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Abstract—In the realm of Duplicate Bug Report Detection
(DBRD), conventional methods primarily focus on statically
analyzing bug databases, often disregarding the running time
of the model. In this context, complex models, despite their high
accuracy potential, can be time-consuming, while more efficient
models may compromise on accuracy. To address this issue, we
propose a transformer-based system designed to strike a balance
between time efficiency and accuracy performance. The existing
methods primarily address it as either a retrieval or classification
task. However, our hybrid approach leverages the strengths of
both models. By utilizing the retrieval model, we can perform
initial sorting to reduce the candidate set, while the classification
model allows for more precise and accurate classification. In
our assessment of commonly used models for retrieval and
classification tasks, sentence BERT and RoBERTa outperform
other baseline models in retrieval and classification, respectively.
To provide a comprehensive evaluation of performance and
efficiency, we conduct rigorous experimentation on five public
datasets. The results reveal that our system maintains accuracy
comparable to a classification model, significantly outperforming
it in time efficiency and only slightly behind a retrieval model in
time, thereby achieving an effective trade-off between accuracy
and efficiency.

Keywords-Duplicate Bug Detection; Deep Learning; Natural
Language Processing; Transformer; Running Time; Accuracy.

I. INTRODUCTION

Bug reports are crucial in the software development and
maintenance phase, providing valuable information to soft-
ware developers [1][2]. It commonly comprises structured text
(e.g., timestamp, version, component, and bug status) and
unstructured text, such as title and description [3]. Typically,
bugs are recorded in the Bug Database (also known as Bug
Tracking System) by developers, testers and users [3][4][5].
Unfortunately, the inconsistent understanding of bug descrip-
tions by different writers leads to the continuous generation
of numerous duplicate bug reports [6], which increases main-
tenance costs. Consequently, significant research efforts have
been devoted to detecting duplicate bugs, aiming to reduce
redundant work involving the testing of bugs that have already
been resolved [5][7][8], thereby enhancing the efficiency of the
bug fixing process [9].

DBRD task can be defined as: the automatic process of
identifying and comparing the semantic content in bug reports
to discover new reports that are duplicate or highly similar to
existing reports. As shown in Table I, there are two instances
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TABLE I: COMPARISON OF DUPLICATE BUG REPORTS FROM
ECLIPSE

Bug_id 178

Title Maintain sync view expansion state when switching
modes

It would be nice if when things got filtered out, their
expansion would be remembered, so that when the
item is revealed again it has the correct expansion.
For example, if you have one outgoing change;
switch to the catchup pane and then come back, the
tree is completely collapsed.

226

Switching between sync Ul modes should preserve
expansion state

When you switch between Catch Up and Release
modes, it loses the expansion state of the tree. It
should remember this and probably the selection and
top item (scroll bar position) as well.

Description

Bug_id
Title

Description

of duplicate bug reports where similar features have been high-
lighted. These features are not limited to exact word matching,
but also extend to semantic similarity and context. Therefore,
this places high demands on the capacity of automatic text
processing techniques.

Traditionally, the automatic approach to DBRD has been
divided into two distinct tasks: Information Retrieval (IR) and
classification[1]. Early methods for IR primarily relied on
word-based approaches (e.g., Vector Space Model), as well
as topic-based models like Latent Dirichlet Allocation (LDA)
and Latent Semantic Analysis (LSA), which transformed bug
reports into feature vectors. More recently, embedding models,
such as Word2Vec [10][11], GloVe [12], and sentence BERT
[13] have gained traction. These models generate embeddings
that are then utilized to calculate similarities between bugs,
typically using distance measurements, such as Cosine simi-
larity. These retrieval methods have demonstrated promising
performance, particularly in terms of recall rate [1]. Simultane-
ously, classification models, particularly deep-learning-based
approaches, have emerged as prominent research focus in
DBRD [1][5][9]. Initially, the classifier employed the Con-
volutional Neural Network (CNN) [6][11][14][15], followed
by the Recurrent Neural Network (RNN) [15] and eventually
transitioning to the Long Short-Term Memory (LSTM) model
[15]. However, due to the challenges associated with process-
ing lengthy text, the performance of these three models has
been surpassed in recent years by transformer-based classi-
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fiers, most notably BERT [3][5], sentence BERT [3][13] and
RoBERTa [3]. These large language models are pre-trained
on large corpus and fine-tuned on domain-specific data, which
enables them to capture contextual semantic information and
generate word and sentence representations efficiently. Not
surprisingly, transformer-based models became the state-of-
the-art for this task [3].

