakeholders do not vote at the
same level as the three defined ones. These facts translated
into the reorganisation of requirements (e.g., requirements

that nobody asks for are erased), obtaining for our study 83
requirements, R = {r1, r2, . . . , r83} and their corresponding
development efforts in E = {e1, e2, . . . , e83}, there are not
defined interactions between these requirements.

A. RALIC Stakeholders Identification

The identification of relevant stakeholders can be carried
out according to different strategies. In fact, it is defined as a
separate problem. In this case, we have applied a clustering
approach, using k-means with 4 clusters; a detailed description
is beyond the scope of this paper [4]. As a result, the set of
144 stakeholders initially considered is reduced to 12 relevant
stakeholders.

The result of this first stage is shown in Figure 2. It also
shows the value of the components that define the stakeholder
salience, so Stk = {stk1, stk2, . . . , stk12}.

B. RALIC Elicitation of Candidate Requirement Sets

From these three sets, Stk, R and E, together with the
definition of the requirement satisfaction values (Equation 2),
we can define the overall next release problem for RALIC as
the following optimisation problem:

max
∑

j∈U sj ,

min
∑

j∈U ej ,

subject to B1 ≤
∑

j∈U ej ≤ B2.
(6)

where U is a solution (that is, a set of requirements that
conforms to the next release). The resource / effort limits are
defined in the range [B1, B2] which, respectively, corresponds
to the 20 % effort required to develop all the requirements
for B1, while B2 is 25 %. These values have been chosen
taking into account the contingency value for effort, that is,
an allowance made for the risk that something will not be
undertaken with the planned estimated effort. We have decided
to define a resource limit interval because, on the one hand,
the original data set did not include an upper resource limit
and, on the other hand, developers usually discard solutions

23Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Figure. 4. Quality indicators for the Pareto front solutions.

Figure. 5. Distribution of requirements in candidate solutions.

on the Pareto front with low effort value [11]. For RALIC, the
values for B1 and B2 are 12473.3 and 13304.8, respectively.

To find the Pareto front, we have resorted to a greedy
algorithm. This algorithm works as follows: for each effort
value in the range [B1, B2], we fill the solution with as many
requirements as we can. Then, in a fixed number of attempts,
we try to remove each requirement one by one in the solution,
replacing it with another that is valid for that level of effort.
After each change, the dominance is checked and the solution
is replaced if necessary.

Although this may not be the best algorithm for finding
Pareto fronts, it is at least simple and produces a Pareto front
that can be used to demonstrate the application of the proposed
framework. If a better algorithm were used, a more accurate
and larger number of candidate solution sets would be found.
Figure 3 shows the 14 sets of candidate requirements obtained
using this greedy strategy.

C. RALIC Next Release Agreement
The starting point for the final decision is the set of

candidate requirement sets, in our case 14 solutions. The
analysis includes, on the one hand, the inspection of the values
reached in the objective functions (satisfaction, effort) and, on
the other hand, the quality indicators defined by the decision
makers. For the RALIC case study, these are the number of
requirements, productivity, and coverage. It should be noted
that we have used the average for the coverage indicator
instead of examining the 12 values separately. The use of too

many indicators can hinder rather than help decision-making;
the general rule should be the simpler the better.

The indicators are shown in Figure 4. One might think that
the best candidate solutions are 13 or 14, which achieve the
best satisfaction and effort values with 85 and 43 requirements,
respectively, and perhaps 13 would be chosen because it covers
more requirements. However, when we look at productivity,
these alternatives have low values, i.e., using more effort does
not result in the same increase in satisfaction.

At this point, the tacit knowledge of developers and stake-
holders helps to reach an agreement between possible alterna-
tives. As this is a human process, it is common to use pairwise
comparisons of the solutions [11]. For example, let us compare
solutions 12 and 7. Both have acceptable satisfaction and
productivity values, with a good average stakeholder coverage.
The decision in this case could be based on other factors that
have not been considered in quantitative terms, such as risk; if
we are dealing with higher risk requirements, it is preferable
in this case to select solution 7 to have a cushion of effort in
case a risky situation needs to be solved.

In some situations, it might be necessary to go down to study
the problem at the level of each requirement, negotiating its
status in the solution, but this is more difficult to manage ad
hoc; just compare Figure 4 and Figure 5, which only show
the indicators or the inclusion status for each requirement.
It is always better to use quality indicators that are able to
summarise the information in a more useful way, just compare

24Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

the two figures.

IV. APPRAISAL OF THE FRAMEWORK

Previous strategies answer the three questions proposed in
this work separately; for example, the problem ”What is the
best set of requirements?” has been formulated as an opti-
mization problem, with customer satisfaction and development
cost as the basic optimization objectives, and has been the
subject of much research [13]. However, the literature re-
viewed in this work has neglected the initial identification and
prioritization of requirements sources. Similarly, stakeholder
identification methods have typically relied on practitioners to
manually identify stakeholders based on the use of intuition
and experience [14]. Other systematic identification methods
follow a set of steps or procedures to ensure consistency,
precision, and completeness in achieving the desired result
[15], [16]. However, these proposals were not followed by a
requirements selection task. Furthermore, the final selection
of a solution in the Pareto front could be solved using com-
plex techniques such as ranking of Pareto-optimal solutions
or using a mathematical preference model, but no one has
connected the three stages in a unique framework, which is
precisely our contribution.

