
Prerequisites for Simulation-Based Software Design and Deployment

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology

Bozetechova 2, 612 66 Brno, Czech Republic

emails: koci@fit.vut.cz, janousek@fit.vut.cz

Abstract—The fundamental problem associated with software
development is correctly identifying, specifying, and realizing
the software system requirements. Many methodologies are not
formally defined and rely on intuitive use. In contrast, the formal
description techniques clearly describe the user requirements and
their specific solutions. We are involved in modeling the require-
ments and behavior of software systems using formal models used
in a specific manner. The approach combines intuitive modeling
with the precise expression of specified requirements and a
detailed implementation description. Models serve for analysis,
system design, validation, and simulation. Models can also be
directly deployed in real environments of developed systems. This
paper summarizes the current state of the approach to system
development, which is being developed by our team.

Keywords—Modeling; simulation-based design; model-driven
engineering; model-continuity.

I. INTRODUCTION

Software Engineering deals with the issues of efficient

development of correct and reliable systems. Correctness

means that the system fits perfectly with the intentions and

goals of deploying this system. Reliability means the system

does not contain errors or provide for damage caused by

unexpected and wrong behavior. The primary development

cycle of each software product is divided into several phases

that are continuously linked to each other. The first phases

are mainly analysis and specification of requirements, system

design, implementation and testing, and finally, system de-

ployment. Many software development methodologies work

with phases in different ways. It is possible to follow the

phases one by one accurately, to overlap or iterate them.

In any case, they are part of every development process.

One of the fundamental problems is the correct specification

and validation of the requirements for the system [1]. A use

case diagram from the Unified Modeling Language (UML)

is often used to specify the requirements, which is then

developed with other UML diagrams [2]. The disadvantage

of this approach is the difficulty in validating the specification

models. In response, methods for working with modified UML

models having executable form have been developed, such as

the Model Driven Architecture (MDA) methodology [3], the

Executable UML language (xUML) [4] or the Foundational

Subset for xUML [5]. However, these approaches still need to

solve the problem of model transformations as it is difficult

to transfer back to the model all the changes that result from

the validation process. Another approach, for example, uses a

modified subset of the UML, called fUML, with the formal

language Alf [6][7]. This approach is supported by modeling

and analysis tools [8].

The fundamental prerequisite for achieving the correct and

reliable system is continuous verification or validation of spec-

ification documents, design documents, and implementation

[9]. Another area for improvement is the transition between

different development process phases, from one document

type to another. An example may be the transition from an

informal specification to the model or from a design model

to the implementation. In these cases, mistakes often occur

due to misinterpretation of the outgoing model or by simply

overlooking any model element. Two main reasons for these

mistakes are the complexity and informal semantics. Many

elements of the used modeling means need a clearly defined

syntax and semantics, and their use is relatively intuitive. In

this paper, we summarize the concepts of software product

development and deployment using a combination of formal

and informal models, programming languages, and simulation.

The paper is structured as follows. We discuss related work

in Section II. In Section III, we specify basic requirements

for reliable software development and deployment. Section IV

introduces models that may appear during the development life

cycle. Section V addresses techniques needed for exploiting

the potential of visual and formal languages in the simulation-

based design.

II. RELATED WORD

The approach that combines formal models, simulations,

and their deployment or transformation is mainly applied in

control software. Many of these approaches [10]–[12] propose

to generate models in a particular language (e.g., System Mod-

eling Language—SysML) from UML models, usually from a

class diagram. Other work, such as [13], transforms different

levels of diagrams. Some approaches attempt to transform

conceptual models, described, i.e., in SysML, into simulation

models [14]. The approach most closely resembles ours is

based on the network-within-networks (NwN) formalism, with

which the Renew tool is associated [15]. In the design of more

general software systems, an example is already mentioned

xUML or fUML. The resulting system can often be generated

from the designed models [16][17]. However, freely available

tools only allow partial output (often, only a skeleton in the

chosen language is generated). However, these approaches also

do not allow formal models to implement the system but

only for simulation runs. Our proposed approach retains the

generated models throughout the software development and

105Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances



deployment. We aim to create more efficient representations

of models and their simulators for deployment purposes on

commonly used platforms and languages (Java, C++).

