
INTERACT: a Tool for Unit Test Based Integration
of Component-based Software Systems

Nils Wild
Research Group Software Construction

RWTH Aachen University
Aachen, Germany

email: wild@swc.rwth-aachen.de

Horst Lichter
Research Group Software Construction

RWTH Aachen University
Aachen, Germany

email: lichter@swc.rwth-aachen.de

Abstract—Testing complex component-based software systems
is hard. Unit tests are focused but are not effective in exposing
integration faults. However, integration test cases are difficult to
develop and maintain. This paper presents a tool that uses unit
tests to expose integration faults in component-based software
systems. This is done by observing the component’s unit test
cases to derive the component’s expectations of its interactions
with other components. These expectations are validated using
newly generated component integration test cases. Because the
approach requires no new tests to be written, we consider it
economical and effective.

Keywords – component-based software; integration testing.

I. INTRODUCTION

Testing aims to expose faults and to assess that customer
requirements are fulfilled. Many approaches have been devel-
oped to test software systems [1]. Testing isolated components
of a software system - called unit testing - is an industry
best practice. However, exposing certain types of faults at
the unit level is impossible. Thus, tests on the integration
level are needed that test the interaction of a component with
other components - its environment [2]. However, creating
and maintaining these integration tests is tedious. Architectural
changes of the system and changes of the components require
changes in the unit and integration tests [3]. We aim to
automate this process for certain types of integration tests. To
overcome some challenges of integration testing, we present
a tool-supported approach that relies on existing unit tests.
The knowledge encoded therein is used to determine how
components expect to interact with their environment and
to manipulate the unit tests such that integration aspects are
tested. The thereby generated component integration test cases
are related to each other such that they are equivalent to
traditional integration tests that test those expectations.

The proposed approach and the tool were developed with
the following research questions in mind:

• How can interaction expectations of components be ex-
tracted from unit test cases?

• How can tests, checking the interaction between a com-
ponent and its environment, be derived from the unit test
cases of the participating components?

• How to determine if a system can be integrated consid-
ering those component integration tests to continuously
check the integration of a system as it evolves?

This paper is structured as follows: First, challenges of
integration testing are presented in Section II. Section III
introduces the Unit Test Based Integration (UTBI) model
which is the conceptual core of the approach. In Section
IV we describe how UTBI models are used to derive the
expectations components have regarding their environment
and how these can be verified. Section V presents the tool
INTERACT, implementing the proposed approach. Related
work is discussed in Section VI. The planned next steps and
future work conclude this paper in Section VII.

II. CHALLENGES OF INTEGRATION TESTING

Whenever a system is changed, tests need to be re-executed,
and new tests are needed for new and changed features.
In addition to knowing when a component is ready to be
integrated, testers need to know how each component expects
to interact with other components. Dedicated test specifications
or any other form of documentation specify these interactions.
However, creating integration tests is difficult, and studies
show that documented specifications start to diverge from the
implemented system over time [4] [5].

Furthermore, integration tests must be adapted when the
underlying components change. Given an arbitrary number of
interactions, there are a huge number of possible integration
tests. Each interaction between two components can be tested
separately by component integration tests as well as each pos-
sible subpath of interactions contained in the interaction path
of all components that realize a customer feature. Creating
and maintaining these tests is generally not feasible. Because
of this, often only the most important integration tests are
automated [1], [2], [6]. This contradicts the principle of testing
as early as possible because these tests require all components
to be ready for integration.

An automatable approach to keep the specification, which
is used to test the integration, up-to-date with the system’s
implementation is needed to ensure that each component is
integrated with all components as expected.

III. THE UNIT TEST BASED INTEGRATION META-MODEL

In the following, we introduce the UTBI meta-model (see
Figure 1) which defines elements and relationships to model
structural as well as behavioral information needed to test the

58Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

integration of components based on existing unit tests. A more
detailed definition of the model and its foundations is already
published. [7]

Components are core elements of the model. To abstract
from various types of communication protocols, any inter-
action between components is treated as an activation of a
component by a Message through an Interface that is provided
by the component. A distinction is made between an Incoming
Interface and an Outgoing Interface. Through an incoming
interface, a message is received by a component, whereas mes-
sages are sent by an outgoing interface. An incoming interface
is bound to an arbitrary number of outgoing interfaces and
vice versa. Which interfaces are bound to each other depends
on the concrete communication protocol. The protocol data
is an attribute of the interface, e.g., for the Advanced Mes-
sage Queueing Protocol (AMQP), the respective bindings are
defined depending on the exchange type and queue bindings,
while URLs and methods are used for (Representational State
Transfer (REST).

For each component, the respective unit test cases are
modeled. To this end, Abstract Test Cases for each Component
Under Test (CUT) are included, which are templates without
concrete input and expected values. A Test Case is derived
from an abstract test case by providing concrete values.

Once a test case gets executed, a sequence of messages is
triggered by it. We distinguish three types of messages:

• A stimulus is a message received by the CUT from the
test case.

• A component response is a message sent by the CUT back
to the test case or to other components (those components
are called the CUT’s environment).

• An environment response is a message sent by a com-
ponent of the CUT’s environment back to the CUT as a
reaction to a received component response.

Instances of the UTBI meta-model are called UTBI com-
ponent models. They provide the core information for the
automated integration testing process, introduced next.

IV. INTEGRATION TESTING BASED ON UTBI MODELS

In the following section, we describe the activities of the
automated integration testing process based on such UTBI
component models (see Figure 2).

Create UTBI component models (A1): To create all UTBI
component models, the Unit Test Suites (UTS) of all compo-
nents are executed. During execution, information regarding
the unit test cases, the sent and received messages, and the
used interfaces are extracted into a UTBI component model.

Derive interaction expectations (A2): To test the integra-
tion of all components, it is necessary to know how these
components expect to interact with each other. These expec-
tations towards their environment are implicitly defined by
the messages triggered during UTS execution. Given a UTBI
component model, every environment response that follows
after a component response defines an expectation of that
component towards the reaction of its environment. Resulting
in a list of interaction expectations for each component.

Component

+ name: String Abstract
Test Case

+ name: String

Test Case

+ values: String[]

Message

+ payload: String
+ type: MsgType

«abstract»
Interface

+ protocolName: String
+ protocolData:String

Incoming
Interface

Outgoing
Interface

tested by 1 0..*

derived
from

1

0..*

triggered by

10..*

next 0..1
0..1

provided by0..* 1

bound to0..* 0..*

sent by
1

0..*
received by

1
0..*

Figure 1. Unit Test Based Integration Meta-Model.

Create the UTBI system model (A3): To validate that all
interaction expectations are fulfilled by the integrated system,
all UTBI component models need to be merged into one
UTBI system model. For this purpose, incoming and outgoing
interfaces that are bound to each other are determined. This is
done using protocol-specific interface matching based on the
protocol information attached to the interfaces. The resulting
UTBI system model is complete concerning the provided
UTSs.

Lookup possible interaction paths (A4): Each interaction
expectation can be validated by searching for interaction paths
from the interface via which the component response was sent
by, to the interface that received the environment response.
This might result in multiple paths, each spanning two or more
components and interactions. However, which path is activated
by the concrete component response depends on its content
and the component’s behavior.

Create interaction tests (A5): To validate the interaction
expectations, the determined paths can be executed by ex-
changing the original stimulus message in a unit test case with
the respective component response. We call these generated
component integration test cases Interaction Test Cases (ITC)
because they test exactly one interaction on an interaction path.

Run interaction tests (A6): When an ITC is successful,
a new component response can be observed that replaces
the originally mocked environment response in an additional
interaction test case that is derived from the original UTC. If
all ITCs on an interaction path are successful the interaction
expectation is validated.

V. INTERACT - AN INTEGRATION TESTING TOOL

The presented concept is implemented in the INTERACT
tool (code: https://github.com/NilsWild/InterACt, video: https:
//owncloud.swc.rwth-aachen.de/s/NtbMqMSByUoxv0q). IN-
TERACT is designed to support different protocols and their
implementations. As shown in Figure 3 Interface Observers
collect the messages that are sent by and sent to the CUT.
The collected data is stored in the UTBI model store to
create the UTBI component models and the UTBI system

59Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

https://github.com/NilsWild/InterACt
https://owncloud.swc.rwth-aachen.de/s/NtbMqMSByUoxv0q
https://owncloud.swc.rwth-aachen.de/s/NtbMqMSByUoxv0q