However, in previous studies, we found that commonly used
dataset splitting methods have data leakage issues, which may
lead to biased results. Specifically, it is possible for a single
data within a pair in the train set to be combined with another
data and consequently appear in the development or test set.
This unintentional leakage has not been explicitly addressed
by most existing methods, with only one work taking this
matter into account without explicitly acknowledging it [3].
Therefore, one of the main contributions of our work is
the design of a Cluster-based dataset partition mechanism to
address this problem.

Most importantly, while there has been a considerable em-
phasis on performance metrics, such as recall and precision in
existing studies, the evaluation of these approaches’ efficiency
in terms of speed has often been overlooked. As highlighted
by Haruna et al. [13] in their research, with the advent of large
language models, such as BERT, the performance of retrieval
and classification tasks has shown remarkable advancements.
Nevertheless, the deployment and execution of these models
can present difficulties due to their relatively slower inference
times. Especially when it comes to practical applications,
the speed plays a critical role. As a result, it’s essential to
evaluate a model not just based on its accuracy, but also on
its efficiency.

In our research, we propose a novel system based on
the transformer architecture that combines the advantages
of retrieval model and classification model. Our approach
integrates retrieval techniques to retrieve an initial set
of potential duplicate instances, which is then fed into
a classification model for further triage. This innovative
methodology enables us to achieve faster performance
without compromising accuracy. By effectively merging these
two components, we attain a balance between efficiency and
accuracy in DBRD task.

The contributions of our work are as follows:

o Cluster-based dataset partition mechanism: To address the
problem of train set leakage, we introduce a cluster-based
dataset partition mechanism. This mechanism ensures that
duplicate instances are evenly distributed across the train
and test sets, effectively mitigating any potential data
leakage issues.

o Comparison with previous models: We conduct a com-
prehensive comparison between the performance of the
transformer-based models and that of previous methods in
retrieval and classification. Through rigorous experiments
and evaluations, we demonstrate that our transformer-
based models outperform on both tasks, surpassing the
performance of previous models.
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o Integration of retrieval model and classification: Our
proposed system leverages the strengths of both retrieval
models and classification models. As demonstrated in the
experiments, our system can achieve a balanced between
speed and accuracy in two real-world scenarios.

We introduce the related work in Section II, detail our ap-
proach in Section IIT and validate the experiments in large open
source projects to demonstrate the effectiveness in Section IV
and Section V.

II. RELATED WORK

As previously mentioned, solutions to DBRD can be viewed
as IR task and classification task. Approaches to IR tasks focus
on identifying duplicates by computing similarities between
textual representations, while classification tasks typically uti-
lize deep learning techniques to train models in distinguishing
between “duplicated” and “non-duplicated” instances based
on learned patterns. In the following subsections, we present
related work on these methods.

1) Information Retrieval Methods: Hiew [16] introduces
a retrieval method for unstructured text including titles and
descriptions. Textual fields are converted to TF-IDF vectors,
which are then organized into clusters based on their similar
characteristics to identify duplicates. Runeson et al. [7] utilized
a Vector Space Model to present text-based information and
determined the text similarity by using three similarity cal-
culation methods. Wang et al. [17] integrated execution data
into their strategy to detect similar bug reports. Sun et al. [18]
proposed a REP model that incorporates similarity of lexical
features and categorical features from bug reports. Nguyen
et al. [9] introduced the DBTM model that processes topic
features extracted by LDA model and unstructured textual
features. It combines topic model and retrieval model to show
both similarity and dissimilarity between bug reports. Some
follow-up studies [19][20][21] adopt a similar approach to
previous studies, also implementing topic models for retrieval,
but differentiate their studies by analyzing distinct corpora and
utilizing varied feature inputs in bug reports.

Therefore, traditional IR methods primarily focus on the
calculation of word frequency feature to detect duplicates,
which show advantages in processing structured text and
keyword-based queries. However, IR methods exhibit lim-
itations in processing contextual information and complex
semantic features, areas where deep learning (DL) methods
demonstrate proficiency.

