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Abstract—Software design patterns and the abstractions they 
offer can support developers and maintainers with program 
code comprehension. Yet manually-created pattern 
documentation within code or code-related assets, such as 
documents or models, can be unreliable, incomplete, and labor-
intensive. While various Design Pattern Detection (DPD) 
techniques have been proposed, industrial adoption of 
automated DPD remains limited. This paper contributes a 
hybrid DPD solution approach that leverages a Bayesian 
network integrating developer expertise via rule-based 
micropatterns with our machine learning subsystem that 
utilizes graph embeddings. The prototype shows its feasibility, 
and the evaluation using three design patterns shows its 
potential for detecting both design patterns and variations. 

Keywords – software design pattern detection; machine 
learning; artificial neural networks; graph embeddings; rule-
based expert system; Bayesian networks; software engineering. 

I.  INTRODUCTION 
While the amount of program source code worldwide 

continues to rapidly expand, code comprehension remains a 
limiting productivity factor. Program comprehension may 
consume up to 70% of the software engineering effort [1]. 
Activities involving program comprehension include 
investigating functionality, internal structures, dependencies, 
run-time interactions, execution patterns, and program 
utilization; adding or modifying functionality; assessing the 
design quality; and domain understanding of the system [2]. 
And code that is not correctly understood by programmers 
impacts quality and efficiency.  

Software Design Patterns (DPs) have been documented 
and popularized, including the Gang of Four (GoF) [3] and 
POSA [4]. The application of abstracted and documented 
solutions to recurring software design problems has been a 
boon to improving software design quality, efficiency, and 
aiding comprehension. These well-known macrostructures or 
associated pattern terminology in code can serve as beacons 
to abstracted macrostructures, and as such may help identify 
aspects such as the author’s intention or the purpose of a code 
segment, which, in turn, supports program comprehension.  

Possible automated DPD development or maintenance 
benefits include: quicker comprehension of DP-related 
structural aspects of some software; supplementing design 
documentation; automatically documenting DPs; reducing 
dependence on unreliable or incomplete manual DP 
documentation; detection of inadequately implemented DPs, 

e.g., as unknown DPs or DP variants. Yet automated DPD 
faces challenges, including: 1) tool support for heterogeneous 
programming languages, as DPs are independent of 
programming language; 2) internationalization and labeling, 
since developers may name and comment in their natural 
language or any way they like;  3) varying pattern abstraction 
levels, such as design vs. architectural patterns; 4) similarities 
and intent differentiation, since some similar pattern structures 
are primarily differentiated by their intention; 6) DP 
localization, indicating where in code a DP was detected; and 
7) detecting variants, since each implementation is unique. 
While various DPD approaches have been explored [5] [6], no 
approach has so far achieved significant traction in practice 
and industry tools, and thus additional investigation into 
further viable approaches and improvements is warranted. 

In previous work, we described DPDML, our ML-based 
DPD approach [7], and our hybrid DPD approach HyDPD [8], 
which combines two main components: HyDPD-ML that 
applies a supervised ML model based on semantic and static 
analysis metrics, and HyDPD-GA that applies a graph 
analysis technique.  

This paper contributes our new DPD solution approach 
HyDPD-B (Hybrid DPD using a Bayesian network), which 
applies a Bayesian network probabilistic reasoning to flexibly 
integrate various DPD subsystems, including an updated 
version of HyDPD-ML utilizing graph embeddings, as well as 
our new knowledge-based expert rule system and language 
utilizing micropattern detection. The DP rule language 
supports including developer expertise in refining our DPD. 
Our prototype shows its feasibility and the evaluation 
demonstrates its potential for detecting both DPs and DP 
variations. 

This paper is structured as follows: the next section 
discusses related work. Section 3 describes our solution. In 
Section 4, our realization is presented, which is followed by 
our evaluation in Section 5. Finally, a conclusion is provided. 

II. RELATED WORK 
Surveys including categorizations of DPD approaches 

include [5] and [6]. Graph-based approaches include: Yu et al. 
[9] transform code to UML class diagrams, analyze the XMI 
for sub-patterns in class-relationship directed graphs; Mayvan 
and Rasoolzadegan [10] use a UML semantic graph; Bernardi 
et al. [11] apply a DSL-driven graph matching approach; 
DesPaD [12] extract an abstract syntax tree from code, create 
a single large graph model of a project, and then apply an 

122Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances



isomorphic sub-graph search method. Further isomorphic 
subgraph approaches include Pande et al. [13] and Pradhan et 
al. [14], both of which require UML class diagrams.  

Learning-based approaches map the DPD problem to a 
learning problem, and can involve classification, decision 
trees, feature maps or vectors, Artificial Neural Networks 
(ANNs), etc. Examples include Alhusain et al. [15], Zanoni et 
al. [16], Galli et al. [17], Ferenc et al. [18], Uchiyama et al. 
[19], and Dwivedi et al. [20]. Thaller et al. [21] describe a 
micro-structure-based structural analysis approach based on 
feature maps. Chihada et al. [22] convert code to class 
diagrams, which are then transformed to graphs, and have 
experts create feature vectors for each role based on object-
oriented metrics and then apply ML. 

Additional approaches include: reasoning-based 
approaches such as Wang et al. [23] based on matrices; rule-
based approaches like Sempatrec [24] and the ontology-based 
FiG [25]; metric-based approaches such as MAPeD [26], 
Uchiyama et al. [19], and Dwivedi et al. [27]; Fontana et al. 
[28] analyze microstructures based on an abstract syntax tree; 
semantic-analysis style includes Issaoui et al. [29]; while DP-
Miner [30] uses a matrix-based approach based on UML for 
structural, behavioral, and semantic analysis.  

Our graph embedding procedure is conceptionally similar 
to Gl2vec [31] and Gredel [32], which was applied to drug 
discovery from biomedical literature.  

Our HyDPD-B composite system uses a hybrid approach 
involving graph analysis as does Singh et al. [33]. However, 
Singh et al. combine static rules with graph analysis rather 
than ML. In our opinion, combining knowledge engineering 
with rules learned from data can address biases in expert 
knowledge as well as data scarcity. Our HyDPD-ML 
component utilizes random microstructures. GEML [34] 
initializes a population of random structures and then applies 
genetic algorithms to mutate and generate new patterns from 
the initial population. In contrast, we do not mutate the 
random patterns initially generated. Instead, ML is applied to 
determine the weight of each pattern and combine patterns in 
a linear way, thus enhancing interpretability. Furthermore, 
HyDPD-B utilizes micro-patterns, a recurring concept in 
pattern recognition, as does Kouli and Rasoolzadegan [35]. 
However, instead of binary logic, our work utilizes 
probabilistic logic, which in combination with micro-patterns 
can improve system flexibility. HyDPD-B offers a hybrid 
solution concept integrating multiple DPD subsystems. 
Utilizing a Bayesian network with probabilistic reasoning, it 
combines an expert knowledge rule system leveraging graph 
analysis micropatterns with a ML system utilizing graph 
embeddings. Additionally, our DPD solution supports 
multiple programming languages without requiring UML 
modeling. 

III. SOLUTION CONCEPT 
DPD approaches can arguably be categorized into three 

primary approaches: 1) learning-based, where DPs are (semi-
)automatically learned (e.g., via supervised learning) from 
provided data and requiring minimal expert intervention; 2) 
knowledge-based, whereby an expert defines DPs by 
describing elements and their associations; and 3) similarity-

based, whereby DPs are grouped based on similar metrics or 
characteristics. 

In previous work our hybrid DPD approach (HyDPD) was 
described that seeks to combine various DPD approaches. To 
do so, it converts heterogeneous source code into a common 
format srcML [36], which is then further processed by a 
hybrid set of subsystems as shown in Figure 1. Our HyDPD-
ML machine learning (ML) model in this paper uses 
knowledge graph embeddings as input to a supervised 
learning model. Our HyDPD-GA converts the srcML to 
BSON (Binary JSON) stored in MongoDB, maps it to a graph 
model stored in Neo4j that supports the Cypher Query 
Language (CQL) [37] for graph-based DPD analysis.  

 
Figure 1.  The HyDPD-B solution concept. 

This paper describes our new hybrid solution concept 
HyDPD-B, which integrates results from our various DPD 
subsystems (HyDPD-ML, HyDPD-GA, HyDPD-MP) with a 
Bayesian network. It improves HyDPD by: 1) providing a 
mechanism to engage developers as experts in defining DP 
rules via a simple DP Rule Language (DPRL), 2) enabling 
approximate DP matching via micropattern support (HyDPD-
MP), 3) utilizing HyDPD-ML results, and 4) enabling known 
and unknown variant detection. The Bayesian network 
provides a flexible framework for probabilistic reasoning that 
is comprehensible and interpretable for humans, and thus 
offering a hybrid solution for utilizing all three DPD 
approaches (learning-, knowledge-, and similarity-based). 