A1
Create UTBI
component

models

UTBI
component

models

Interaction
expectations

A2
Derive

interaction
expectations

UTBI system
model

A3
Create UTBI
system model

A4
Lookup possible
integration paths

Possible
integration

paths

A5
Create

interaction
tests

Interaction
tests

A6
Run

interaction
tests

UTSs

Figure 2. The integration testing process based on UTBI models.

model. INTERACT implements an extension mechanism to
specify how the interfaces contained in the UTBI component
models are bound via so-called Interface Binders to create
the UTBI system model. Based on the UTBI system model,
the Interaction Test Harness retrieves integration data from
the ITC generator and provides alternative parameters to
the abstract test cases according to the derived interaction
expectations and the corresponding interaction paths that need
to be tested. INTERACT needs to be re-executed until no more
interaction paths are untested or all interaction expectations are
validated successfully.

Unit Test Harness C1

Interface
ObserverUTBI model

store

UTSC1

Interface
Binder

InterACt

Interaction Test Harness
Mocks

ITSC1 ITSCn

ITC
Generator

Mocks
Unit Test Harness Cn

UTSCn

Component 1
(C1)

Mocks

Unit Test Execution Infrastructure

pr
ov

id
es

pr
ov

id
es

Component n
(Cn)

Figure 3. Embedding INTERACT in a unit test execution infrastructure.

A. An example application

To explain INTERACT’S integration testing process we
present an example project (available on GitHub https://
github.com/NilsWild/InteractionTestExample). This simple bank-
ing project consists of three components implemented as
microservices using Spring Boot:

• MoneyTransfer (MT): Transfers money if the target
IBAN is valid and the user’s balance is sufficient.

• IBANValidator (IV): It checks if a given IBAN is valid.

• BlacklistChecker (BLC): It checks if a given IBAN
is on the bank’s blacklist.

Triggered by a transfer request, these components collab-
orate as follows (see Figure 5): First, the MoneyTransfer

component asks the IBANValidator to validate the IBAN.
To do so, the IBANValidator checks the IBANs format and
requests the BlacklistChecker to check if the receiving
IBAN is on the blacklist before it returns the validation result
to the MoneyTransfer component. For each component, a
unit test suite was created as well as mocks needed to test the
components as shown in Figure 4.

UTSMT

IV Mock

MT

MoneyTransfer IBANValidator

/api/v2/transfer

I2I3

I4 I1

UTSIV

BLC Mock

IV

/api/v2/validate/iban

/api/v2/validate/iban

I6I7

I8 I5

UTSBLC

BLC

/api/v1/check/blacklist

<<component>> <<component>> <<component>>

/api/v1/check/blacklist

I10 I9

BlacklistChecker

Figure 4. Components, unit test suits, and mocks of the example application.

Using this example, the integration process activities A1 to
A6 are explained below.

Create UTBI component models (A1): To create the UTBI
component models, INTERACT, its REST interface binder,
and the UTBI model store (a neo4j database) are started.
Then the unit test suites of all components are executed.
The unit test cases are implemented similarly to JUnit pa-
rameterized tests. The same argument sources can be used
but the tests are annotated with InterACtTest instead of
ParameterizedTest. The parameters of each test case are
the stimulus and environment response messages the CUT
receives during test execution plus additional expected values
for validation. For the MoneyTransfer component, three unit
tests exist:

• MT-UT1: The IBANValidator mock returns that the
IBAN is not valid. Thus, the transfer should fail.

• MT-UT2: The IBANValidator mock returns that the
IBAN is valid but the test sets the state of the
MoneyTransfer component such that the balance is
insufficient. Thus, the transfer should fail.

• MT-UT3: The IBANValidator mock returns that the
IBAN is valid and the test sets the state of the

60Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

https://github.com/NilsWild/InteractionTestExample
https://github.com/NilsWild/InteractionTestExample

User Money Transfer IBAN Validator Blacklist Checker

transfer request
IBAN

IBAN

validation result
validation result

transfer result

Figure 5. Target sequence of messages triggered by a transfer request.

MoneyTransfer component such that the balance is
sufficient. Thus, the transfer should succeed.

When they are executed, the UTBI component model for
the MoneyTransfer component is created. It contains the
triggered interfaces and the three collected message sequences.
This model is stored in the UTBI model store. This is done
for each component.