2) Deep Learning Methods: Deshmukh et al. [14] were
the first to introduce deep learning into duplicate bug report
detection, proposing a model that uses Siamese Convolutional
Neural Networks and Long Short Term Memory to process
hybrid input from bug reports for retrieval and classification.
Budhiraja et al. [22][23] proposed Deep Word Embedding
Networks (DWEN), a framework designed to retrieve sim-
ilar reports by processing unstructured input, including bug
report titles and descriptions. Xie et al. [10] introduced a
deep learning framework named DBR-CNN, which enhances
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traditional CNN by integrating domain-specific features ex-
tracted from bug reports. The hybrid features are fed into
the CNN model to obtain concatenated vectors, which are
utilized for classification task. Poddar et al. [24] proposed a
neural architecture for multi-task learning, with joint tasks of
classifying duplicates and clustering latent topics, operating
on unstructured descriptions as input. Building upon the CNN
framework, He et al. [11] subsequently developed a Dual-
Channel CNN (DC-CNN) method to classify duplicate bug
reports using hybid-structured text as input. Kukkar et al. [6]
presented a deep learning based classification model applied
on hybrid features, also leveraging CNN to extract relevant
features that are subsequently used to compute similarities for
classification purposes.

Following these advancements, transformer-based language
models have gained considerable attention and popularity
within the present landscape of duplicate bug report detection,
due to their rich context-based learning capabilities. Isotani et
al. [13] introduced transformer-based deep learning embedding
model of SBERT to vectorize the unstructured textual features
(title and description) and then computes the similarity of
the embedding representations, enabling retrieval of similarly
ranked bug reports. Rocha et al. [5] proposed a SiameseQAT
approach, using BERT and MLP to concatenate structured and
unstructured features and features extracted based on corpus
topics for retrieval and classification tasks respectively. Mes-
saoud et al. [3] proposed a BERT-MLP model for classifying
duplicate bug reports, which considers only unstructured data.
The model utilizes BERT to generate contextualized word
representations and applies an MLP for classification. Jiang Y
et al. [25] suggested a CombineIRDL method, which utilizes
different deep learning models to extract lexical, categorical,
and semantic features from hybrid input and then employs a
retrieval model to obtain ranked duplicates.

Building on these deep learning methods discussed in
the literature, we find that most of them accomplish du-
plicate detection by implementing retrieval and classifica-
tion tasks separately [5][6][14] or focus on a single task
[3I[10][11][13][22][23][24][25]. Furthermore, deep learning
methods have demonstrated significant effectiveness in both
tasks. In IR tasks, deep learning enhances similarity assess-
ments by employing advanced word embedding models, such
as transformer models. In classification tasks, it trains models
(such as CNN, LSTM or transformer models) to predict
whether two bug reports are duplicates by leveraging their
learning capabilities to discern complex textual patterns. By
employing these advanced deep learning models, classification
tasks can achieve higher accuracy than IR tasks through
the extraction of comprehensive textual features, but at the
cost of thousands of computations to achieve such precision.
Conversely, IR tasks can achieve more significant efficiency in
reducing the search space than classification tasks. However,
previous work has not considered the trade-off between accu-
racy and efficiency. Therefore, our approach combines those
two tasks in order to fully exploit their strengths in terms
of efficiency and accuracy, thereby achieving a balance. In
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doing so, we apply transformer-based models in our approach,
which are widely recognized as the state-of-the-art for Natural
Language Processing (NLP) tasks by exploiting their ability to
learn semantic and contextual information. These models are
utilized to generate embedding representations in the retrieval
task and to identify duplicate pairs in the classification task.
The following section contains more details of our methodol-

ogy.
III. METHODOLOGY

In this section, we outline our methodology for the DBRD
task, including the overall architecture, pre-processing, data
split, and model fine-tuning.

A. Overall Architecture

The overall architecture of our proposed approach is shown
in Figure 1, which consists of three important phases: data
split, retrieval and classification.

« Data split is to split the test and train set for preparing
for the training of retrieval and classification models and
we introduce it detailed in Section III-C.

« In the Retrieval phase, the retrieval model is responsible
for generating the embedding representation of bug report
input. Using cosine similarity [26], it calculates the
embedding similarity and selects the Top K similar bug
reports. This “ranking” is primarily used to identify the
top-K candidates, which serve as the target input for the
subsequent classification model.

o In the Classification phase, the model takes the top-K
candidates from the retrieval phase and aims to output
the final results by labeling them as duplicates or non-
duplicates.

B. Pre-processing

In DBRD task, the input of bug reports can typically be
unstructured input containing only unstructured textual fields,
or hybrid input including both unstructured textual features
and structured categorical features. Our emphasis lies on
unstructured input, specifically title and description. These
text constitute the most critical component of bug reports and
they are also noisy and complex, covering a large number of
domain-specific technical fields. To eliminate the redundant
and invalid data in the content of bug report datasets, the
following operations are used to clean the datasets:

« Remove all non-English words from the text (note: adjust
this based on the primary language of the dataset)

o Remove some special characters but keep periods and
commas

« Remove stop words

o Unify all letters to lowercase

C. Data Split

As outlined in Section I, most prior studies have neglected
the leakage from the train set to the development and test
set. To address this issue, we introduce a cluster-based dataset
generation method, as illustrated in the Data Split Phase of
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Fig. 1: Transformer-Based Framework split into Two Phases: 1). Data Generation Phase and 2). Model Fine-Tuning Phase

Figure 1. This approach ensures a stringent separation between
the train set, development set, and test set.

Data Separation. After pre-processing, the bug reports are
categorized into two groups: independent bug reports and
duplicate bug reports. Independent bug reports refer to those
that do not have any duplicates among the dataset.

Cluster Generation. In this particular step, we adopt the
assumption of transitivity in the relationship between duplicate
bug reports. This means that if Bug A is a duplicate of Bug
B, and Bug B is a duplicate of Bug C, then Bug A and Bug
C are also considered duplicates. Consequently, based on our
example, Bugs A, B, and C would be grouped together in a
single distinct cluster. Leveraging this assumption, we employ
a cluster-based method to group pairs of duplicated bug reports
into distinct clusters. Within each cluster, every two bugs are
marked as duplicates.

Cluster Selection. Unlike prior studies that randomly select
duplicate pairs for train/test sets, we choose clusters to form
train, development, and test sets. This ensures each bug
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appears only once in any set, and the clusters across these
sets are distinct. This method reduces potential biases and data
leakage from directly selecting duplicate pairs.

Pair Generation. In this step, we generate two train/test
datasets with different data structures for retrieval and clas-
sification models respectively. The retrieval dataset follows
the format of [Bug ID: Bug IDs|, where bugs sharing the
same cluster are considered duplicates of each other. On the
other hand, the classification dataset comprises both duplicated
pairs and non-duplicated pairs in a one-to-one format of [Bug
ID: Bug ID], which are generated based on the clusters.
For a cluster with n bugs, W duplicated pairs can be
derived. Furthermore, for two clusters (with sizes n and m,
respectively), we can generate n * m non-duplicated pairs.

Notably, the train set is carefully balanced in terms of
positive (duplicate) and negative (non-duplicate) data, while
the development and test sets are intentionally left unbalanced.
This setting aims to reflect the real-world scenario, where the
number of non-duplicate bug pairs far exceeds the number of
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duplicate bugs.
D. Model Fine-tuning

As shown in Figure 1, Model Fine-tuning phase encom-
passes the process of training two models: the retrieval model
and the classification model.

To adapt SBERT for the retrieval task, we modify the dataset
structure into triplets [Anchor, Positive, Negative], where we
aim to fine-tune the model’s ability to distinguish between
relevant (positive) and irrelevant (negative) instances. The loss
function employed is the Triplet Loss [27], represented by 1. In
this equation, ||- || denotes a distance metric used to assess the
similarity between embeddings. It is important to note that this
loss function imposes a condition that the distance between the
anchor text and the positive text should be at least 6 greater
than the distance between the anchor text and the negative
text.

Triplet Loss = Max(||Eq — Epl| — ||Ea — Enl|| +€,0) (1)

In the context of classification, BERT operates by taking
in two texts simultaneously, and using [SEP] token to differ-
entiate them. The embedding of the [CLS] token, obtained
from the final layer of BERT, is processed through a linear
layer. The softmax function is then applied to generate the
final prediction. The loss function employed in this case is the
CrossEntropy (CE) Loss, as represented by 2.

N
CE(y,p) ==Y _ yilogpi )
i=1

where the y; is the true label and p; is the predicted label.

IV. EXPERIMENTAL SETTINGS

In this section, we detail the experiments, discussing setup,
datasets, hyperparameters, evaluation, baselines, and model
selection.

A. Setup

To ensure a fair and consistent comparison between the
models, we maintain uniformity by implementing and building
the models using Python within the PyTorch framework. We
will provide the structured code in subsequent documentation.
All experimental procedures were conducted on a Linux server
featuring an AMD EPYC-Rome processor and an NVIDIA
A40 GPU card. This setting allows for efficient execution and
reliable performance evaluation of the models.

B. Datasets

We use five open source bug report repositories ! to verify
the effectiveness of our system, namely Eclipse, Firefox,
Mozilla, JDT, and ThunderBird (TBird), as the experimental
datasets in our study. These repositories have been extensively
utilized in previous research [1]. We focus on the following

IDatasets available at: [Online]. Available:

bugrepo

https://github.com/logpai/

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

statistical attributes to characterize the datasets as Table II
shown.

We have detailed the process of Data Split in Section III-C,
where we employ an 8:1:1 ratio to split train, development, and
test sets respectively. As previously discussed, we introduce
skew to the development and test data, while maintaining
balance in the train set. Consequently, we adhere to the *Dup
Bug Ratio’ as indicated in Table II, to establish the ratio of
duplicate pairs in both the development and test sets. Since a
substantial number of duplicate and non-duplicate pairs can be
generated, we limit the size of the train/test/dev set as shown
in Table III.

C. Hyperparameters

We leverage pre-trained transformer-based models along
with their respective tokenizers. Fine-tuning of these models
is performed using the AdamW optimizer [28] with a learning
rate of 107°.

In the classification scenario with SBERT, we introduce a
linear layer comprising two hidden layers of 768 hidden size
each. For the Bi-LSTM model, we utilize the SGD optimizer,
implementing a learning rate of 0.5 and a decay rate of 0.25.
For the CNN model, we adhere to the configurations outlined
in DC-CNN [11].

To mitigate overfitting, we apply a 0.5 dropout across all
models. We process training data in 32-size batches. To bolster
the robustness and reliability of the results, each experiment
is conducted five times.

D. Evaluation

1) Individual Evaluation: The performance of retrieval and
classification models is individually assessed in our study. For
the retrieval model, we evaluate the performance by measuring
the recall and precision under different Top-k settings. For
the classification model, we employ precision, recall, and the
corresponding F1 score to indicate the performance.

Metrics: Utilizing a confusion matrix, which tabulates the
counts of True Positives (TP), False Positives (FP), False
Negatives (FN), and True Negatives (TN), we characterize the
recall, precision, and F1 score as delineated in 3, 4, and 5
respectively. Above fomulas are the performance indicators
for classification. However, in the context of retrieval, the
computation of recall@k and precision@k deviates slightly,
as demonstrated in 6 and 7.

Recall =TP/(TP + FN) 3)
Precision =TP/(TP + FP) 4)

2 % (Precision * Recall)
Fl1= 5
(Precision + Recall) )
Recall@k — (relevant items in top — k) ©)

(relevant items)

l t it in topk
PrecisionQk = (relevant & st in topk) @)
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TABLE II: STATISTICS OF FIVE OPEN SOURCE DATASETS

Dataset Bugs Dup Pairs  Separate Bugs ~ Dup Bug Ratio  Cluster Numbers  Cluster size
Eclipse  84020(85156) 13231 70752 0.1564 7519 2760
Firefox ~ 96258(115814) 15742 80000 0.1689 6654 3.366
Mozilla ~ 195248(205069) 34507 160378 0.1786 17263 2.998
DT 44154(45296) 6513 37608 0.1483 3828 2.701
TBird  24767(32551) 4404 20050 0.1905 2133 3.065
TABLE 1III: DISTRIBUTION OF BUG PAIRS IN . . .
It should be noted that the maximum k set in our experiments
TRAIN/DEV/TEST SET . . . . . p .
is 100 which builds also in the real word scenario. In practical
Dataset Train Dev Test Total information retrieval settings, users rarely browse beyond the
Dup Nondup Dup  Nondup Dup  Nondup 100 1 d he h £ d d th
Eclipse 6615 6615 258 1394 258 1394 16534 top 100 results due to the huge amount of data and the
Firefox 7871 7871 332 1635 332 1635 19676 limitation of their own attention. Therefore, capping k at 100
Mozilla 17253 17253 770 3542 770 3542 43130 strikes a balance between presenting enough relevant results
DT 3256 3256 120 693 120 693 8138 . .
TBid 2202 102 104 445 104 445 5502 and preventing users from being overwhelmed by too many

2) Architecture Evaluation: We conduct a comprehensive
evaluation of our proposed system, comparing its performance
and efficiency against individual retrieval and classification
methods in two common real-world scenarios.