A. Design Pattern Rule Language (DPRL) 
Various languages have been proposed to express DPs in 

a programming language-agnostic but human-readable way. 
Mainly these consist of logic-, ontology-, or graphical-based 
languages [38]. As they vary based on purpose, they can be 
classified as intended for description, analysis, or verification. 
Most languages described in literature did not fit our purpose, 
necessitated a steep learning curve for developers, or were 
generalized and challenging to map to a practical and usable 
implementation. Since HyDPD-GA already provides a graph-
based representation, we chose to start by simplifying Neo4j’s 
CQL to create our own Domain-Specific Language (DSL) 
called Design Pattern Rule Language (DPRL). DPRL serves 
as a graph-oriented rule language for developers (i.e., the 
knowledge experts) that should be relatively easy to learn and 
comprehend. While CQL is powerful and offers a human-
readable interface for formulating graph queries, a developer 
would nonetheless need to learn the Cypher syntax to 
formulate these only for the purpose of DPD. Instead, since 
developers are already well acquainted with the relatively 
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simple JSON format, we chose to store it in JSON and then 
parse and map values to generate Cypher queries. 
Consequently, DPRL should be relatively easy to understand 
for developers and depend primarily on DP knowledge to 
formulate meaningful queries. The primary language concepts 
are participants, subpatterns, and relations as shown in the 
Adapter DP example in Figure 2.  

 
Figure 2.  DPRL example Adapter pattern specification in JSON. 

1) Participants: Participants represents a collection of 
participant objects in a DP. In its simplest form a participant 
consists of the field name (line 21) – for instance, if the nature 
of the participant is irrelevant but the role it plays is of 
importance.  The optional constraints field (line 4 and 14) 
allows a collection of arbitrary unary constraints (constraints 
that only involve the participant variable) to be specified. In 

Cypher, these constraints may correspond to labels while 
others may correspond to attributes. The distinction is made 
by our DSL parser using an internal symbol table. A 
constraint consists of three values: field (line 6 and 16) 
corresponding to the target of the constraint; operator (line 7 
and 16) corresponding to the truth operator; and value (line 8 
and 18) corresponding to the desired field value. 

2) Subpatterns: Subpatterns (line 24) represents a 
collection of subpattern objects, each of which consists of a 
collection of binary relations (line 26 and 43) and the field 
truthvalue (line 40 and 57), indicating if the subpattern 
should be matched positively or negatively (precluded). 
While a pattern can contain only a single positive subpattern, 
it can contain an arbitrary number of negative subpatterns.  

3) Relations: Relations (line 26 and 43) is a collection of 
relations between participants, which are specified by the 
fields operand1, operand2, constraints, and directed (lines 
28-37). Operand1 and operand2 each contain either a name 
reference to a participant or a full description of a participant 
object (as described above). The collection constraints 
contains constraints analogous to those defined on a 
participant. 

4) Example Equivalent Cypher Query. Our JSON DSL is 
parsed to an equivalent Cypher query. For the example in 
Figure 2, this is shown in Figure 3.  For a developer with no 
knowledge of Cypher, the equivalent Cypher query is more 
complex to formulate or comprehend. 

 
Figure 3.  Example Equivalent HyDPD-GA Cypher Query. 

B. Micro Pattern Catalog (MPC) 
Certain structural aspects of design patterns can ideally be 

expressed as a set of smaller elementary units or 
characteristics we refer to as Micro Patterns (MPs) [39], e.g., 
Instantiation, Inheritance, Delegate, Extend, and 
Conglomeration. This also supports the reuse of viable MP 
detection components. Decomposing our existing graph-
based queries in the Cypher Query Language (CQL) from our 
previous work on HyDPD-GA provided derived MPs with 
appropriate queries. 

C. Randomized Graph Embeddings 
In our previous work, HyDPD-ML was trained on tabular 

features extracted from source code. These features include 
the existence of specific keywords, as well as object-oriented 
metrics, such as the number of classes in a project. This 
approach is vulnerable to a change in naming convention or 
code obfuscation. To mitigate this issue, we introduce a new 
approach, using knowledge-graph-embeddings. Input for 
those embeddings is provided by the graphs used by HyDPD-
GA. We apply a simple embedding approach: we first sample 
a predetermined number of random substructures in the graph. 
Those substructures are always extracted from the training set 
to exclude possible information leakage. Substructures 
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include information about relationship type. From those 
substructures, we derive a pattern query. 

A graph embedding is created by matching all generated 
pattern queries against a graph. This results in binary vectors, 
0 if a pattern matched, else 1. While the number of generated 
patterns can be treated as a hyper parameter, we decided to 
work with 500 patterns. Another hyper parameter is the 
complexity of extracted patterns. We define pattern 
complexity as the number of edge traversals in the knowledge 
graph as shown in Figure 4. In a grid search experiment, it was 
determined, that constraining complexity between 3 and 4 
traversals yields optimal results.  

 
Figure 4.  Sampling substructures with complexity 3 

The graph embeddings are consumed by a simple logistic 
regression model with L2 regularization. This enables 
learning from sparse data. This composition of random feature 
extraction combined with a regularized linear model is 
inspired by the ROCKET-algorithm, which is used for time 
series classification [40]. By using a linear model, the 
interpretability of any results can be better supported. 

D. Pattern Variant Detection 
DPs often do not conform exactly to some specification, 

making detection of DP variants challenging. The problem of 
DP variant detection can be partitioned into 1) the detection of 
known variants, and 2) the detection of unknown variants as 
shown in Figure 5. Assuming DP variants share a substantial 
degree of MPs, our solution concept should be able to detect 
known pattern variations efficiently. Moreover, by using 
hidden variables in the Bayesian network, the algorithm can 
also provide precise information regarding the variant.  

           
Figure 5.  Detecting known (left) and unknown (right) DP variants. 

 
Figure 6.  Expressing DP variants in the Bayesian network. 

An example for this is depicted in Figure 6. Here, yellow 
variables correspond to DP variants. To learn probabilities of 
those variant variables from data, it is necessary to annotate 
the data accordingly. If uninterested in variants, the 
intermediate variables could be omitted and all MPs involved 
wired directly to the DP variables. Probabilities are computed 
using Bayes theorem, where a hidden variable per variant can 
be calculated using knowledge of all observed variables [41]. 

Unfortunately, it is questionable if new variant detection 
can be done efficiently via a knowledge-based system. This is 
due to the fact that system is biased by the expert towards DP 
implementations known to him. However, as the proposed 
system is more flexible than a classical rule-based approach 
due to the usage of MPs and probabilistic reasoning, it should 
be able to better detect new variants that share MPs with 
known variants.  

E. Metamodel Bayesian Network 
The output of both the ML and MP DPD subsystems is 

integrated into the Bayesian network HyDPD-B as shown in 
Figure 7.   

 
Figure 7.  Example HyDPD-B Bayesian metamodel integrating ML and 
MP inputs. 

To enable this, the result of the ML subsystem has to be 
interpreted as an observed variable in a network. 
Unfortunately, the system only allows binary variables, while 
the output cardinality of the ML system is dependent on the 
number of considered DPs. To avoid this, one can formulate 
variables in the following way: a binary ML variable is 
associated with a model, as well as a specific DP. If the 
prediction of the model equals the specified DP, the variable 
evaluates to true. 
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IV. REALIZATION 
Software used to realize the solution included: sklearn, 

numpy, pandas, matplotlib, seaborn, NetworkX, Pomegranate 
for the Bayesian network, Flask, Jupyter notebooks, Docker, 
Docker Compose, Neo4j, MongDB, ReactJS, and JointJS.  

The core of the backend was realized in Python as a 
library, which contains all modules necessary to create the 
Bayesian networks and ML models for DPD.  

A. Web-based User Interface (UI) 
The UI is implemented using a web-based Single Page 

Application (SPA). While Jupyter Notebooks can suffice as a 
frontend for research purposes, they could be inconvenient for 
software developers, who would have to code in Python and 
know the API of the library. In contrast, our frontend provides 
functionalities to create Bayesian networks in a graphical way 
and train them via graphical UI elements as seen in Figure 8. 
Here the network can be created (Step 1) and the decision-
making process of the model visualized. After training the 
model (Step 2), data can be loaded (Step 3) and a prediction 
run (Step 3). 

Furthermore, a UI is provided to create, edit, and delete 
DPRL rules and show the JSON and CQL as seen in Figure 9.  

 
Figure 8.  HyDPD-B model creation UI showing MPs and DPs. 