III. PREREQUISITES FOR A SIMULATION-BASED

APPROACH

This section briefly summarizes the basic requirements

for reliable software design and defines the prerequisites for

meeting these requirements.

A. Basic requirements

First, we define points that have to be met to create the

correct and reliable software system.

1) understand the goals of the software project and pre-

cisely specify the specific requirements whose imple-

mentation meets the declared objectives,

2) verify that the requirements specification is in line with

the objectives,

3) based on a verified specification, create a system design

that reflects the conditions of a particular implementa-

tion environment,

4) verify that the system design complies with the require-

ments,

5) implement the verified design,

6) verify that implementation is consistent with the design,

7) verify accuracy and reliability of implementation under

real conditions

In the following sections, we explain the basic principles of

our approach and how they fulfill the above points.

B. Model Continuity

The primary means for specifying requirements is plain text

in the native language. In this form, the specification is also

part of the contract between the developer and the customer.

Validation of the text description of requirements specification

is, however, difficult and very often impossible. This validation

can not be performed in an automated manner but by a

person. Nevertheless, someone is limited by his/her memory

and cannot analyze multi-page text in all its dependencies.

Visual models with a clear formal foundation make it

possible to capture a particular aspect of requirements un-

equivocally, helping to understand the developed system better

and detect errors. For these reasons, the ideal state is to use

one type of model that captures everything. However, such a

model would be too extensive to get into the same problem

as the text description.

A more appropriate approach is to combine models captur-

ing the system at different levels of abstraction so that it is

possible to view and analyze system models as a whole and

their details. This approach is complemented by other models

or text descriptions that include those features or requirements

that can not be captured in the existing models; eventually,

their capture would be very complicated. It satisfies the point

1 from the list in Section III-A.

An important feature that extends the capability of validat-

ing specification models is the ability to simulate these models.

It allows live testing of models in simulated conditions instead

of simply passing through a document. Another aspect that

affects validation capabilities is the environment or context in

which the simulation is performed. If models are integrated

into a realistic environment, the credibility of simulation

results increases. It satisfies the point 2 from the list in Section

III-A.

After the validation of specification models, the question of

a correct transition to the design models and the subsequent

implementation in the chosen environment remains. We aim

to work with the same models in all development phases,

especially the specification, design, and implementation, with

no transformation and minimization of errors. The models

are only complemented with further details while preserving

the possibility of previewing models at different levels of

abstraction from the specification to the implementation view.

It satisfies points 3 and 4 from the list in Section III-A.

Requirements model System model System implementation

use-cases

 use-case

realization

simulation
simulation

behavior

structure
source 

 code

     other

components

Figure 1. Model Continuity: Basic principle.

At the end of the development process, we have functional

models that fully reflect the system requirements. In certain

situations, especially concerning performance, these models

can serve as implementation models, i.e., become part of the

target system. If this is inappropriate or impossible for the

above reasons, we must implement or exploit the ability to

generate code from such models. Consistency with the design

does not need to be checked, as the same set of models is still

being developed. Verification accuracy and reliability under

real conditions are proved in the same or partially modified

manner. It satisfies points 5, 6, and 7 from the list in Section

III-A.

The prior text presents the basic principle of the continuity

model, which is depicted in Figure 1. Design models comple-

ment and extend each other in the development process, and

there is no need to transform or create new models based on

existing ones. If the nature of the resulting application permits,

it is possible to maintain the models in the target system.

IV. MODELS IN THE SIMULATION-BASED DEVELOPMENT

LIFE-CYCLE

In this section, we will introduce the types of models

that may appear during the life cycle of simulation devel-

opment of software systems. One of the basic principles of

simulation development is the continuity of models over the

entire development process until deployment in the application

environment. We define categories of models and typical

106Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances



representatives and evaluate their applicability in simulation

development.