For the IBANValidator three unit tests exist:
• IV-UT1: The IBAN is valid but the BlacklistChecker

mock returns that it is on the blacklist. Thus, the IBAN
should be invalid.

• IV-UT2: The IBAN is valid, the BlacklistChecker

mock returns that it is not on the blacklist. Thus, the
IBAN should be valid.

• IV-UT3: An invalid IBAN is provided. Thus, the
BlacklistChecker is not requested and the IBAN
should be invalid.

For the BlacklistChecker two unit tests exist:
• BLC-UT1: The test provisions a blacklist that contains

the given IBAN. Thus, the BlacklistChecker should
respond with a match message.

• BLC-UT2: The test provisions a blacklist that does not
contain the given IBAN. Thus, the BlacklistChecker

should respond with a no-match message.
After all UTSs have been executed, all three UTBI compo-

nent models are in the UTBI model store.
Derive interaction expectations (A2): Whenever new data

is added to a UTBI component model INTERACT checks if
an interaction expectation is contained in the new data. For
the test case MT-UT3 (Figure 6), an interaction expectation
from M2 to M3 is derived. For the other two behaviors of the
MoneyTransfer component and the behaviors of the other
components, interaction expectations are derived accordingly.

Create the UTBI system model (A3): After the UTBI
component models are stored, INTERACT tries to bind the
incoming and outgoing interfaces of each component using the
provided interface binders. In our example, the REST interface
binder handles the captured interfaces shown in Figure 4.
They are bound such that the sequence of messages shown in
Figure 5 is represented by the resulting UTBI system model.
Specifically, the following interface pairs are bound together:
(I2 and I5), (I6, I9), (I10, I7), (I8, I3).

Lookup possible interaction paths (A4): Given the inter-
action expectations and the interface bindings, INTERACT

Unit Test Money Transfer IBAN Validator
Mock

M1: {amount:300,
fromIban:FI2151636216494979,
toIban:DK0850516475368988}

/api/v2/transfer M2: DK0850516475368988
/api/v2/validate/iban

M3: {result: valid}
M4: {result: success, newAmount: 700}

Figure 6. Sequence diagram showing the execution of unit test MT-UT3.

tries to find path candidates to validate the expectations.
For the interaction expectation from M2 to M3, it tries to
find a path from the outgoing interface I2 with the URL
/api/v2/validate/iban of the MoneyTransfer compo-
nent to the incoming interface I3 where M3 was received.
This is done with a breadth-first path expansion algorithm.

First, messages M2 and M3 are mapped to the interfaces I2
and I3 the messages were sent to, respectively received from.
Next, all outgoing interfaces that are bound to the incoming
interface I3 that M3 was received from, are collected. In this
case I8. These are the interfaces that terminate the following
path expansion. Starting with I2 all incoming interfaces that
are bound to it – in this case I5 – and could thus receive
M2 are looked up. For all found interfaces, test cases that
triggered messages on them are retrieved (IV-UT1, IV-UT2,
IV-UT3). To keep the intention of the test cases, the found test
cases are filtered such that only those that triggered stimulus

messages on that interface are considered. This is true for all
three of them. Next, all outgoing interfaces that are triggered
as a reaction to a message on the respective incoming interface
during these tests are collected. For IV-UT1 and IV-UT2 this
is I6. For IV-UT3 this is I8, as the IBANValidator responds
directly and the BlacklistChecker is not requested via I6. If
one of those interfaces is a terminal interface the path is added
to the list of possible interaction paths (IP). In the following,
the IPs are represented by the unit test sequences that trigger
the corresponding interfaces.
IP1 : MT-UT3−→IV-UT3−→MT-UT3

Then the remaining paths are further expanded starting with
the found outgoing interface (I6) instead of I2. In our example
the only interface bound to I6 is I9. The test cases that
triggered messages on I9 are BLC-UT1 and BLC-UT2. I10
is the outgoing interface that reacts to messages on I9. It
is the start of the next expansion step as it is no terminal
interface. The only interface bound to I10 is I7. IV-UT1 and
IV-UT2 triggered messages on I7. However, those messages
were environment response and no stimulus messages. But as
the tests have already been visited with the stimulus message
and they are the next incoming message triggered during test
execution, the path expansion is continued. This ensures that
the integration path remains consistent with the unit test’s
intention. In both cases (IV-UT1, IV-UT2), a message on I8 is
triggered as a reaction to the message on I7. I8 is a terminal
interface. Thus, these paths are added to the list of possible
interaction paths:

61Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

IP2 : MT-UT3−→IV-UT1−→BLC-UT1−→IV-UT1−→MT-UT3
IP3 : MT-UT3−→IV-UT1−→BLC-UT2−→IV-UT1−→MT-UT3
IP4 : MT-UT3−→IV-UT2−→BLC-UT1−→IV-UT2−→MT-UT3
IP5 : MT-UT3−→IV-UT2−→BLC-UT2−→IV-UT2−→MT-UT3
When no further expansion is possible, all interaction paths are
found. Each found path is transformed into a test execution
plan. Such a plan consists of the list of test cases in con-
junction with the required information to replace the stimulus
and environment response message with those triggered by
the preceding test cases. All five paths and the resulting
test execution plans are stored as candidates to validate the
interaction expectation.

Create interaction tests (A5): When the test suites are re-
executed the INTERACT JUnit extension requests the test
execution plans for the CUT from INTERACT. Based on
these plans, INTERACT determines parameter sets for the
abstract test cases of the CUT based on the messages that
were triggered by the components on that path so far. These
parameter sets are sent to the JUnit test templates that represent
the abstract test cases, resulting in new interaction test cases.

Run interaction tests (A6): When an interaction test gets
executed and fails, the corresponding interaction path is not
able to validate the interaction expectation. If every interaction
test of an interaction path succeeds, the path validates the
interaction expectation.

In our example, the process looks like this:
• IP1: Test case IV-UT3 which originally used an invalid

IBAN and thus responded with a validation-failed mes-
sage is parameterized with the IBAN contained in M2

(DK0850516475368988) that was sent in MT-UT3 by I2,
resulting in a new interaction test. With the now provided
valid IBAN on I5, the test fails as the behavior that was
tested by IV-UT3 was about receiving an invalid IBAN.
The interaction path is not further considered.

• IP2-IP5: Based on IV-UT1 and IV-UT2 respectively, new
interaction tests are generated that use the IBAN sent
in MT-UT3 as well. As the IBAN format is valid like
the one used in the unit test cases, both tests succeed.
The paths get evaluated further. For IP3 and IP5, a new
interaction test based on BLC-UT2 is generated. Therein
the blacklist check received by I9 contains the IBAN that
originated from the unit test case of the MoneyTransfer
component. As the test gets this message as a parameter,
it sets the state such that the IBAN is not on the
blacklist. The BlacklistChecker responds with a no-
match message and the test succeeds. The response is
sent via I10 and is fed back to the IBANValidator

test cases IV-UT1 and IV-UT2 as expected. In the two
resulting interaction tests the IBANValidator receives
the IBAN (DK0850516475368988), sends the blacklist
check to the mock and the mock responds with the no-
match response that was just observed in the preceding
interaction test. The interaction test based on IV-UT1
fails, as the unit test case covered and asserted the
behavior when the BlacklistChecker found a match.
As the test failed, the path candidate IP3 was skipped for

further evaluation. The one based on IV-UT2 succeeds
accordingly. IP5 is evaluated further and the response
triggered on I8 is used as the mock response on I3 in
another interaction test based on test case MT-UT3. It
succeeds and thus IP5 contains the unit tests that check
the components’ behaviors that are needed to satisfy the
interaction expectation derived in A2. The expectation is
validated by IP5. Note, that the response does not need
to be equal to the mocked response M3 in the unit test
but leads to a validation of the defined assertions.

B. Detecting integration faults

Leung and White [3] presented a taxonomy for integration
faults. Accordingly, integration faults are the result of misin-
terpretations of the documented specification on the providing
or consuming side of a service as components are always
developed based on an interpretation of their documented
specifications.

INTERACT captures these interpretations by observing the
sent and received messages by the executed UTSs and utilizes
that information to validate that the consumer component and
provider component interact compatibly with respect to their
expectations. By analyzing the UTBI system model certain
interaction fault types can be detected.

Mismatching interface definitions are detected as the re-
placed messages in the interaction test cases cannot be de-
serialized by the receiving component if the interface contract
is broken. Furthermore, the assertions implemented in the
UTS fail if the replaced environment responses or triggered
component responses do not match the specified expectations.
Wrong function faults are detected similarly.

