
Design Pattern Detection in Code: A Hybrid Approach Utilizing a Bayesian
Network, Machine Learning with Graph Embeddings, and Micropattern Rules

Roy Oberhauser[0000-0002-7606-8226] and Sandro Moser
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de, sandro.moser@studmail.hs-aalen.de

Abstract—Software design patterns and the abstractions they
offer can support developers and maintainers with program
code comprehension. Yet manually-created pattern
documentation within code or code-related assets, such as
documents or models, can be unreliable, incomplete, and labor-
intensive. While various Design Pattern Detection (DPD)
techniques have been proposed, industrial adoption of
automated DPD remains limited. This paper contributes a
hybrid DPD solution approach that leverages a Bayesian
network integrating developer expertise via rule-based
micropatterns with our machine learning subsystem that
utilizes graph embeddings. The prototype shows its feasibility,
and the evaluation using three design patterns shows its
potential for detecting both design patterns and variations.

Keywords – software design pattern detection; machine
learning; artificial neural networks; graph embeddings; rule-
based expert system; Bayesian networks; software engineering.

I. INTRODUCTION
While the amount of program source code worldwide

continues to rapidly expand, code comprehension remains a
limiting productivity factor. Program comprehension may
consume up to 70% of the software engineering effort [1].
Activities involving program comprehension include
investigating functionality, internal structures, dependencies,
run-time interactions, execution patterns, and program
utilization; adding or modifying functionality; assessing the
design quality; and domain understanding of the system [2].
And code that is not correctly understood by programmers
impacts quality and efficiency.

Software Design Patterns (DPs) have been documented
and popularized, including the Gang of Four (GoF) [3] and
POSA [4]. The application of abstracted and documented
solutions to recurring software design problems has been a
boon to improving software design quality, efficiency, and
aiding comprehension. These well-known macrostructures or
associated pattern terminology in code can serve as beacons
to abstracted macrostructures, and as such may help identify
aspects such as the author’s intention or the purpose of a code
segment, which, in turn, supports program comprehension.

Possible automated DPD development or maintenance
benefits include: quicker comprehension of DP-related
structural aspects of some software; supplementing design
documentation; automatically documenting DPs; reducing
dependence on unreliable or incomplete manual DP
documentation; detection of inadequately implemented DPs,

e.g., as unknown DPs or DP variants. Yet automated DPD
faces challenges, including: 1) tool support for heterogeneous
programming languages, as DPs are independent of
programming language; 2) internationalization and labeling,
since developers may name and comment in their natural
language or any way they like; 3) varying pattern abstraction
levels, such as design vs. architectural patterns; 4) similarities
and intent differentiation, since some similar pattern structures
are primarily differentiated by their intention; 6) DP
localization, indicating where in code a DP was detected; and
7) detecting variants, since each implementation is unique.
While various DPD approaches have been explored [5] [6], no
approach has so far achieved significant traction in practice
and industry tools, and thus additional investigation into
further viable approaches and improvements is warranted.

In previous work, we described DPDML, our ML-based
DPD approach [7], and our hybrid DPD approach HyDPD [8],
which combines two main components: HyDPD-ML that
applies a supervised ML model based on semantic and static
analysis metrics, and HyDPD-GA that applies a graph
analysis technique.

This paper contributes our new DPD solution approach
HyDPD-B (Hybrid DPD using a Bayesian network), which
applies a Bayesian network probabilistic reasoning to flexibly
integrate various DPD subsystems, including an updated
version of HyDPD-ML utilizing graph embeddings, as well as
our new knowledge-based expert rule system and language
utilizing micropattern detection. The DP rule language
supports including developer expertise in refining our DPD.
Our prototype shows its feasibility and the evaluation
demonstrates its potential for detecting both DPs and DP
variations.

This paper is structured as follows: the next section
discusses related work. Section 3 describes our solution. In
Section 4, our realization is presented, which is followed by
our evaluation in Section 5. Finally, a conclusion is provided.

II. RELATED WORK
Surveys including categorizations of DPD approaches

include [5] and [6]. Graph-based approaches include: Yu et al.
[9] transform code to UML class diagrams, analyze the XMI
for sub-patterns in class-relationship directed graphs; Mayvan
and Rasoolzadegan [10] use a UML semantic graph; Bernardi
et al. [11] apply a DSL-driven graph matching approach;
DesPaD [12] extract an abstract syntax tree from code, create
a single large graph model of a project, and then apply an

122Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

isomorphic sub-graph search method. Further isomorphic
subgraph approaches include Pande et al. [13] and Pradhan et
al. [14], both of which require UML class diagrams.