The process of modeling software systems consists of sev-

eral phases that follow and interleave [18]. Various modeling

tools may be used in each phase, but there must be a way of

interconnecting them. We distinguish between Domain Model,

Behavioral Model, and Design Model that are supplemented

by Architecture Model.

In the following text, we will explain and analyze the

importance of each model in more detail. We will proceed

from a simple example of a robotic system, which we now

briefly specify. The example, which is based on the case

study presented in [19], presents a robot control system whose

motion is controlled by a pre-specified algorithm.

A. Domain Model

Domain Model captures concepts of the domain system

as identified and understood during the requirements analysis

process. The class diagram modeling conceptual classes and

their links is usually used. The domain model is the initial

model for modeling functional requirements and creation of

design models and is one of the first models to use when

designing the software.

B. Behavioral Model

Behavior Model captures an external view of the system’s

functionality, specific behavior, and system interaction with

its surroundings. The behavior model can be divided into two

complementary types:

• User Requirements Model captures an external view of

the system functionality. Use case models are used.

• Scenario Model (Model of Functional Requirements) cap-

tures specific behavior and interaction of individual use

cases. Different descriptions are used, e.g., structured text,

activity diagrams, or state charts. Generally speaking, it

is possible to use such models that describe the work-

flow of the use case supplemented by communication

mechanisms.

Use case diagrams are used to model user requirements. The

goal of modeling is to identify system users, user requirements,

and how the user works with these requirements. The essential

elements are users of the system, their role, and activities.

Roles are modeled through actors and activity through in-

dividual use cases in the use case diagram. Interconnected

scenarios (activity nets or role nets) then specify the behavior

of the individual elements (see Figure 2) and can be described

by different formalisms.

Activity diagrams, state diagrams, or interaction diagrams

can model case scenarios (activities). However, formal models

or formal languages, such as Petri nets, can also be used with

advantage. An important feature is an interconnection between

use case diagrams and scenarios modeled by specific diagrams

since both models represent a different view of the system

under development.

Figure 3 shows an example of the scenario model for the

elements Robot (role) and Execute Scenario (activity). The

Figure 2. Interrelation of elements and their descriptions.

walking

r isCloseToObstacle.

t1

r stop. r turnRight.

r

r

p1

r isCloseToObstacle.

t2

r turnRight.

r

r isCloseToObstacle.

t3

r turnRight.

r isClearRoad.

t11

r

r isCloseToObstacle.

t4 blocked

r isClearRoad.

t12

r isClearRoad.

t13

r

r

r

r go.

r go.

r go.

r

p2

r

r

r

p3

r

r

r

Execute Scenario

Robot

subject

self delay: 10

d := r getDistance.

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

r

d

oldD

p1

p2

t1

t2

Role Robot Activity net Scenario

Figure 3. Sample scenario model for role and use case.

formalism of Petri nets, its variant Object-Oriented Petri nets,

models the scenarios and uses its inherent synchronous port

mechanism (e.g., isCloseToObstacle) to synchronize with each

other [20].

C. Design and Architecture Model

Design Model is based on the domain and behavioral

models. Generally speaking, these are elaborate models of the

domain, requirements, and behavior that can be directly imple-

mented. Class diagrams, activity diagrams, or state diagrams

are used. The Architecture Model captures the organization of

the design classes. Class diagrams and grouping diagrams or

deployment diagrams are used. Usually, the architecture model

merges with the design models.

D. Interrelation of Models

As indicated in Figure 4, the scenario models at the level

of behavioral and design models merge into a single concept.

Therefore, the class diagram is also included in this concept.

The scenarios associated with the diagram of use cases corre-

spond to classes from the design model. A specific class type

models each element. Thus, we can identify groups of classes

107Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances



modeling actors, use cases, and other classes based on the

domain model. As behavioral models evolve, they become

design models that also serve the purpose of requirements

specification. The basic view of requirements is conveyed by

use case diagrams, class diagrams provide the architectural

view, and individual scenarios are represented as workflows

specified by Petri nets. Additional objects from the domain

environment can be used in the workflow to simulate the

system or run it under realistic conditions without displaying

these implementation details at the scenario level. Thus, the

same model can be used both for requirements documentation

and for the developed system’s executable version (prototype,

implementation).