One VS All: In this scenario, when a user enters a bug, the
system compares the user’s input bug with existing bug reports
in the entire database. To evaluate this scenario, we divided
the test set into two parts: 20% for user input and 80% for the
database.

All VS All: This scenario often arises on the database side,
where developers need to locate and eliminate all duplicate
errors in the database. It resembles the One VS All scenario,
except that we utilize the entire test set as the database.

The applications of our proposed system as well as retrieval
and classification methods in the above scenarios are as
follows:

One VS All scenario: when a user submits a bug report,

« retrieval scans the entire database to find the report most
similar to the submitted report;

« classification predicts which reports in the database are
relevant to the submitted report based on certain charac-
teristics;

o proposed system firstly retrieves the top K most similar
reports from the database based on user submissions,
and then the classifier further predicts these K reports
to ultimately determine the duplicate results.

All VS All scenario: each method repeats the One VS All
process, aiming to identify and eliminate all duplicates in the
database.

In our approach, the classification process primarily serves
to enhance the quality of retrieval results, so using the retrieved
metrics allows for a more comprehensive comparison of
overall performance, while also displaying the improvements
attained by the classification part. Therefore, this evaluation
consists of the following metrics: recall@k, precision, accu-
racy (as depicted by 8) and inference time.

Accuracy =TP+TN/TP+TN + FP+FN (8)
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results.

E. Baselines

Based on individual evaluation in retrieval and classification
respectively, we employ GloVe [12] and FastText [29] as
retrieval baseline methods. Since both methods generate word-
level embeddings, we compute sentence embeddings by aver-
aging the word embeddings. In the evaluation of classification
models, we incorporate the Bi-LSTM and DC-CNN as the
baselines. Both the Bi-LSTM model and the CNN model have
been previously applied as classification models in DBRD
research [11][14].

In the overall evaluation, we select outperforming retrieval
and classification models as baselines and compare them with
our combined approach.

FE. Model Selection

In our proposed approach, we select transformer-based
models for retrieval and classification. For the retrieval model,
we leverage sentence BERT (SBERT) to generate text em-
beddings and evaluate its efficacy on the retrieval task. In the
classification task, we choose three transformer-based models
as classification models, BERT, ALBERT and RoBERTa, and
compare their performance. We selected these transformer-
based models because they have demonstrated effectiveness
in previous state-of-the-art studies [3][5][13] for DBRD.

V. EXPERIMENT RESULTS

We analyze our experimental results by answering following
two research questions.

RQ1: Compared to baseline models, how do the
transformer-based models perform on retrieval and clas-
sification?

In our first evaluation, we conduct experiments on retrieval
models and classification models, presenting the results in
Table IV and Table V, respectively.

Consistent with previous research, our evaluation of the re-
trieval model primarily focuses on the recall value. Notably, as
the k value increased, we observed a substantial improvement
in the recall of the model. This result is expected as increasing
the value of k allows for more candidates to be considered,
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TABLE IV: RECALL@K OF MODELS IN DUPLICATE BUG RETRIEVAL FOR ALL DATASETS

Eclipse Firefox Mozilla JIDT TBird
r@20 r@60 r@100 r@20 r@60 r@100 r@20 r@60 r@100 r@20 r@60 r@100 r@20 r@60 r@100 Avg r@100
Fasttext 0.489 0.678 0.783 0.596 0.716  0.809 0414 0526 0.588 0.608 0.785 0.972 0.627 0.874 1.000 0.8304
Glove 0.602 0.727 0.824 0.705 0.789  0.843 0478 0.608 0.662 0.579 0.798 0975 0.689 0.888  1.000 0.8608
SBERT 0.848 0.935 0.960 0.892 0956 0.973 0.771 0.892 0.919 0.872 0990 0.997 0.880 0.983 1.000 0.9698