Learning-based approaches map the DPD problem to a
learning problem, and can involve classification, decision
trees, feature maps or vectors, Artificial Neural Networks
(ANNs), etc. Examples include Alhusain et al. [15], Zanoni et
al. [16], Galli et al. [17], Ferenc et al. [18], Uchiyama et al.
[19], and Dwivedi et al. [20]. Thaller et al. [21] describe a
micro-structure-based structural analysis approach based on
feature maps. Chihada et al. [22] convert code to class
diagrams, which are then transformed to graphs, and have
experts create feature vectors for each role based on object-
oriented metrics and then apply ML.

Additional approaches include: reasoning-based
approaches such as Wang et al. [23] based on matrices; rule-
based approaches like Sempatrec [24] and the ontology-based
FiG [25]; metric-based approaches such as MAPeD [26],
Uchiyama et al. [19], and Dwivedi et al. [27]; Fontana et al.
[28] analyze microstructures based on an abstract syntax tree;
semantic-analysis style includes Issaoui et al. [29]; while DP-
Miner [30] uses a matrix-based approach based on UML for
structural, behavioral, and semantic analysis.

Our graph embedding procedure is conceptionally similar
to Gl2vec [31] and Gredel [32], which was applied to drug
discovery from biomedical literature.

Our HyDPD-B composite system uses a hybrid approach
involving graph analysis as does Singh et al. [33]. However,
Singh et al. combine static rules with graph analysis rather
than ML. In our opinion, combining knowledge engineering
with rules learned from data can address biases in expert
knowledge as well as data scarcity. Our HyDPD-ML
component utilizes random microstructures. GEML [34]
initializes a population of random structures and then applies
genetic algorithms to mutate and generate new patterns from
the initial population. In contrast, we do not mutate the
random patterns initially generated. Instead, ML is applied to
determine the weight of each pattern and combine patterns in
a linear way, thus enhancing interpretability. Furthermore,
HyDPD-B utilizes micro-patterns, a recurring concept in
pattern recognition, as does Kouli and Rasoolzadegan [35].
However, instead of binary logic, our work utilizes
probabilistic logic, which in combination with micro-patterns
can improve system flexibility. HyDPD-B offers a hybrid
solution concept integrating multiple DPD subsystems.
Utilizing a Bayesian network with probabilistic reasoning, it
combines an expert knowledge rule system leveraging graph
analysis micropatterns with a ML system utilizing graph
embeddings. Additionally, our DPD solution supports
multiple programming languages without requiring UML
modeling.

III. SOLUTION CONCEPT
DPD approaches can arguably be categorized into three

primary approaches: 1) learning-based, where DPs are (semi-
)automatically learned (e.g., via supervised learning) from
provided data and requiring minimal expert intervention; 2)
knowledge-based, whereby an expert defines DPs by
describing elements and their associations; and 3) similarity-

based, whereby DPs are grouped based on similar metrics or
characteristics.

In previous work our hybrid DPD approach (HyDPD) was
described that seeks to combine various DPD approaches. To
do so, it converts heterogeneous source code into a common
format srcML [36], which is then further processed by a
hybrid set of subsystems as shown in Figure 1. Our HyDPD-
ML machine learning (ML) model in this paper uses
knowledge graph embeddings as input to a supervised
learning model. Our HyDPD-GA converts the srcML to
BSON (Binary JSON) stored in MongoDB, maps it to a graph
model stored in Neo4j that supports the Cypher Query
Language (CQL) [37] for graph-based DPD analysis.

Figure 1. The HyDPD-B solution concept.

This paper describes our new hybrid solution concept
HyDPD-B, which integrates results from our various DPD
subsystems (HyDPD-ML, HyDPD-GA, HyDPD-MP) with a
Bayesian network. It improves HyDPD by: 1) providing a
mechanism to engage developers as experts in defining DP
rules via a simple DP Rule Language (DPRL), 2) enabling
approximate DP matching via micropattern support (HyDPD-
MP), 3) utilizing HyDPD-ML results, and 4) enabling known
and unknown variant detection. The Bayesian network
provides a flexible framework for probabilistic reasoning that
is comprehensible and interpretable for humans, and thus
offering a hybrid solution for utilizing all three DPD
approaches (learning-, knowledge-, and similarity-based).

