
Exploring the Creation and Added Value of

Manufacturing Control Systems for Software Factories

Herwig Mannaert

Normalized Systems Institute
University of Antwerp, Belgium

Email: herwig.mannaert@uantwerp.be

Koen De Cock and Jeroen Faes

Research and Development
NSX bv, Belgium

Email: koen.de.cock@nsx.normalizedsystems.org

Abstract—Software engineers have been attempting for many
decades to produce or assemble software in a more industrial way.
Such an approach is currently often associated with concepts like
Software Product Lines and Software Factories. The monitoring,
management, and control of such factories is mainly based on
a methodology called DevOps. Though current DevOps environ-
ments are quite advanced and highly automated, they are based
on many different technologies and tools. In this contribution, it
is argued that more integrated software manufacturing control
systems are needed, similar to control systems in traditional
manufacturing. This paper presents a scope, overall architecture
and prototype implementation of such an integrated software
manufacturing control system. Moreover, several detailed sce-
narios are elaborated that can leverage such integrated control
systems to optimize the operations, and improve both the quality
and output of modern software factories.

Index Terms—Software Factories; Software Product Lines; Dev-
Ops; Control Systems; Evolvability.

I. INTRODUCTION

The expression “Software is eating the world” was formu-
lated in 2011 by Marc Andreessen [1] to convey the trend
that many industries were being disrupted and transformed by
software. And indeed, more and more major businesses and
industries are being run on software systems and delivered
as online services. These software systems include Enterprise
Resource Planning (ERP) systems to design and manage the
business processes, Supervisory Control and Data Acquisition
(SCADA) systems to manage and control production processes
in real-time, and Manufacturing Execution Systems (MES) to
track and document the transformation of raw materials to
finished goods, enabling decision-makers to optimize condi-
tions and improve production output. As software systems
become more pervasive to manage and control the end-to-end
production processes in factories, it seems logical to have or
create such control systems for the software systems them-
selves, i.e., systems to manage and control the building and
assembly of software systems in so-called software factories.
In this contribution, we explore the creation of such systems
to manage and control software manufacturing and assembly.

The remainder of this paper is structured as follows. In
Section II, we briefly discuss software factories, the DevOps
methodology, and situate our approach. In Section III, we

describe the scope, overall architecture, and the implemen-
tation characteristics of the proposed manufacturing control
system for software factories. We present various use cases and
types of added value for such an integrated control system in
Section IV. Finally, we present some conclusions in Section V.

II. SOFTWARE FACTORIES AND DEVOPS

A. On Software Factories and Reusability

The idea to produce and/or assemble software in a more in-
dustrial way, similar to automated assembly lines in manufac-
turing, has been pursued for many decades. Such an approach
is currently often associated with concepts like Software
Product Lines (SPLs) and Software Factories, but can easily
be traced back as far as 1968 to the paper on mass produced
software components from Doug McIlroy [2]. The concept
of Software Product Lines has been extensively described by
the Carnegie Mellon Software Engineering Institute (SEI) [3],
and refers in general to software engineering methods, tools
and techniques for creating a collection of similar software
systems from a shared set of software assets using a common
means of production. The characteristic that distinguishes
software product lines from previous efforts is predictive
versus opportunistic software reuse, as it stresses that software
artifacts should only be created when reuse is predicted in
one or more products in a well-defined product line [4]. The
term Software Factory emphasizes the techniques and benefits
of traditional manufacturing, and is for instance defined by
Greenfield et al. as a software product line that configures
extensive tools, processes, and content using a template based
on a schema to automate the development and maintenance of
variants of an archetypical product by adapting, assembling,
and configuring framework-based components [5].

The reuse of software artifacts seems crucial in contempo-
rary efforts to realize the benefits of traditional manufacturing
through software factories. Nevertheless, the systematic reuse
of software artifacts is not a trivial task. Saeed recently
argued that software re-usability is not just facing legal issues,
but methodological issues as well. Even when only reusing
software to save time, and leverage off the specialization
of other authors, the end-user must also have the technical

14Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

expertise to search, adapt and merge these reusable assets into
the larger software infrastructure [6]. We have argued in our
previous work that software reuse is even more challenging,
and impeded by some fundamental issues related to software
evolvability [7] [8]. The sustained technological evolution
leads to a continuous sequence of new versions and variants
of the software artifacts that need to be reused. These new
artifact versions often require changes in their usage that
ripple through the entire software structure, causing an impact
that is dependent on the size of the system, and limiting the
evolvability of software systems [9] [7].