Figure 4. The role of models in the development process.

V. SUPPORTING TECHNIQUES

The mentioned prerequisites need to be complemented by

supporting techniques that exploit the potential of visual and

formal languages in the simulation-based design. Many of

these techniques have already been developed and introduced

in previous papers.

A. Components

The possibility of exchanging parts of the software to debug

and verify the correctness or behavior of the system under

different conditions. The exchange should be enabled on the

fly (simulation). For this purpose, a component concept based

on the Discrete Event System Specification formalism (DEVS)

[21][22] was chosen. It makes possible to associate the formal

models described by High-level nets with an executable code

that is incorporated into DEVS formalism structures. DEVS

formalism is abstract concept that can be easily adapted to a

particular environment.

B. Debugging and Constraints

An important aspect is, of course, the possibility of debug-

ing and stepping. Simulation stepping is an obvious function-

ality of the simulation tool. We have also explored tracking

and reverting the model run using Petri nets [23]. However,

the presented concept still needs to consider all possible

applications.

We also introduced the basic concept of requirements vali-

dation and its implementation through scenarios described by

sequence diagrams [24]. Scenarios can be created manually

or generated from running (simulation) models. It allows us

to obtain assumed scenarios of the behavior of the use case

under study and real scenarios reflecting the design that can

be compared.

We introduced the concept of constraints and exceptions

over the Petri net formalism, which can be used to verify the

consistency of component interfaces or the correctness of the

behavior of the modeled system [21].

C. Models Supported by Programming Languages

Models can be combined with programming (or other for-

mal) languages that can be interpreted together with the model.

Thus, they can also use concepts (e.g., objects) from another

environment or programming languages. Current simulator can

work with only Smalltalk objects.

D. Transformations

Transform the model into the chosen programming language

for more efficient running. In the case of a transformed model,

using some of the above resources is limited. Currently, we

have the experimental implementation of transformations to

Java and C++ languages done by our master students.

VI. CONCLUSION

This paper summarized the concept of simulation-based

software development in conjunction with model-continuity

principles and the current state of the art that our research team

has achieved. The simulator has experimentally implemented

many of the techniques presented but is only partially suitable

for wider use (experimental implementation in a Smalltalk

environment). We are, therefore, currently working on a new

implementation of the simulator and a comprehensive model

editor in Java. The goal is to create a comprehensive tool for

modeling, designing, and verifying software systems with the

possibility of direct deployment (with a lightweight version of

the virtual machine for running models) or direct transforma-

tion into a programming language for more efficient running.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project

FIT-S-23-8151 – Reliable, Secure, and Intelligent Computer

Systems.

REFERENCES

[1] K. Wiegers and J. Beatty, Software Requirements. Microsoft Press,
2014.

[2] N. Daoust, Requirements Modeling for Bussiness Analysts. Technics
Publications, LLC, 2012.

[3] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in International Conference on Software
Engineering, FOSE, 2007, pp. 37–54.

[4] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model Driven
Architecture with Executable UML. Cambridge University Press, 2004.

108Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances



[5] S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “A framework for
testing uml activities based on fuml,” in Proc. of 10th Int. Workshop
on Model Driven Engineering, Verification, and Validation, vol. 1069,
2013, pp. 11–20.

[6] T. Buchmann and A. Rimer, “Unifying modeling and programming
with alf,” in SOFTENG 2016: The Second International Conference on
Advances and Trends in Software Engineering, 2016, pp. 10–15.

[7] E. Seidewitz, “UML with meaning: executable modeling in foundational
UML and the Alf action language,” in HILT ’14 Proceedings of the 2014
ACM SIGAda annual conference on High integrity language technology,
2014, pp. 61–68.