A. Design Pattern Rule Language (DPRL)
Various languages have been proposed to express DPs in

a programming language-agnostic but human-readable way.
Mainly these consist of logic-, ontology-, or graphical-based
languages [38]. As they vary based on purpose, they can be
classified as intended for description, analysis, or verification.
Most languages described in literature did not fit our purpose,
necessitated a steep learning curve for developers, or were
generalized and challenging to map to a practical and usable
implementation. Since HyDPD-GA already provides a graph-
based representation, we chose to start by simplifying Neo4j’s
CQL to create our own Domain-Specific Language (DSL)
called Design Pattern Rule Language (DPRL). DPRL serves
as a graph-oriented rule language for developers (i.e., the
knowledge experts) that should be relatively easy to learn and
comprehend. While CQL is powerful and offers a human-
readable interface for formulating graph queries, a developer
would nonetheless need to learn the Cypher syntax to
formulate these only for the purpose of DPD. Instead, since
developers are already well acquainted with the relatively

123Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

simple JSON format, we chose to store it in JSON and then
parse and map values to generate Cypher queries.
Consequently, DPRL should be relatively easy to understand
for developers and depend primarily on DP knowledge to
formulate meaningful queries. The primary language concepts
are participants, subpatterns, and relations as shown in the
Adapter DP example in Figure 2.

Figure 2. DPRL example Adapter pattern specification in JSON.

1) Participants: Participants represents a collection of
participant objects in a DP. In its simplest form a participant
consists of the field name (line 21) – for instance, if the nature
of the participant is irrelevant but the role it plays is of
importance. The optional constraints field (line 4 and 14)
allows a collection of arbitrary unary constraints (constraints
that only involve the participant variable) to be specified. In

Cypher, these constraints may correspond to labels while
others may correspond to attributes. The distinction is made
by our DSL parser using an internal symbol table. A
constraint consists of three values: field (line 6 and 16)
corresponding to the target of the constraint; operator (line 7
and 16) corresponding to the truth operator; and value (line 8
and 18) corresponding to the desired field value.

2) Subpatterns: Subpatterns (line 24) represents a
collection of subpattern objects, each of which consists of a
collection of binary relations (line 26 and 43) and the field
truthvalue (line 40 and 57), indicating if the subpattern
should be matched positively or negatively (precluded).
While a pattern can contain only a single positive subpattern,
it can contain an arbitrary number of negative subpatterns.

3) Relations: Relations (line 26 and 43) is a collection of
relations between participants, which are specified by the
fields operand1, operand2, constraints, and directed (lines
28-37). Operand1 and operand2 each contain either a name
reference to a participant or a full description of a participant
object (as described above). The collection constraints
contains constraints analogous to those defined on a
participant.

4) Example Equivalent Cypher Query. Our JSON DSL is
parsed to an equivalent Cypher query. For the example in
Figure 2, this is shown in Figure 3. For a developer with no
knowledge of Cypher, the equivalent Cypher query is more
complex to formulate or comprehend.

Figure 3. Example Equivalent HyDPD-GA Cypher Query.

B. Micro Pattern Catalog (MPC)
Certain structural aspects of design patterns can ideally be

expressed as a set of smaller elementary units or
characteristics we refer to as Micro Patterns (MPs) [39], e.g.,
Instantiation, Inheritance, Delegate, Extend, and
Conglomeration. This also supports the reuse of viable MP
detection components. Decomposing our existing graph-
based queries in the Cypher Query Language (CQL) from our
previous work on HyDPD-GA provided derived MPs with
appropriate queries.

C. Randomized Graph Embeddings
In our previous work, HyDPD-ML was trained on tabular

features extracted from source code. These features include
the existence of specific keywords, as well as object-oriented
metrics, such as the number of classes in a project. This
approach is vulnerable to a change in naming convention or
code obfuscation. To mitigate this issue, we introduce a new
approach, using knowledge-graph-embeddings. Input for
those embeddings is provided by the graphs used by HyDPD-
GA. We apply a simple embedding approach: we first sample
a predetermined number of random substructures in the graph.
Those substructures are always extracted from the training set
to exclude possible information leakage. Substructures

124Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

include information about relationship type. From those
substructures, we derive a pattern query.