B. From DevOps to Integrated Control Systems

The aim of this contribution is to explore the creation of
systems to manage and control the building and assembly of
software systems in software factories, similar to SCADA or
MES systems in traditional manufacturing. The main approach
today in the software development and IT industry to control
the building and assembly of software is a methodology
called DevOps. Used as a set of practices and tools, DevOps
integrates and automates the work of software development
(Dev) and IT operations (Ops) as a means for improving
and shortening the systems development life cycle [10]. It
also supports consistency, reliability, and efficiency within
the organization, and is usually enabled by a shared code
repository or version control. As DevOps researcher Ravi
Teja Yarlagadda hypothesizes, Through DevOps, there is an
assumption that all functions can be carried out, controlled,
and managed in a central place using a simple code [11].

Figure 1 presents a traditional overview diagram of a typi-
cal DevOps infrastructure environment. While the continuous
integration of of the software development and IT operations
is represented by the infinity symbol, the representation also
contains a typical set of tools and technologies being used
in such an infrastructure. We distinguish for example tools
for tracking features and user stories (Jira), source control
management (Git and Bitbucket), software quality control
(SonarQube), automation of build pipelines (Jenkins), auto-
mated testing (Cucumber, JUnit), deployment infrastructure
(Kubernetes), analytics visualization (Grafana), logging (Gray-
log), automated deployment (Docker, Ansible), and connecting
cloud providers (AWS, Digital Ocean). While the tools in such
a DevOps or Continuous Integration Continuous Deployment
(CICD) infrastructure are in general numerous and versatile,
there is a clear need for integrated control systems, similar
to SCADA or MES systems, encompassing these processes
and tools. However, software factories differ significantly from
traditional industrial factories, as software is less tangible and
the desired control systems need to interface with — often
complex — software tools instead of physical equipment.

C. Related Work and Methodology

While academic research is available on various aspects
of DevOps, like maturity assessment [12], and management
challenges and practices [13], the development of integrated

control systems does not seem to be one of them. DevOps
platforms are considered to be based on a mix of open
source and proprietary software, glued together and built into
the platform by a platform team. At the same time, trade
publications describe the necessity to breakdown the DevOps
phases and tools to increase security and reduce technical
debt [14], and acknowledge the need for solutions to scale
up DevOps, as nearly a third of DevOps teams’ time is spent
on manual approaches that are not scalable [15].

The methodology of this paper is based on Design Science
Research [16], where we design the integrated control system
for software factories as an artifact, use a case study to evaluate
it in depth in a business environment, and refine the artifact
gradually as part of the design search process.

III. A SOFTWARE MANUFACTURING CONTROL SYSTEM

In this section, we elaborate the purpose, scope, architecture,
and implementation features of the software manufacturing
control system, i.e., the artifact designed in this case study.

A. Purpose and Scope

To design and evaluate the integrated control system artifact,
we use the case of the NSX bv software factory. It encompasses
both the metaprogramming environment and tools to generate
applications based on Normalized Systems Theory (NST) [7]
[8], and actual Normalized Systems (NS) applications, i.e.,
multi-tier web information systems generated in that envi-
ronment. The various DevOps tools and technologies of the
factory correspond to a large extent to those in Figure 1.
Though a rather small company, the NSX DevOps environ-
ment supports the development and operations of a wide range
of heterogeneous and interlinked software artifacts.

• Run-time libraries providing basic software utilities to
various applications and tools.

• Expansion resources consisting of bundles of Normalized
Systems code generation modules [8].

• Web Information Systems, software applications based on
the Java Enterprise Edition (JEE) standard.

• Domain software components, JEE components that are
shared across multiple JEE applications.

• Integrated Development Tool, called µRadiant, to enable
the model-driven development of NS applications.

• Small tools and plugins providing additional features in
tools like the µRadiant or IntelliJ.

The various build pipelines, defined in the corresponding
software repositories, typically contain the following steps.

• Expanding applications or components based on the NST
metaprogramming environment.

• Building usable libraries, archives, or executables for
components, applications, and tools.

• Unit testing of various software coding artifacts within
the software repositories.

• Reporting on the repositories, such as test coverage or
software quality metrics.

15Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Figure 1. A traditional representation of a typical DevOps infrastructure.

• Deploying live instances of applications or tools.
• Integration testing invoking live deployments.