TABLE V: PRECISION, RECALL & F1 SCORES OF MODELS IN DUPLICATE BUG CLASSIFICATION TASK FOR ALL DATASETS

Eclipse Firefox Mozilla DT TBird
Precision Recall Fl Precision Recall Fl Precision Recall Fl Precision Recall Fl Precision Recall Fl Avg Fl1
Bi-LSTM  0.511 0.506 0.473 0.510 0.515  0.469 0.507 0.506 0.506 0.490 0.490  0.490 0.621 0.510 0.474 0.4824
DC-CNN  0.752 0.813  0.785 0.744 0.765 0.753 0.792 0.765  0.736 0.763 0.781 0.773 0.833 0.752  0.781 0.7660
BERT 0.825 0.888 0.848 0.881 0.921  0.899 0.824 0.892 0.849 0.772 0.857 0.797 0.870 0.898 0.883 0.8552
ALBERT  0.806 0.896 0.834 0.874 0.920 0.893 0.819 0.889 0.845 0.825 0.872  0.843 0.885 0.902 0.893 0.8616
RoBERTa  0.846 0.892  0.866 0.886 0.925 0.903 0.835 0.891 0.857 0.824 0.868 0.841 0.846 0.898  0.866 0.8666

thereby raising the probability of identifying duplicate bugs.
Upon setting k to 100, we discovered that nearly all duplicates
are successfully detected, resulting in an approximate recall
value of 1.

Furthermore, by comparing the retrieval performance of the
three models, as shown in Table IV, we find that SBERT
achieves the highest recall value, under different k values.
It outperforms Glove and FastText in all five datasets by an
average lead of 12.42%. This significantly demonstrates the
superiority of the transformer model in information retrieval
capabilities.

In the classification task, we compared the performance
of traditional models, such as Bi-LSTM, DC-CNN, with
transformer-based models on the three indicators of precision,
recall and f1. Our results in Table V show that f1 is signif-
icantly improved by 20% to 38% when using transformer-
based models compared to traditional methods. When com-
paring transformer models, their performance does not exhibit
significant variations. However, ROBERTa has emerged as the
frontrunner, surpassing the others with a slightly higher F1
score of 0.8666.

Therefore, the above experimental results indicate that
transformer-based models outperform traditional models in
both classification and retrieval performance.

RQ2: Compared to single retrieval and classification
model, how does the proposed system perform in case of
recall precision, accuracy and time?

Figure 2 presents a comparative performance overview
showing the difference in recall, precision, accuracy and
running time for single retrieval model, classification model
and proposal system in the One VS All scenario, and Figure
3 presents the overall performance in the All VS All scenario.
The results obtained in the One vs All and All VS All
scenarios of the five datasets are relatively similar, so we
choose one of datasets, firefox, to show the results.

It is important to emphasize that, as shown in Figure 2,
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the performance of the classification model is not affected by
changes in k, thus presenting a horizontal line in the figure.

In Figure 2a, we observed that at lower k, both the retrieval
model and our system exhibit lower recall scores compared
to the classification model. The reason is that the limited k
prevents the retrieval of a large number of duplicate pairs.
However, as k gradually increases, after reaching around 20,
the recall of the retrieval model exceeds that of the classifica-
tion model. At the same time, since the classification step of
the system may introduce positive and false samples, the recall
rate of the system is lower than that of the retrieval model,
resulting in a decrease in the overall recall rate. Given that our
system incorporates retrieval, such recall aligns with the rising
trend demonstrated by retrieval models as k increases, albeit at
a slightly slower pace. For example, it is not until ”’k” equals
40 that the recall of our method starts to be comparable to that
of classification. This suggests that as the value of k rises to
higher values (e.g., over 100), our recall will continue to rise,
thereby establishing an increasingly discernible gap from the
recall of classification.

In the Figure 2b, we note that the precision of the retrieval
model and our proposed system decrease as k increases, a
consequence of increasing the number of retrieved candidates.
Nevertheless, it is worth mentioning that compared with the
retrieval precision, the decrease of system precision is not
obvious. Even when k is equal to 100, the precision of the
system is still higher than the classification precision, which
demonstrates the effectiveness of our system in terms of
precision. Similar to precision in Figure 2c, accuracy also
exhibits a sonsistent trend. As the k increases, both the
accuracy of the system and retrieval decrease. The decline in
system accuracy is also slower compared to retrieval accuracy.
This highlights the advantage of our system for introducing a
classification step after retrieval, as it can efficiently preserve
the performance in precision and accuracy, especially better
than classification.