A graph embedding is created by matching all generated
pattern queries against a graph. This results in binary vectors,
0 if a pattern matched, else 1. While the number of generated
patterns can be treated as a hyper parameter, we decided to
work with 500 patterns. Another hyper parameter is the
complexity of extracted patterns. We define pattern
complexity as the number of edge traversals in the knowledge
graph as shown in Figure 4. In a grid search experiment, it was
determined, that constraining complexity between 3 and 4
traversals yields optimal results.

Figure 4. Sampling substructures with complexity 3

The graph embeddings are consumed by a simple logistic
regression model with L2 regularization. This enables
learning from sparse data. This composition of random feature
extraction combined with a regularized linear model is
inspired by the ROCKET-algorithm, which is used for time
series classification [40]. By using a linear model, the
interpretability of any results can be better supported.

D. Pattern Variant Detection
DPs often do not conform exactly to some specification,

making detection of DP variants challenging. The problem of
DP variant detection can be partitioned into 1) the detection of
known variants, and 2) the detection of unknown variants as
shown in Figure 5. Assuming DP variants share a substantial
degree of MPs, our solution concept should be able to detect
known pattern variations efficiently. Moreover, by using
hidden variables in the Bayesian network, the algorithm can
also provide precise information regarding the variant.

Figure 5. Detecting known (left) and unknown (right) DP variants.

Figure 6. Expressing DP variants in the Bayesian network.

An example for this is depicted in Figure 6. Here, yellow
variables correspond to DP variants. To learn probabilities of
those variant variables from data, it is necessary to annotate
the data accordingly. If uninterested in variants, the
intermediate variables could be omitted and all MPs involved
wired directly to the DP variables. Probabilities are computed
using Bayes theorem, where a hidden variable per variant can
be calculated using knowledge of all observed variables [41].

Unfortunately, it is questionable if new variant detection
can be done efficiently via a knowledge-based system. This is
due to the fact that system is biased by the expert towards DP
implementations known to him. However, as the proposed
system is more flexible than a classical rule-based approach
due to the usage of MPs and probabilistic reasoning, it should
be able to better detect new variants that share MPs with
known variants.

E. Metamodel Bayesian Network
The output of both the ML and MP DPD subsystems is

integrated into the Bayesian network HyDPD-B as shown in
Figure 7.

Figure 7. Example HyDPD-B Bayesian metamodel integrating ML and
MP inputs.

To enable this, the result of the ML subsystem has to be
interpreted as an observed variable in a network.
Unfortunately, the system only allows binary variables, while
the output cardinality of the ML system is dependent on the
number of considered DPs. To avoid this, one can formulate
variables in the following way: a binary ML variable is
associated with a model, as well as a specific DP. If the
prediction of the model equals the specified DP, the variable
evaluates to true.

125Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

IV. REALIZATION
Software used to realize the solution included: sklearn,

numpy, pandas, matplotlib, seaborn, NetworkX, Pomegranate
for the Bayesian network, Flask, Jupyter notebooks, Docker,
Docker Compose, Neo4j, MongDB, ReactJS, and JointJS.

The core of the backend was realized in Python as a
library, which contains all modules necessary to create the
Bayesian networks and ML models for DPD.

A. Web-based User Interface (UI)
The UI is implemented using a web-based Single Page

Application (SPA). While Jupyter Notebooks can suffice as a
frontend for research purposes, they could be inconvenient for
software developers, who would have to code in Python and
know the API of the library. In contrast, our frontend provides
functionalities to create Bayesian networks in a graphical way
and train them via graphical UI elements as seen in Figure 8.
Here the network can be created (Step 1) and the decision-
making process of the model visualized. After training the
model (Step 2), data can be loaded (Step 3) and a prediction
run (Step 3).

Furthermore, a UI is provided to create, edit, and delete
DPRL rules and show the JSON and CQL as seen in Figure 9.

Figure 8. HyDPD-B model creation UI showing MPs and DPs.

Figure 9. DPRL rule UI: JSON input (left) and generated CQL (right).

B. Micro Pattern (MP) Catalog (MPC) Realization
1) Override Abstract: Derived from the Adapter Cypher

query, it is a general MP describing a method that overrides
an abstract method.

2) Iterate: This MP simply queries if a participant iterates

over another participant, and commonly occurs in the
Observer DP.

3) Abstract Function Call: This MP describes a call of an

abstract function. Such calls occur in the Observer DP, more
precisely when a notify function calls an update function.

4) Has Collection: This MP queries if there is a

participant that owns a collection of abstract types. This MP
is frequent in the Observer DP.

5) Override & Delegate: This MP describes a function

overriding a function and calling another function, and was
extracted from the Adapter DP.

6) Double Inheritance: This MP describes double

inheritance, used in Adapter DP instances. If the Adapter
pattern is implemented in the static, class-based way, the
Adapter participant should in some way inherit from the
adaptee as well as from the target.

7) Overriding Method Creates: This MP describes a

method that overrides another method and creates an object.
It was extracted from the Factory Method DP.

8) Returns Abstract: This MP matches methods that

return an abstract class, and was extracted from the Factory
Method DP.

C. MP Bayesian Network Realization

Each DP is connected to relevant MPs. In HyDPD-GA,
DPs were distinguished in a query by excluding certain
features that would implicate another DP, as certain patterns
exhibit a high degree of overlap in structure and behavior.
Unfortunately, such exclusions make DPD more complex. To
resolve this, output variables of frequently confused DPs are
interconnected with each other. The resulting network can be
seen in Figure 10.

126Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Figure 10. Bayesian network architecture for 3 DPs utilizing 8 MPs.

D. Metamodel Bayesian Network Realization
1) Leaf variables: A leaf variable corresponds to the

result of a MP match against the graph. Thus, the value of a
leaf variable can be calculated deterministically at inference
time. The variable requires a binary output (False or True).
While it is feasible to use continuous variables, it would make
the system less comprehensible and interpretable.

2) Hidden variables: Hidden variables cannot be directly
detected like measurable variables. The output of a hidden
variable depends solely on the input of parent variables. To
allow a model to learn values of hidden variables from data,
the data must be annotated accordingly. A hidden variable
can be expressed as a conditional table, which maps each
combination of parent variables to a probability value (e.g.,
T/T->0.8, T/F->0.5, F/F->0.2). In practice, such annotations
might indicate the specific pattern variants or participants
involved in the pattern. For DPD, hidden variables may
correspond to following entities: DP probability that code is
instance of a specific DP; DP variant probability that code is
instance of a specific pattern variant; DP participant
probability that code contains a DP participant; and MP
pattern probability that code contains a specific MP.

3) Query variables: We are not necessarily interested in
all available hidden variables. For DPD, we are specifically
interested in the probabilities given to DPs. Consequently, in
most use cases, query variables correspond to DPs.

V. EVALUATION
For the evaluation of HyDPD-B, we used the same dataset

as used for HyDPD [8] Due to resource constraints, we
focused on three common patterns from each of the major
pattern categories: from the creational patterns, Factory
Method; from the structural category, Adapter; and from the
behavioral patterns, Observer. For this, 25 unique single-
pattern code projects per pattern small single-pattern code
projects from public repositories, 49 in Java and 26 in C#
(mostly from github and the rest from pattern book sites,
MSDN, etc.). They were manually verified and labeled as
examples of a specific pattern. srcML supports these two
popular programming languages and the mix of languages
demonstrates programming language independence. For
HyDPD-ML training data, we applied hold-out validation,
selecting 60 of 75 projects (20 per pattern category). with
between 60-75% of the code projects being in Java and the

remainder in C#. To create the ML test dataset, the remaining
15 projects (5 per pattern, 3 in Java and 2 in C#) were
duplicated and their signal words removed or renamed,
resulting in 30 test projects (10 per pattern).

A. HyDPD-MP (Bayesian Network without ML)
1) Performance: Repeated cross-validation was used to

test the performance of the rule-based system. Simple cross-
validation showed high variance leading to inaccurate results.
Thus, 5-fold cross-validation with 5 repetitions was used,
resulting in 25 runs and a more accurate estimation. The mean
was 0.917 and the median 0.944, with the distribution skewed
due to outliers. Hence, accuracy of HyDPD-MP for these 3
DPs using an 8 MPs ruleset is on par with the 0.91 accuracy
of our previous HyDPD-GA system [8].

Figure 11. Confusion matrix for HyDPD-MP.

2) Confusion matrix: To determine if the results vary
across different DPs, a confusion matrix was created using 5-
fold cross-validation as shown in Figure 11. Adapter
performed worse than the other patterns and was more
frequently misclassified as Observer, an indication of some
similarity between the DPs. Apparently, the ruleset does not
properly distinguish Adapter from Observer. This result
could likely be improved via better fitting Adapter rules, or
via more restrictive Observer rules.

B. HyDPD-ML Performance
To evaluate HyDPD-ML, cross-validation was used, with

the confusion matrix shown in Figure 12. Classification errors
exist across all classes, yet no clear bias can be detected.
Observer had the worst recall rate with 0.90, Adapter 0.93,
and Factory Method with 0.97.

Figure 12. Confusion matrix for HyDPD-ML.

127Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

C. HyDPD-ML Variant detection
DP variant datasets are difficult to acquire since most

example DP projects intend to exemplify the reference DP. To
evaluate HyDPD-ML for unknown pattern variant detection,
DP variations were removed from the training dataset and
moved to a test set containing only variations.

TABLE I. DP VARIANT PREDICTIONS

DP Variant Predicted DP
Adapter 2 Adapter
Adapter 4 Adapter
Adapter 7 Adapter

Factory Method 17cs Adapter
Factory Method 2 Factory Method

Observer 12 Observer
Observer 13cs Factory Method
Observer 18cs Observer

As seen in Table I, 6 out of 8 variations were correctly

classified. The recall rate for Adapter was 1.0, Observer was
0.66, and Factory Method was 0.5. On average, accuracy is
0.75. While worse than the estimated general accuracy of
0.95, it shows HyDPD-ML is somewhat capable of classifying
unknown pattern variations.

D. Combined HyDPD-B
To evaluate the performance of the combined HyDPD-B,

repeated cross-validation was performed. HyDBD-ML was
trained on the same dataset as the Bayesian network. HyDBD-
B (HyDPD-MP and HyDPD-ML combined) reached an
accuracy of 0.944 as seen in Figure 13.

Figure 13. Performance comparison.

While the Bayesian network is quite performant, it
outperforms HyDPD-GA only by a very small margin.
HyDPD-ML performs better than the Bayesian network. The
rule set could be improved, as there is lot of potential gain by
introducing more fitting rules. This was not performed in the
context of our current work as this could lead to a risk of
manual overfitting of the available dataset. Combining the
Bayesian network with the ML leads to a performance almost
on the same level as ML itself. However, the new solution
HyDPD-B is now more flexible for incorporating expert
knowledge to continually improve and refine results.

VI. CONCLUSION
This paper described our hybrid DPD solution concept

HyDPD-B, which uses a Bayesian network to integrate a
graph-based expert rule system using micropattern detection
(HyDPD-MP) with a ML system (HyDPD-ML) using graph
embeddings. Via a Bayesian network, inexact DP matching
via probabilistic reasoning is supported with a finer rule
definition granularity via micropatterns. The Bayesian
network provides a flexible framework for probabilistic
reasoning that is comprehensible and interpretable for
humans. Our simple DP rule language (DPRL) was
introduced to integrate developers as experts in defining DP
and MP rules. Whereas HyDPD-MP can support DP
localization and known variant detection via MPs, HyDPD-
ML only indicates a DP is contained somewhere in the dataset.
HyDPD-ML can detect unknown DP variations, yet with less
accuracy than standard DPs.

This could be improved with larger DP training and
variant test datasets, but these remain challenging to acquire.
Since the Bayesian system is dependent on manual knowledge
engineering, future work will investigate its viability and
scalability regarding DP variant detection. Future work
includes expansion across all GoF DPs, measurements against
benchmark pattern repositories and open source projects, and
a comprehensive empirical industrial case study.

ACKNOWLEDGMENT
The authors would like to thank Victor Gouromichos for

his assistance with the implementation and data preparation.

REFERENCES
[1] R. Minelli, A.Mocci, and M. Lanza, “I know what you did last

summer: an investigation of how developers spend their time,”
In: Proceedings of the 2015 IEEE 23rd International Conference
on Program Comprehension, pp. 25-35. IEEE Press, 2015.