Consistent with the overall goal of software factories and
product lines, many applications and tools in this DevOps
environment are expanded and built by reusing and assembling
various other software artifacts that are built in other reposito-
ries and pipelines. In order to have an idea of, for instance
test coverage and code quality, in a certain version of a
software application, we need an overview of these parameters
across the versions of all the libraries, expansion resources and
components that are being used in that application. Moreover,
we need to be able to track the various deployment parameters
of all the instances of that version of that application.

This type of functionality, i.e., to manage and control end-
to-end the building and assembly of software systems in
software factories, is indeed similar to MES systems, i.e.,
to track and document the transformation of raw materials
to finished goods, and SCADA systems, i.e., to manage and
control production processes in real-time, in manufacturing.
And though almost all the required information is avail-
able somewhere in one of the DevOps tools, the integrated
overviews and aggregations are not easily accessible.

B. Overall Architecture

The integrated software manufacturing system artifact or
prototype for the NSX software factory is implemented itself
as a Normalized Systems (NS) application, allowing us to take
advantage of the NST metaprogramming environment. More-
over, as NST was proposed to provide a theoretic foundation
to build information systems that provide higher levels of
evolvability [9] [7], this should enable us to cope better with
the rapidly changing DevOps tools and technologies. NS appli-
cations provide the main functionality of information systems
through the instantiation of five detailed design patterns or
so-called element structures [17] [7]:

• Data elements to represent a data or domain entities.
• Action elements to implement computing actions or tasks.

• Workflow elements to orchestrate flows or state machines.
• Connector elements to provide user or service interfaces.
• Trigger elements to to trigger or activate tasks or flows.

At the core of every NS information system is its data model
consisting of the various domain entities. A central part of the
data model of our software manufacturing control system is
represented in Figure 2. As in every software factory, software
artifacts are located in versioned Repositories. For every repos-
itory, automated Pipelines can be defined with different steps
or PipelineTargets, making use of various BuildTechnologies.
These pipelines produce various types of versioned Resources,
like libraries, archives, and executables. We distinguish Ap-
plicationRepositories corresponding to JEE Applications that
belong to a certain Domain, and ToolRepositories for various
types of LeverTools like plugins, command line tools, or the
NS development environment.

The action or task elements serve to import, collect, and or
compute various types of data for the software factory control
system. Indeed, the manual entering of data in such a system
would not only be extremely time consuming, it would also
lead to consistency problems. More specifically, types of data
that has to be collected or computed, include:

• Versions of applications and lever tools with the corre-
sponding versions of the dependencies or building blocks.

• Aggregated information measures on source repositories,
like the number of model entities, or the number and size
of source code artifacts.

• Overviews of automated tasks that have been performed
in build pipelines with their result status.

• Various quality measures that have been computed for the
various applications and tools.

• Aggregated values for the use of different technologies,
libraries and expander bundles.

C. Implementation Features

A system or artifact for the monitoring and control of
software manufacturing processes should be able to track the

16Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Figure 2. A representation of the data model of the integrated software manufacturng control system.

various parameters and data sets over time. This means that we
need to track data over time for most data entities, like sizes
of models and custom code, success rates of build processes,
or software quality parameters. Therefore, so-called history or
log tables are a crucial part of the data model. In the NS
metaprogramming environment, expanders or code generators
exist to automatically add —and even populate— an history
element for every data element. These history tables can then
be represented in graphs and analyzed over time, looking for
possible improvements in productivity and/or output quality.

A large part of the relevant data for the software manufac-
turing control system is already present or computed in one
of the many tools or technologies represented in Figure 1.
This implies that the automated collection and or computation
of software factory data in automated tasks integrates with
these tools and technologies, such as Bitbucket repositories,
Maven dependency declarations, Jenkins build engines, and
SonarQube quality analyzers. In accordance with NST, there
is a decoupling between the functionality of the data collection
in the the task element, e.g., build engine results or quality
measurements, and the actual implementation (class) of the
task element, e.g., getting data from Jenkins or SonarQube.
In this way, the software manufacturing control system is able
to support additional versions or variants of these tools and
technologies with limited impact.

IV. TOWARD A CONTROL LAYER FOR SOFTWARE
FACTORY IMPROVEMENTS

As stated in Section I, by tracking and documenting the
transformation of raw materials to finished goods, MES enable

decision-makers to optimize conditions and improve produc-
tion output. In the same way, a software manufacturing control
system should provide an analysis platform and control layer
to improve and optimize various aspects and characteristics of
the software factory operations and output. In this section, we
discuss some use cases and their added value, as they are being
developed as part of the iterative case-based design process.

A. Monitoring Evolutions over Time

A first avenue to optimize and improve the output and
quality of the software factory, is to monitor the evolution
of certain parameters over time. As explained in [8], NS
information systems distinguish between software skeletons,
instantiations of element structures generated by modular code
generators or so-called expanders, and custom code being
additional software artifacts or classes, i.e., extensions, or
code snippets added to the generated artifacts or classes, i.e.,
insertions. From a quality and evolvability point of view, it
is important to monitor the amount, size, and location of
these extensions and insertions. As an example, some sample
graphs are shown in Figure 3. They represent, for a specific
information system, the evolution of the total amount of
insertion snippets, and the total size of those insertion snippets.
As done for the second graph, these values can be made
relative with respect to the evolving size of the model, i.e.,
the number of element structures.

This type of monitoring, based on automated data collection
from the Bitbucket repositories, has been performed for quite
some time in the NSX software factory. It has provided
valuable insights into the actual project phases when such
custom code typically grew fast, and the software layers

17Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Figure 3. Sample graphs monitoring the amount of custom insertions and the normalized total size of insertions.

where such custom snippets where needed the most. This
last parameter provided an indication in which layer the
development of the code generators should be prioritized to
provide more out of the box functionality. Of course, other
types of software systems and factories, without the typical
NS distinction between element structures and custom code,
should monitor other structural measures to improve software
structure and productivity.

While this has been integrated in the software manufacturing
control system, the monitoring over time is not limited to the
source code repositories. History tables are also being created
for success rates of build pipelines, quality measures of the
custom source code, test overage percentages and numbers
of failed tests, numbers of live system deployments, etc. Of
course, this implies the integration with various DevOps tools
and technologies.

B. Aggregating over Manufacturing Chains

It is often considered to be a crucial characteristic of
software factories and software product lines that software
artifacts should only be created when their reuse is predicted
in one or more products [4]. And for instance in the NSX
software factory, a typical JEE application uses various other
software artifacts produced by the factory, such as:

• Several runtime libraries providing various utilities like
file handling or protocol adapters.

• Several reusable components supporting more generic
functionality like workflows or notifications, and/or pro-

viding more domain-specific building blocks such as
project planning or human resource benefits.

• Several expander bundles that are used during the expan-
sion of the application, such as the expanders to generate
the instances of the NST element structures, or extensions
such as the Relational State Transfer (REST) interfaces.

These artifacts are in general stored in other repositories and
built in other CICD pipelines. And while the dependency
on the code generation modules may be specific to NS
applications, the dependencies on various runtime libraries and
domain components is valid for nearly every software factory.

While parameters related to, for instance test coverage and
code quality, can be monitored for every individual software
artifact that is created in the factory, it seems quite relevant to
offer instant overviews and aggregations of these parameters
for all artifacts that are part of a specific aggregated artifact,
such as a JEE application. While obviously being relevant
to the customers using or licensing such an application, this
also enables the optimization and improvement of the overall
quality of the factory itself. Indeed, it allows to quickly
identify the weak links in such aggregated artifacts, and to
prioritize these software artifacts for improvements.

C. Tracking Technology Use Across Projects

Software applications are in general dependent on multiple
external artifacts and technologies, e.g., libraries and plugins,
that are build outside the software factory by commercial
software vendors or in open source projects. While these

18Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

dependencies are available in configuration files, it is important
to surface overviews and aggregations of these dependencies.
Such overviews and their added value include:

• immediate overviews of the impacted applications when
a vulnerability is detected in a library or technology.

• straightforward assessments of the impact when retiring
a certain (version of a) technology.

• regular evaluations of the usage and adoption rate of
libraries or expander bundles from the factory itself.

Obviously, such integrated information would also support
decisions concerning internal resource allocation, both for
supporting both internal and external technologies.

V. DISCUSSION AND CONCLUSION

For many years, software engineers have strived to produce
and/or assemble software in a more industrial way. In today’s
software factories, building and assembling software systems
is mainly controlled using a methodology called DevOps.
These DevOps environments are quite advanced and highly
automated, but are in general based on many different tech-
nologies and tools. As previously experienced in the automa-
tion of business processes and traditional manufacturing, this
often leads to a need for more integrated systems. In this
contribution, we have explored the creation of an integrated
software manufacturing control system, similar to SCADA or
MES systems in traditional manufacturing.