In addition, extra function faults and missing function faults
are detected, by querying the UTBI system model for unbound
incoming and outgoing interfaces. If these are not public APIs
they are either an indicator for such faults or an indicator for
test gaps.

VI. RELATED WORK

Instead of testing the implementation, specification-based
approaches like protobuff ensure the structural consistency of
APIs by generating the actual implementation from specified
documents. – These approaches lack behavioral information
[8]. Thus, only interface faults can be prevented.

Approaches like consumer-driven contracts were developed
to test early. However, these require additional tests and
do not replace integration tests [9]. – In contrast to our
approach, consumer-driven contracts cannot be used to check
pass-through APIs, which are common in choreography-based
architectures [10].

To test message-oriented systems, Santos et al. [11] propose
a testing technique, that requires specifying the behavior of a
system in advance. It is closely related to other specification-
based testing approaches that use Linear Temporal Logic
(LTL) to test such systems [12] [13]. – This is only possible if
the specification is kept up-to-date with the actual specification
of the system under test, which is rarely the case.

62Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

Benz [14] presents an approach that requires existing mod-
els of components and systems to generate test cases that cover
critical interaction scenarios. – Our approach reconstructs the
models from the observation of the unit test cases and allows
to execute the integration tests on a per-component basis.

Elbaum et al. [15] present an approach, called differential
unit testing, that contrasts with our approach. Instead of using
isolated unit test cases to derive integration test cases, they use
system test cases to derive unit test cases to test for differences
in implementations of the same component in isolation. – This
is only applicable if multiple implementations of the same
component are developed.

Gälli et al. [16] present the EG-meta-model to create
composable test cases. Since tests contain examples of how
to use the units, these examples are extracted to composite
new more complex tests. – The idea of composing unit test
cases that serve as examples for the use of a component is
also the basis of the presented approach. However, InterACt
considers different kinds of communication protocols and
extracts expectations towards other components from those
examples to generate tests automatically.

Schätz and Pfaller [17] propose an approach to validate
a component after it is embedded into a system without
instrumenting the component itself, treating it as a black-box
test. – While our approach aims to assess the functionality of
the system by reusing unit tests, their approach aims to verify
the functionality of a component through system tests.

VII. CONCLUSION & FUTURE WORK

INTERACT allows testing component-based systems using
the implicitly specified interaction expectations encoded in
the unit test cases. However, it is currently limited to those
expectations encoded within the unit test cases and requires
looking into the UTBI model store to verify that all interaction
expectations are validated. To overcome these limitations and
to widen the applicability of our approach, the following
improvements are planned:

• Creating a report generator that provides an overview
regarding the fulfillment of all interaction expectations.

• Extend INTERACT to validate state expectations and
extend the UTBI model by higher order interaction ex-
pectations. For example, once an “add IBAN to blacklist”
request is sent and a 200 response code was received a
transfer with that IBAN fails. This would allow testing
that both parties interpret “IBAN was added to the
blacklist” in the same way.

• Extending the approach to support asynchronous inter-
faces, where a request should result in some action but
the result is not observed by the component that issued
the request. Such expectations are not part of unit test
cases and would require a separate specification approach.
However, the validation process of INTERACT could be
reused.

INTERACT as it is right now requires to parameterize the
UTSs by the messages the CUT receives. However, unlike tra-
ditional integration testing which requires a resource-intensive

integration environment, the interaction tests require the same
resources as the UTSs. Furthermore, INTERACT is capable to
detect certain types of interface faults, missing function faults,
and wrong function faults. Last but not least the interaction
test cases adapt to architectural changes, as they are generated
based on the provided interfaces and resulting interaction
paths. We expect that our approach decreases the burden for
integration testers, by reducing the amount of integration tests
that need to be written manually. We plan to evaluate our
approach and INTERACT in a larger industry case study to
not only show the concepts effectiveness but also evaluate its
effectiveness and efficiency in a larger project.

REFERENCES

[1] B. Lima and J. P. Faria, “A survey on testing distributed and heteroge-
neous systems: The state of the practice,” in Software Technologies,
E. Cabello, J. Cardoso, A. Ludwig, L. A. Maciaszek, and M. van
Sinderen, Eds. Cham: Springer Int. Publishing, 2017, pp. 88–107.