[2] M. J. Pacione, M. Roper, and M. Wood, “A novel software
visualisation model to support software comprehension,” In:
Proc.. 11th Working Conference on Reverse Engineering, pp.
70-79. IEEE, 2004.

[3] E. Gamma, Design Patterns: Elements of Reusable Object-
Oriented Software. Pearson Education India, 1995.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, Pattern-Oriented Software Architecture: A System of
Patterns, Vol. 1. John Wiley & Sons, 2008.

[5] M.G. Al-Obeidallah, M. Petridis, and S. Kapetanakis, “A
survey on design pattern detection approaches,” International
Journal of Software Engineering (IJSE), 7(3), pp.41-59, 2016.

[6] H. Yarahmadi and S. M. H. Hasheminejad, “Design pattern
detection approaches: A systematic review of the literature,”
Artificial Intelligence Review, 53, pp. 5789-5846, 2020.

[7] R. Oberhauser, “A Machine Learning Approach Towards
Automatic Software Design Pattern Recognition Across
Multiple Programming Languages,” Proc. of the Fifteenth
International Conference on Software Engineering Advances
(ICSEA 2020), pp. 27-32, IARIA XPS Press, 2020.

[8] R. Oberhauser, “A Hybrid Graph Analysis and Machine
Learning Approach Towards Automatic Software Design
Pattern Recognition Across Multiple Programming Languages,
” International Journal on Advances in Software, vol. 15, no. 1
& 2, year 2022, pp. 28-42. ISSN: 1942-2628.

[9] D. Yu, Y. Zhang, and Z. Chen, “A comprehensive approach to
the recovery of design pattern instances based on sub-patterns

128Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

and method signatures,” Journal of Systems and Software, vol.
103, pp. 1-16, 2015.

[10] B. Mayvan and A. Rasoolzadegan, “Design pattern detection
based on the graph theory,” Knowledge-Based Systems, vol.
120, pp. 211-225, 2017.

[11] M. L. Bernardi, M. Cimitile, and G. Di Lucca, “Design pattern
detection using a DSL‐driven graph matching approach,”
Journal of Software: Evolution and Process, 26(12), pp.1233-
1266, 2014.

[12] M. Oruc, F. Akal, and H. Sever, “Detecting design patterns in
object-oriented design models by using a graph mining
approach,” 4th International Conference in Software
Engineering Research and Innovation (CONISOFT 2016), pp.
115-121, IEEE, 2016.

[13] A. Pande, M. Gupta, and A. K. Tripathi, “A new approach for
detecting design patterns by graph decomposition and graph
isomorphism,” International Conference on Contemporary
Computing, pp. 108-119, Springer, Berlin, Heidelberg, 2010.

[14] P. Pradhan, A. K. Dwivedi, and S. K. Rath, “Detection of
design pattern using graph isomorphism and normalized cross
correlation,” Eighth International Conf. on Contemporary
Computing (IC3 2015), pp. 208-213, IEEE, 2015.

[15] S. Alhusain, S. Coupland, R. John, and M. Kavanagh, “Design
pattern recognition by using adaptive neuro fuzzy inference
system,” 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence, pp. 581-587, IEEE, 2013.

[16] M. Zanoni, F. A. Fontana, and F. Stella, “On applying machine
learning techniques for design pattern detection,” J. of Systems
& Software, vol. 103, no. C, pp. 102-117, 2015.

[17] L. Galli, P. Lanzi, and D. Loiacono, “Applying data mining to
extract design patterns from Unreal Tournament levels,”
Computational Intelligence and Games. pp. 1-8, IEEE, 2014.

[18] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, “Design pattern
mining enhanced by machine learning,” 21st IEEE In’'l Conf.
on Softw. Maintenance (ICS’'05), IEEE, pp. 295-304, 2005.

[19] S. Uchiyama, A. Kubo, H. Washizaki, and Y. Fukazawa,
“Detecting design patterns in object-oriented program source
code by using metrics and machine learning,” Journal of
Software Engineering and Applications, 7(12), pp. 983-998,
2014.

[20] A. K., Dwivedi, A. Tirkey, and S. K. Rath, “Software design
pattern mining using classification-based techniques,”
Frontiers of Computer Science, 12(5), pp. 908-922, 2018.