Comparatively, as displayed in Figure 2d, the classification
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Fig. 2: Time-Performance Evaluation on Firefox Dataset in One VS All scenario

process is more time-consuming than both retrieval and our
system. This observation can be explained through a simple
calculation. Assuming we have n user input bugs and m
database bugs, and assuming that both the classification model
and the retrieval model require the same time for a single in-
ference, the following holds: The classification model requires
nxm inferences. The retrieval model requires n+m inferences,
along with n x m calculations of embeddings similarity and
subsequent sorting. As the similarity calculation and sorting
are considerably faster than model inference, the retrieval
process roughly takes n + m seconds per inference. Our system
incorporates the results of retrieval. Therefore, it includes the
retrieval model inference time n + m, similarity calculation,
and sorting time, followed by n * topk classifications. Conse-
quently, the system’s required time amounts to n+m+nxtopk
inferences. The preceding calculations are equally applicable
to the All VS All scenario as well. It is clear that our method
exhibits almost the same remarkable efficiency as retrieval and
classification in terms of time. This is proven by the fact that
the time consumed by the classification is approximately 60
times greater than our approach.

Figure 3 shows that the All VS All scenario exhibits similar
performance trends as the One VS All scenario. The running
time in Figure 3d represents the average time taken to match
each bug with its similar ones, comparable to Figure 2d.
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Overall, our system makes a trade-off by sacrificing some
running time in order to maintain robust performance in terms
of recall, precision, and accuracy. As k increases from 0 to 100,
the recall of our system increases, demonstrating the ability
of our model to successfully retrieve all relevant duplicates.
At the same time, the accuracy and precision are only slightly
reduced, effectively alleviating the sharp decline in retrieval,
but never fall below those achieved by classification. The
steady improvement in recall between retrieval and classifi-
cation, coupled with the maintained superior precision, shows
that we minimize the time cost while maintaining accuracy
performance. This convincingly demonstrates our ability to
obtain a trade-off between accuracy performance and time
efficiency.

Therefore, selecting the appropriate value for k requires
careful consideration. While a smaller k value may improve
the time efficiency, it may also lead to a degradation in model
performance. On the other hand, choosing a larger k value may
result in increased time consumption. Thus, striking a balance
between speed and model performance depends on selecting
the optimal k value.

VI. CONCLUSION AND FUTURE WORK

In our work, we proposed a novel system based on the
transformer models, that leverages the strengths of both re-
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Fig. 3: Time-Performance Evaluation on Firefox Dataset in All VS All scenario

trieval and classification approaches for duplicate bug report
detection task. We have evaluated the transformer-based mod-
els employed by our method on five datasets, demonstrating
their effectiveness compared to traditional models for both
classification and retrieval. More importantly, our method
shows a competitive edge by achieving a balance between
time efficiency and accuracy, compared to solutions employing
only one of them. This advantage holds significant impor-
tance in real-time bug report detection where requires high-
quality results in a short time. In other words, under resource
constraints, combining retrieval and classification as a novel
solution enables dynamic adjustments to efficiently address
issues related to changes in data volume and quality, while
flexibly adapting to time-sensitivity and shifts in user demands.
This approach enhances resource efficiency and ensures the
maintenance of response speed and accuracy in a constantly
changing environment. Furthermore, our combined strategy
can be expanded to tackle similar issues in other tasks, such
as recommendation tasks.

While our system addresses the running time concern that
previous methods overlooked, and achieves a trade-off be-
tween time and accuracy, there are several factors need to
be considered for practical application, such as the size of the
model. Our system relies on both the retrieval and classifica-
tion models, resulting in a larger memory space requirement
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compared to a single model. As a result, future efforts could
explore the possibility of employing multi-task learning to
integrate these two models, allowing for the completion of
both tasks with a single model simultaneously. Additionally,
there are some limitations in our study that can be addressed
in the future, such as expanding to new datasets. This not
only includes datasets that are more current, but also those
that are more diverse in terms of types, which would enhance
the generalizability of our methods.
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