[2] V. Garousi and T. Varma, “A replicated survey of software testing
practices in the canadian province of alberta: What has changed from
2004 to 2009?” Journal of Systems and Software, vol. 83, no. 11, pp.
2251–2262, 2010.

[3] H. K. N. Leung and L. J. White, “A study of integration testing and
software regression at the integration level,” Proceedings. Conference
on Software Maintenance 1990, pp. 290–301, 1990.

[4] S. Mahmood and A. Khan, “An industrial study on the importance of
software component documentation: A system integrators perspective,”
Information Processing Letters, vol. 111, no. 12, pp. 583–590, 2011.

[5] M. Nasution and H. Weistroffer, “Documentation in systems develop-
ment: A significant criterion for project success,” in 2009 42nd Hawaii
International Conference on System Sciences, 2009, pp. 1–9.

[6] A. Mann, A. Brown, M. Stahnke, and N. Kersten, “State of devops
report,” Puppet, Circle CI, Splunk, Tech. Rep., 2019.

[7] N. Wild and H. Lichter, “Unit test based component integration
testing (to be published),” in 30th Asia-Pacific Software Engineering
Conference (APSEC 2023). IEEE Computer Society, 2023, [retrieved:
Oct, 2023]. [Online]. Available: https://swc.rwth-aachen.de/docs/2023
APSEC Wild Preprint.pdf

[8] Google, “Protocol buffers,” http://code.google.com/apis/protocolbuffers/,
[retrieved: Oct, 2023].

[9] C.-F. Wu, S.-P. Ma, A.-C. Shau, and H.-W. Yeh, “Testing for event-
driven microservices based on consumer-driven contracts and state
models,” in 2022 29th Asia-Pacific Software Engineering Conference
(APSEC), 2022, pp. 467–471.

[10] C. K. Rudrabhatla, “Comparison of event choreography and orchestra-
tion techniques in microservice architecture,” Int. Journal of Advanced
Computer Science and Applications, vol. 9, no. 8, pp. 18–22, 2018.

[11] A. Santos., A. Cunha., and N. Macedo., “Schema-guided testing of
message-oriented systems,” in Proceedings of the 17th International
Conference on Evaluation of Novel Approaches to Software Engineering
- ENASE,, INSTICC. SciTePress, 2022, pp. 26–37.

[12] A. Michlmayr, P. Fenkam, and S. Dustdar, “Specification-based unit
testing of publish/subscribe applications,” in 26th IEEE Int. Conference
on Distributed Computing Systems Workshops (ICDCSW’06), 2006, pp.
34–34.

[13] L. Tan, O. Sokolsky, and I. Lee, “Specification-based testing with linear
temporal logic,” in 2004 IEEE International Conference on Information
Reuse and Integration, IRI 2004, 2004, pp. 493–498.

[14] S. Benz, “Combining test case generation for component and integration
testing,” in 3rd International Workshop on Advances in Model-Based
Testing, ser. A-MOST ’07. New York, USA: ACM, 2007, p. 23–33.

[15] S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, “Carving and
replaying differential unit test cases from system test cases,” IEEE
Transactions on Software Engineering, vol. 35, no. 1, pp. 29–45, 2009.

[16] M. Gälli, R. Wampfler, and O. Nierstrasz, “Composing tests from
examples.” Journal of Object Technology, vol. 6, pp. 71–86, 2007.

[17] B. Schätz and C. Pfaller, “Integrating component tests to system tests,”
Electronic Notes in Theoretical Computer Science, vol. 260, pp. 225–
241, 2010, Proceedings of the 5th International Workshop on Formal
Aspects of Component Software (FACS 2008).

63Copyright (c) IARIA, 2023. ISBN: 978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

https://swc.rwth-aachen.de/docs/2023_APSEC__Wild_Preprint.pdf
https://swc.rwth-aachen.de/docs/2023_APSEC__Wild_Preprint.pdf
http://code.google.com/apis/protocolbuffers/

	Introduction
	Challenges of integration testing
	The unit test based integration meta-model
	Integration testing based on UTBI models
	InterACt - an integration testing tool
	An example application
	Detecting integration faults

	Related Work
	Conclusion & future work
	References