 
Figure 9.  DPRL rule UI: JSON input (left) and generated CQL (right). 

B. Micro Pattern (MP) Catalog (MPC) Realization 
1) Override Abstract: Derived from the Adapter Cypher 

query, it is a general MP describing a method that overrides 
an abstract method. 

 
2) Iterate: This MP simply queries if a participant iterates 

over another participant, and commonly occurs in the 
Observer DP. 

 
3) Abstract Function Call: This MP describes a call of an 

abstract function. Such calls occur in the Observer DP, more 
precisely when a notify function calls an update function. 

 
4) Has Collection: This MP queries if there is a 

participant that owns a collection of abstract types. This MP 
is frequent in the Observer DP. 

 
5) Override & Delegate: This MP describes a function 

overriding a function and calling another function, and was 
extracted from the Adapter DP. 

 
6) Double Inheritance: This MP describes double 

inheritance, used in Adapter DP instances. If the Adapter 
pattern is implemented in the static, class-based way, the 
Adapter participant should in some way inherit from the 
adaptee as well as from the target. 

 
7) Overriding Method Creates: This MP describes a 

method that overrides another method and creates an object. 
It was extracted from the Factory Method DP. 

 
8) Returns Abstract: This MP matches methods that 

return an abstract class, and was extracted from the Factory 
Method DP. 

 
C. MP Bayesian Network Realization 

Each DP is connected to relevant MPs. In HyDPD-GA, 
DPs were distinguished in a query by excluding certain 
features that would implicate another DP, as certain patterns 
exhibit a high degree of overlap in structure and behavior. 
Unfortunately, such exclusions make DPD more complex. To 
resolve this, output variables of frequently confused DPs are 
interconnected with each other. The resulting network can be 
seen in Figure 10.  
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Figure 10.  Bayesian network architecture for 3 DPs utilizing 8 MPs. 

D. Metamodel Bayesian Network Realization 
1) Leaf variables: A leaf variable corresponds to the 

result of a MP match against the graph. Thus, the value of a 
leaf variable can be calculated deterministically at inference 
time. The variable requires a binary output (False or True). 
While it is feasible to use continuous variables, it would make 
the system less comprehensible and interpretable. 

2) Hidden variables: Hidden variables cannot be directly 
detected like measurable variables. The output of a hidden 
variable depends solely on the input of parent variables. To 
allow a model to learn values of hidden variables from data, 
the data must be annotated accordingly. A hidden variable 
can be expressed as a conditional table, which maps each 
combination of parent variables to a probability value (e.g., 
T/T->0.8, T/F->0.5, F/F->0.2). In practice, such annotations 
might indicate the specific pattern variants or participants 
involved in the pattern. For DPD, hidden variables may 
correspond to following entities: DP probability that code is 
instance of a specific DP; DP variant probability that code is 
instance of a specific pattern variant; DP participant 
probability that code contains a DP participant; and MP 
pattern probability that code contains a specific MP. 

3) Query variables: We are not necessarily interested in 
all available hidden variables. For DPD, we are specifically 
interested in the probabilities given to DPs. Consequently, in 
most use cases, query variables correspond to DPs. 

V. EVALUATION 
For the evaluation of HyDPD-B, we used the same dataset 

as used for HyDPD [8] Due to resource constraints, we 
focused on three common patterns from each of the major 
pattern categories: from the creational patterns, Factory 
Method; from the structural category, Adapter; and from the 
behavioral patterns, Observer. For this, 25 unique single-
pattern code projects per pattern small single-pattern code 
projects from public repositories, 49 in Java and 26 in C# 
(mostly from github and the rest from pattern book sites, 
MSDN, etc.). They were manually verified and labeled as 
examples of a specific pattern. srcML supports these two 
popular programming languages and the mix of languages 
demonstrates programming language independence. For 
HyDPD-ML training data, we applied hold-out validation, 
selecting 60 of 75 projects (20 per pattern category). with 
between 60-75% of the code projects being in Java and the 

remainder in C#. To create the ML test dataset, the remaining 
15 projects (5 per pattern, 3 in Java and 2 in C#) were 
duplicated and their signal words removed or renamed, 
resulting in 30 test projects (10 per pattern). 