[21] H. Thaller, L. Linsbauer, and A. Egyed, “Feature maps: A
comprehensible software representation for design pattern
detection,” IEEE 26th international conference on software
analysis, evolution and reengineering (SANER 2019), pp. 207-
217, IEEE, 2019.

[22] A. Chihada, S. Jalili, S. M. H. Hasheminejad, and M. H.
Zangooei, “Source code and design conformance, design
pattern detection from source code by classification approach,”
Applied Soft Computing, 26, pp. 357-367, 2015.

[23] Y. Wang, H. Guo, H. Liu, and A. Abraham, “A fuzzy matching
approach for design pattern mining,” J. Intelligent & Fuzzy
Systems, vol. 23, nos. 2-3, pp. 53-60, 2012.

[24] A. Alnusair, T. Zhao, and G. Yan, “Rule-based detection of
design patterns in program code,” Int'l J. on Software Tools for
Technology Transfer, vol. 16, no. 3, pp. 315-334, 2014.

[25] M. Lebon and V. Tzerpos, “Fine-grained design pattern
detection,” IEEE 36th Annual Computer Software and
Applications Conference, IEEE, pp. 267-272, 2012.

[26] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, “Using metric-
based filtering to improve design pattern detection
approaches,” Innovations in Systems and Software
Engineering, vol. 11, no. 1, pp. 39-53, 2015.

[27] A. K., Dwivedi, A. Tirkey, and S. K. Rath, “Software design
pattern mining using classification-based techniques,”
Frontiers of Computer Science, 12(5), pp. 908-922, 2018.

[28] F. A. Fontana, S. Maggioni, and C. Raibulet, “Understanding
the relevance of micro-structures for design patterns
detection,” Journal of Systems and Software, vol. 84, no. 12,
pp. 2334-2347, 2011

[29] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, “Using metric-
based filtering to improve design pattern detection approaches.
Innovations in Systems and Software Engineering,” vol. 11, no.
1, pp. 39-53, 2015.

[30] J. Dong, Y. Zhao, and Y. Sun, “A matrix-based approach to
recovering design patterns,” IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 39,
no. 6, pp. 1271-1282, 2009.

[31] K. Tu, J. Li, D. Towsley, D. Braines, and L. D. Turner,
“Gl2vec: Learning feature representation using graphlets for
directed networks,” in Proceedings of the 2019 IEEE/ACM
international conference on advances in social networks
analysis and mining, 2019, pp. 216–221.

[32] S. Sang et al., “Gredel: A knowledge graph embedding based
method for drug discovery from biomedical literatures,” IEEE
Access, vol. 7, pp. 8404–8415, 2018.

[33] J. Singh, S. R. Chowdhuri, G. Bethany, and M. Gupta,
“Detecting design patterns: a hybrid approach based on graph
matching and static analysis,” Information Technology and
Management, 23(3), pp. 139-150, 2022.

[34] R. Barbudo, A. Ramírez, F. Servant, and J. R. Romero,
“GEML: A grammar-based evolutionary machine learning
approach for design-pattern detection,” Journal of Systems and
Software, 175, p. 110919, 2021.

[35] M. Kouli and A. Rasoolzadegan, “A Feature-Based Method for
Detecting Design Patterns in Source Code,” Symmetry, 14(7),
p. 1491, 2022.

[36] M. Collard, M. Decker, and J. Maletic, “Lightweight
transformation and fact extraction with the srcML toolkit,”
IEEE 11th international working conference on source code
analysis and manipulation, IEEE, 2011, pp. 173-184.

[37] N. Francis et al., “Cypher: An evolving query language for
property graphs,” Proc. 2018 International Conference on
Management of Data, pp. 1433-1445, 2018.

[38] S. Khwaja and M. Alshayeb, “Survey on software design-
pattern specification languages,” ACM Computing Surveys
(CSUR), vol. 49, no. 1, pp. 1–35, 2016.

[39] J. Smith and D. Stotts, “An elemental design pattern catalog,”
Technical Report TR-02–040, 2002.

[40] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket:
Exceptionally fast and accurate time series classification using
random convolutional kernels,” Data Mining and Knowledge
Discovery, vol. 34, no. 5, pp. 1454–1495, 2020.

[41] K. P. Murphy, Machine Learning: A Probabilistic Perspective.
MIT press, 2012.

129Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