V. CONCLUSION AND FUTURE WORK

This paper shows how three complex software engineering
problems, usually treated independently, are linked together
to give a global view of the problem of defining the next
release goal for a software product. This framework provides
practitioners with a pragmatic approach to solving this com-
plex process in a software engineering project. The three de-
fined stages, stakeholder identification, elicitation of candidate
requirement sets, and next release agreement, allow us to
manage and improve the tools and/or algorithms defined to
solve each stage separately, thus improving the whole process.
The validity of our proposal has been demonstrated through its
application in a real-world case study, the Replacement Access,
Library and ID Card project (RALIC) system.

Future work includes the application of the proposed frame-
work to other software projects where data on stakeholders
and requirements have been collected. Attention should also
be given to investigating the impact on the solutions that make
up the NRP solution.

ACKNOWLEDGMENT

This research has been funded by the Spanish Ministry of
Science, Innovation and Universities under project PID2019-
106758GB-C32 (EML-PA), being also partially supported
by the Data, Knowledge, and Software Engineering (DKSE)
research group (TIC-181) of the University of Almerı́a.

REFERENCES

[1] D. Šmite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical evidence in
global software engineering: a systematic review, ” Empirical software
engineering, vol. 15, pp. 91–118, 2010.

[2] V. Stray and N B. Moe, “Understanding coordination in global software
engineering: A mixed, -methods study on the use of meetings and Slack,”
Journal of Systems and Software, vol. 170, p. 110717, 2020.

[3] K. Brennan (ed.).“A Guide to the Business Analysis Body of Knowl-
edge”. IIBA, International Institute of Business Analysis, 2009.

[4] I.M. del Águila and J. del Sagrado, “Salience-based stakeholder selection
to maintain stakeholder coverage in solving the next release problem,”
Information and Software Technology, vol. 160, p. 107231, 2023.

[5] R. K. Mitchell and J. H. Lee, “Stakeholder identification and its
importance in the value creating system of stakeholder work,” in The
cambridge handbook of stakeholer theory, J. S. Harrison, J. B. Barney,
R. E. Freeman, and R. A. Phillips, Eds., Cambridge University Press
Cambridge, 2019, pp. 53–73.

[6] J. A. Sierra, I. M. del Águila, and J. del Sagrado. “Importance of
stakeholders in the next release problem.- Importancia de los interesados
en el problema de la siguiente versión,” in Actas de las XXV Jornadas
de Ingenierı́a del Software y Bases de Datos (JISBD 2021), Abrahão,
S. (Ed.), 2021.

[7] Y. Zhang, M. Harman, and S.A. Mansouri, “The multi-objective next
release problem,” in Proc. of the 9th annual conference companion on
Genetic and evolutionary computation, 2007, pp. 1129–1137

[8] J. del Sagrado, I.M. del Águila, and F. Orellana, “Requirements interac-
tion in the next release problem,” in Proc. of the 13th annual conference
companion on Genetic and evolutionary computation, 2016, pp. 241–
242.

[9] J.A. Nuh, T.W. Koh, S. Baharom, M.H. Osman, and S.N. Kew, “Perfor-
mance Evaluation Metrics for Multi-Objective .Evolutionary Algorithms
in Search-Based Software Engineering: Systematic Literature Review”,
Applied Sciences, vol. 11(7), p. 3117, 2021.

[10] G. Du and R. Guenther, “Two machine-learning techniques for mining
solutions of the ReleasePlannertm decision support system”, Informa-
tion Sciences, vol. 259, pp. 474–489, 2014.

[11] I.M. del Águila and J. del Sagrado, “Three steps multiobjective decision
process for software release planning, Complexity vol 21 (S1), pp 250–
262, 2016.

[12] S.L. Lim and A. Finkelstein, “Stakerare: using social networks and
collaborative filtering for large-scale requirements elicitation,” IEEE T
Software Eng, vol. 38, pp. 707–735, 2011.

[13] A.M. Pitangueira, R.S.P. Maciel and M. Barros, “Software requirements
selection and prioritization using SBSE approaches: A systematic review
and mapping of the literature,” J. Syst. Software, vol. 103, pp. 267–280,
2015.

[14] D. Häuber, K. Lauenroth, H. van Loenhoud, A. Schwarz, and P. Steiger:
Handbook ireb certified professional for requirements engineering ad-
vanced level elicitation - version 1.0.3. IREB International Requirements
Engineering Board, 2019.

[15] L.C. Ballejos and J.M. Montagna, “ Method for stakeholder identifi-
cation in interorganizational environments, Requirements engineering,”,
vol. 13, pp. 281–297, 2008.

[16] M.M. Rahman, M.M. Moonira and F.T. Zuhora, “ A systematic
methodology and guidelines for software project manager to identify
key stakeholders,” International Journal of Research in Computer and
Communication Technology, vol. 4, no 8, pp. 509-517, 2015.
.

25Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