As part of a case-based design science approach, we have
presented a functional scope and overall architecture for such
a software manufacturing control system, and have described
the design and prototype implementation of the artifact for
the software factory case. This software manufacturing control
system prototype does not provide fundamentally new infor-
mation, but collects, aggregates and integrates information
over time, across various repositories and build pipelines,
and from different DevOps tools and technologies. Therefore,
this control system does not provide new possibilities per
se to optimize processes and improve output in software
factories, as this can be done today by analyzing in detail
the data produced by the various tools. However, aggregating
and providing this information in nearly real-time, offers the
opportunity to fundamentally reduce the lag times for such
optimizations and improvements. Though the design as a
search process is still ongoing, we have presented some use
cases where the added value was validated in the case study.

Exploring the creation of such a software manufacturing
control system is believed to make some contributions. First,
we have identified and validated a need for integrated control
in today’s state of the art automated DevOps environments.
Second, we have designed an architecture that enables the
rather straightforward creation of such integrated software
manufacturing control systems in most contemporary software
factories. Third, we have described and validated a number of
detailed scenarios that can leverage such an integrated control
system to improve the output of such software factories.

Next to these contributions, it is clear that this explorative
paper is also subject to a number of limitations. First, the
case-based approach means that the integrated system has been
created for a single software factory, though this factory does
include for instance code generators. Second, the major part
of the added value through optimizations and improvements,
enabled by the drastic reduction of the lag times in the control
processes, has yet to be confirmed empirically. However, its
design has been validated by actors in our case study, and we
are planning the empirical validation in the near future.

REFERENCES

[1] A. Marc, “Why Software Is Eating the World,” URL:
https://a16z.com/2011/08/20/why-software-is-eating-the-world/, 2011,
[accessed: 2023-07-27].

[2] M. D. McIlroy, “Mass produced software components,” in Proceedings
of NATO Software Engineering Conference, Garmisch, Germany, Octo-
ber 1968, pp. 138–155.

[3] S. E. Institute, “Software Product Lines Collection,” URL:
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819,
2023, [accessed: 2023-07-27].

[4] C. Krueger, “Introduction to the emerging practice software product line
development,” Methods and Tools, vol. 14, no. 3, 2006, pp. 3–15.

[5] J. Greenfield, K. Short, and S. Cook, Steve; Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools.
Wiley, 2004.

[6] T. Saeed, “Current issues in software re-usability: A critical review of
the methodological & legal issues,” Journal of Software Engineering and
Applications, vol. 13, no. 9, 2020, pp. 206–217.

[7] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[8] H. Mannaert, K. De Cock, P. Uhnak, and J. Verelst, “On the realization
of meta-circular code generation and two-sided collaborative metapro-
gramming,” International Journal on Advances in Software, no. 13, 2020,
pp. 149–159.

[9] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[10] M. Courtemanche, E. Mell, and A. S. Gills,
“What Is DevOps? The Ultimate Guide,” URL:
https://www.techtarget.com/searchitoperations/definition/DevOps,
2023, [accessed: 2023-07-27].

[11] R. T. Yarlagadda, “Devops and its practices,” International Journal of
Creative Research Thoughts (IJCRT), vol. 9, no. 3, 2021, pp. 111–119.

[12] A. Kumar, M. Nadeem, and S. M., “Assessing the maturity of devops
practices in software industry: An empirical study of helena2 dataset,”
in Proceedings of the 26th International Conference on Evaluation and
Assessment in Software Engineering (EASE 22), 2022, pp. 428—-432.

[13] S. M. Faaiz, S. U. R. Khan, S. Hussain, W. Wang, and N. Ibrahim,
“A study on management challenges and practices in devops,” in
Proceedings of the 27th International Conference on Evaluation and
Assessment in Software Engineering (EASE 23), 2023, pp. 430—-437.

[14] M. B. et al., “How to Select DevSecOps Tools for Secure Software
Delivery,” URL: https://www.gartner.com/en/documents/4131199, 2023,
[accessed: 2023-10-10].

[15] Dynatrace, “Observability and security convergence: En-
abling faster, more secure innovation in the cloud,” URL:
https://assets.dynatrace.com/en/docs/report/bae1393-rp-2023-global-
cio-report-observability-security-convergence.pdf, 2023, [accessed:
2023-10-10].

[16] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, 2004, pp.
75–105.

[17] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability,” Software: Practice
and Experience, vol. 42, no. 1, 2012, pp. 89–116.

19Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