A. HyDPD-MP (Bayesian Network without ML) 
1) Performance: Repeated cross-validation was used to 

test the performance of the rule-based system. Simple cross- 
validation showed high variance leading to inaccurate results. 
Thus, 5-fold cross-validation with 5 repetitions was used, 
resulting in 25 runs and a more accurate estimation. The mean 
was 0.917 and the median 0.944, with the distribution skewed 
due to outliers. Hence, accuracy of HyDPD-MP for these 3 
DPs using an 8 MPs ruleset is on par with the 0.91 accuracy 
of our previous HyDPD-GA system [8]. 

 
Figure 11.  Confusion matrix for HyDPD-MP. 

2) Confusion matrix: To determine if the results vary 
across different DPs, a confusion matrix was created using 5-
fold cross-validation as shown in Figure 11. Adapter 
performed worse than the other patterns and was more 
frequently misclassified as Observer, an indication of some 
similarity between the DPs. Apparently, the ruleset does not 
properly distinguish Adapter from Observer. This result 
could likely be improved via better fitting Adapter rules, or 
via more restrictive Observer rules. 

B. HyDPD-ML Performance 
To evaluate HyDPD-ML, cross-validation was used, with 

the confusion matrix shown in Figure 12. Classification errors 
exist across all classes, yet no clear bias can be detected. 
Observer had the worst recall rate with 0.90, Adapter 0.93, 
and Factory Method with 0.97. 

 
Figure 12.  Confusion matrix for HyDPD-ML. 
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C. HyDPD-ML Variant detection 
DP variant datasets are difficult to acquire since most 

example DP projects intend to exemplify the reference DP. To 
evaluate HyDPD-ML for unknown pattern variant detection, 
DP variations were removed from the training dataset and 
moved to a test set containing only variations.  

TABLE I.  DP VARIANT PREDICTIONS 

DP Variant Predicted DP 
Adapter 2 Adapter 
Adapter 4 Adapter 
Adapter 7 Adapter 

Factory Method 17cs Adapter 
Factory Method 2 Factory Method 

Observer 12 Observer 
Observer 13cs Factory Method 
Observer 18cs Observer 

 
As seen in Table I, 6 out of 8 variations were correctly 

classified. The recall rate for Adapter was 1.0, Observer was 
0.66, and Factory Method was 0.5. On average, accuracy is 
0.75. While worse than the estimated general accuracy of 
0.95, it shows HyDPD-ML is somewhat capable of classifying 
unknown pattern variations. 

D. Combined HyDPD-B 
To evaluate the performance of the combined HyDPD-B, 

repeated cross-validation was performed. HyDBD-ML was 
trained on the same dataset as the Bayesian network. HyDBD-
B (HyDPD-MP and HyDPD-ML combined) reached an 
accuracy of 0.944 as seen in Figure 13.  

 
Figure 13.  Performance comparison. 

While the Bayesian network is quite performant, it 
outperforms HyDPD-GA only by a very small margin.  
HyDPD-ML performs better than the Bayesian network. The 
rule set could be improved, as there is lot of potential gain by 
introducing more fitting rules. This was not performed in the 
context of our current work as this could lead to a risk of 
manual overfitting of the available dataset. Combining the 
Bayesian network with the ML leads to a performance almost 
on the same level as ML itself. However, the new solution 
HyDPD-B is now more flexible for incorporating expert 
knowledge to continually improve and refine results. 

VI. CONCLUSION 
This paper described our hybrid DPD solution concept 

HyDPD-B, which uses a Bayesian network to integrate a 
graph-based expert rule system using micropattern detection 
(HyDPD-MP) with a ML system (HyDPD-ML) using graph 
embeddings. Via a Bayesian network, inexact DP matching 
via probabilistic reasoning is supported with a finer rule 
definition granularity via micropatterns. The Bayesian 
network provides a flexible framework for probabilistic 
reasoning that is comprehensible and interpretable for 
humans. Our simple DP rule language (DPRL) was 
introduced to integrate developers as experts in defining DP 
and MP rules. Whereas HyDPD-MP can support DP 
localization and known variant detection via MPs, HyDPD-
ML only indicates a DP is contained somewhere in the dataset. 
HyDPD-ML can detect unknown DP variations, yet with less 
accuracy than standard DPs.   

This could be improved with larger DP training and 
variant test datasets, but these remain challenging to acquire. 
Since the Bayesian system is dependent on manual knowledge 
engineering, future work will investigate its viability and 
scalability regarding DP variant detection. Future work 
includes expansion across all GoF DPs, measurements against 
benchmark pattern repositories and open source projects, and 
a comprehensive empirical industrial case study. 
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