[8] Z. Micskei and et al., “On open source tools for behavioral
modeling and analysis with fuml and alf,” in 1st Workshop on Open
Source Software for Model Driven Engineering, MODELS 2014,
pp. 31–41, [online; retrieved: September, 2022]. [Online]. Available:
http://ceur-ws.org/Vol-1290/paper3.pdf

[9] D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuity in
discrete event simulation: A framework for model-driven development
of simulation models,” ACM Transactions on Modeling and Computer
Simulation, vol. 25, no. 3, 2015, pp. 17:1–17:24.

[10] T. Hussain and G. Frey, “UML-based Development Process for IEC
61499 with Automatic Test-case Generation,” in IEEE Conference on
Emerging Technologies and Factory Automation. IEEE, 2010.

[11] C. A. Garcia, E. X. Castellanos, C. Rosero, and Carlos, “Designing
Automation Distributed Systems Based on IEC-61499 and UML,” in
5th International Conference in Software Engineering Research and
Innovation (CONISOFT). IEEE, 2017.

[12] I. A. Batchkova, Y. A. Belev, and D. L. Tzakova, “IEC 61499 Based
Control of Cyber-Physical Systems,” Industry 4.0, vol. 5, no. 1, Novem-
ber 2020, pp. 10–13.

[13] S. Panjaitan and G. Frey, “Functional Design for IEC 61499 Distributed
Control Systems using UML Activity Diagrams,” in Proceedings of the
2005 International Conference on Instrumentation, Communications and
Information Technology ICICI 2005, 2005, pp. 64–70.

[14] G. D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, and D. Anag-
nostopoulos, “Model-based system engineering using SysML: Deriving
executable simulation models with QVT,” in IEEE International Systems
Conference Proceedings, 2014.

[15] L. Cabac, M. Haustermann, and D. Mosteller, “Renew 2.5 - towards a
comprehensive integrated development environment for petri net-based
applications,” in Application and Theory of Petri Nets and Concurrency
- 37th International Conference, PETRI NETS 2016, Toruń, Poland,
June 19-24, 2016. Proceedings, 2016, pp. 101–112. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-39086-4 7

[16] F. Ciccozzi, “On the automated translational execution of the action lan-
guage for foundational uml,” Software and Systems Modeling, vol. 17,
no. 4, 2018, doi: 10.1007/s10270-016-0556-7.

[17] E. Seidewitz and J. Tatibouet, “Tool paper: Combining alf and uml
in modeling tools an example with papyrus,” in 15th Internation
Workshop on OCL and Textual Modeling, MODELS 2015, pp.
105–119, [online; retrieved: September, 2022]. [Online]. Available:
http://ceur-ws.org/Vol-1512/paper09.pdf

[18] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development. Prentice
Hall, 2004.

[19] R. Kočı́ and V. Janoušek, “Formal Models in Software Development
and Deployment: A Case Study,” International Journal on Advances in
Software, vol. 7, no. 1, 2014, pp. 266–276.

[20] R. Kočı́ and V. Janoušek, “Specification of Requirements Using Unified
Modeling Language and Petri Nets,” International Journal on Advances
in Software, vol. 10, no. 12, 2017, pp. 121–131.

[21] R. Kočı́ and V. Janoušek, “The Object Oriented Petri Net Component
Model,” in The Tenth International Conference on Software Engineering
Advances. Xpert Publishing Services, 2015, pp. 309–315.

[22] R. Kočı́ and V. Janoušek, “Incorporating Petri Nets into DEVS For-
malism for Precise System Modeling,” in ICSEA 2019, The Fourteenth
International Conference on Software Engineering Advances. Xpert
Publishing Services, 2019, pp. 184–189.

[23] R. Koci and V. Janousek, “Possibilities of the reverse run of software
systems modeled by petri nets,” International Journal on Advances in
Software, vol. 12, no. 3, 2019, pp. 191–200.

[24] R. Kočı́, “Requirements validation through scenario generation and
comparison,” in The Fifteenth International Conference on Software
Engineering Advances, ICSEA 2020. Xpert Publishing Services, 2020,
pp. 129–134.

109Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances


