
On the Applicability of ALF Language in Real Software Projects

Radek Kočı́ and Lukáš Osadský

Brno University of Technology, Faculty of Information Technology

Bozetechova 2, 612 66 Brno, Czech Republic

emails: koci@fit.vut.cz, xosads00@stud.fit.vutbr.cz

Abstract—Modeling is one of the critical activities in specifying
requirements and designing a software system. In the design
and development of software systems, there has been a long-
term trend of shifting from static software models to feasible
models. These models include, for example, state diagrams or
techniques using automated model transformations, which are
based on a subset of Unified Modeling Language (UML) models
and supplement them with special languages, such as Action
Language for Foundational UML (ALF). A common feature is to
move part of the verification and testing from the implementation
stage to the design stage and eliminate the implementation
process. In this paper, we will focus on the possibilities of using
one direction of application of models in software development,
namely the Foundational Subset of Executable UML (fUML),
in conjunction with the specification language ALF. The paper
provides a literature search on the fundamental essence of the
Model-Driven Engineering approaches, namely fUML and ALF
language. Then, we tried to apply it to the case study of a
conference system and captured all the problems. Due to the
nature of the issues, we will not present this case study, as the
substance is not essential for the paper.

Keywords—modeling; software systems; model-driven engi-
neering; ALF language.

I. INTRODUCTION

Modeling is one of the critical activities in specifying

requirements and designing a software system. The model can

be understood as an abstraction of the system, over which the

simulation can be performed, as well as part of the design

process in the development of new systems. In the design and

development of software systems, there has been a long-term

trend of shifting from static software models to feasible mod-

els, which allow analyzing and verifying design properties in

a simulation way, i.e., without the need to implement models.

This category of use includes, for example, state diagrams or

techniques using automated model transformations, which are

based on a subset of UML models and supplement them with

special languages, such as ALF. A common feature is to move

part of the verification and testing from the implementation

stage to the design stage and eliminate the implementation

process.

Model-driven approaches assume that it would be more

advantageous for application development if the requirements

modeling and prototyping steps were combined. The resulting

model could, with minor modifications, directly serve as

a functional prototype of the application. The basis is the

transformation of models according to their purpose. The

process begins with the creation of specification models, which

are further transformed into executable models that can be

verified in a simulation manner. Models can be transformed

into different forms, according to their purpose.

In this paper, we will focus on the possibilities of using one

direction of application of models in software development,

namely the Foundational Subset of Executable UML (fUML),

in conjunction with the specification language ALF. The paper

describes the fundamental essence of these approaches and

summarizes the problems associated with fUML and ALF’s

case study of a conference system. Due to the nature of the

issues, we will not present this case study, as the substance is

not essential for the paper.

The paper is structured as follows. First, we briefly sum-

marize concepts od modeling (Section II) and Model-Driven

Development (MDD, Section III) of software systems. The

current development environments for MDD with ALF lan-

guage are presented in Section IV. A literature search of

essential papers is presented in Section V. Section VI evaluates

an applicability of MDD and ALF language in software

projects. Finally, the possible development of these techniques

is discussed in Section VII.

II. MODELING

The next section is devoted to modeling, various approaches,

and resources related to this activity. Models are the basis of

modeling and are used throughout all parts of the software

development cycle. They are used for the needs of speci-

fication, documentation, design, and the like. The German

philosopher Herbert Stachowiak described them on the basis

of three characteristics.

• Mapping. The model is always a model of the original.

The original can be something real or imaginary.

• Reduction. Models generally do not capture all the

original attributes, but only those that are relevant for

modeling purposes.

• Pragmatism. Models are not assigned to their originals

in a one-to-one relationship; they always perform the

function of replacement. To fulfill their purpose, they

must be used instead of the original.

It is a form of abstraction that describes the state, properties,

dynamics, or structure of the modeled object, system, or

part of them. Several models can describe the entity we

are modeling. One model can describe its structure, other

properties, or behavior in different degrees of abstraction. In

software engineering, models are used, for example, in the

specifications of the customers’ requirements. Their purpose

is to capture the required system properties, which are used as

102Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

a model for the creation of the system. In other cases, models

may serve as major artifacts in the implementation of systems.

When modeling, we can encounter several terms related

to it. Model-Based Engineering (MBE) or Model-Driven En-

gineering (MDE) is a software paradigm that applies the

principles of visual modeling during the software develop-

ment lifecycle. It is an umbrella term for disciplines such

as Model-Driven Development (MDD), Model-Based System

Engineering (MBSE), Business Process Modeling (BPM), and

OntologyEngineering. MDD is a sub-discipline dealing with

the application of model-driven technologies to software de-

velopment activities. Another discipline dealing with software

development is the Model-Driven Architecture (MDA). It is

a specific implementation of MDD. MBE is a discipline

of systems engineering, whose primary goal is to use the

model of information exchange between engineers. BPM is

used to describe business processes using diagrams. Ontology

Engineering is a discipline specialized in creating ontologies.

This work will deal in more detail with the discipline of MDD

and MDA.

III. MODEL-DRIVEN DEVELOPMENT

MDD is a sub-discipline of Model-Driven Engineering

dealing with applying model-driven techniques to software

development activities. It is an approach that uses models

as first-class entities to create products. The motivation for

using model-driven approaches is that standard software is

continually evolving, and the platforms on which this software

works are also changing. Thus, it is necessary to continuously

modify the products for the platforms they are to operate,

which brings with it the need to invest more time and resources

in their modifications. One of the goals of model-driven

approaches is to prevent this and save resources. MDE takes

software development to a higher level of abstraction, so there

is no need to adapt models to every platform change. One

abstract model can be re-used for multiple platforms without

intervention. Besides, they are easier to maintain.

Models as development artifacts are easier to understand

even for non-interested parties. One of the problems with using

models for development is capturing all implementation details

[1].

A. Model-Driven Architecture

MDA is a specific implementation of MDD from Object

Management Group (OMG). This implementation is based

on several OMG standards, such as the Meta-Object Facility

(MOF), XML Metadata Interchange (XMI), Object Constraint

Language (OCL), UML, and others. MDA works with basic

UML models, which are described using Domain Specific

Language (DSL). DSL is a language that specializes in a

particular application domain. An example might be SQL or

ALF languages. MDA is based on three principles [1].

• Direct representation. It allows you to combine problems

with solutions using DSL.

• Automation. Elements introduced by DSL are to be pro-

cessed by tools that connect the gap of domain concepts

with implementation technologies.

• Standard. It allows us to connect technical solutions.

The main idea of MDA is that each software can be used

on different platforms. For this reason, MDA uses models

that are transformed into other models using transforma-

tion rules. The individual transformations are based on the

Query/View/Transformation (QVT) standard [2].

B. Executable MDA

Executable UML (xUML) is a software development con-

cept and a highly abstract language that aims to compile and

run UML models. xUML is a modification of UML, in which

it is possible to describe the details of the model to such a level

that it is possible to run it or generate functional code from

it. xUML combines a subset of UML models with executable

semantics. Models in this environment can be run, debugged,

tested, and compiled by the domain of abstract languages.

xUML supports MDA, for example allowing the translation

of Platform Independent Models (PIMs) into Platform Specific

Models (PSMs) [3].

C. Foundational Subset for Executable UML

fUML is an OMG standard. It is a platform-independent

executable subset of standard UML that provides modeling

concepts for defining UML classes and the behavior of these

classes. This subset includes typical UML modeling constructs

such as classes, data types, associations, and enumerations.

It also provides the means to define model behavior using

UML activities. fUML uses different types of diagrams from

UML, i.e., it uses class diagrams to define a static structure

and activity diagrams to define the behavior [4].

D. Foundational Subset for Executable UML

Modeling systems using graphical representation may not

always be sufficient. It is not possible to capture all the details

of the system, so text representation is also used to describe

the models. There are several options for a textual description

of the model. One of them is ALF language from OMG. In

addition to the specific textual syntax for describing fUML

models, ALF also provides execution semantics by mapping

ALF syntax to the abstract syntax of fUML models. The

specific syntax of the ALF language is based on a context-

free grammar written in Enhanced-Backus-Naur-Form (EBNF)

form, and its abstract syntax is represented by the UML model

[11]. The primary goal of ALF is to use text syntax to specify

executable behavior within a model, i.e., specify the bodies of

the class methods needed for the operations contained in the

class diagrams. The syntax of the ALF language is similar to

the Java language’s syntax, uses the default type system, and

has static type checking. According to the specification, the

ALF code can be executed in three ways [5].

• Interpretive Execution. The ALF model can be directly

interpreted and triggered.

103Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

• Compilated execution. The ALF model is translated into

a UML model to match fUML and is run according to

the semantics specified by fUML.

• Translation execution. The ALF model is translated into

code that is executable on the selected platform.

IV. ENVIRONMENTS

While working on this paper two environments, which can

be used for ALF development, were tested.

A. Eclipse IDE

Eclipse IDE is primarily used for developing Java applica-

tions, but with the integration of several plugins, it is possible

to use ALF language. To use ALF with Eclipse IDE, it is

needed to add plugins like Papyrus Modeling Environment for

modeling, Moka for model execution/debugging, and Nebula

to add custom widgets. We followed the manual [6] to set up

this environment and run and debug ALF models and Papyrus

Software designer. After installing all necessary plugins, it is

needed to display widgets to work with ALF like debugging

widgets, model properties widgets, and others. After all this,

the environment is ready to use. This environment is suited

to use ALF for describing the behavior and fUML models for

describing the structure, but it is also possible to use ALF for

both. For complete-textual usage, it is better to use the ALF

reference implementation [7]. An example model mentioned

in the manual [6] was used to test the environment. The

given model can be modified, run, and debugged. The first

complications occurred with the generation of code from this

model. Papyrus Software designer allows us to generate code

from UML models when trying to generate code. Nevertheless,

only the class skeleton was created; the behavior implemented

using the ALF language was not generated. It was not gen-

erated because Papyrus Software Designer does not support

ALF code generation. For additional code generation options,

it is needed to add the Acceleo extension to the Eclipse

environment, which serves as a code generator or allows us to

define our own code generation rules. Like Papyrus Software

Designer, Acceleo does not support ALF, so it is needed to

implement its own code generation template.

B. MagicDraw

Furthermore, the commercial tool MagicDraw from No-

Magic is used as the primary tool for ALF. Because Mag-

icDraw does not have a free license, its demo version was

used. Installation and deployment of the environment are much

more comfortable than in the case of Eclipse. It only needs to

install MagicDraw and add the ALF integrated editor extension

and Cameo Simulation Toolkit extension used to run fUML

models. Like Papyrus, MagicDraw allows us to describe the

structure using diagrams and model behavior with ALF. But,

it is not possible to specify the system structure in ALF,

the only thing which can be described is the behavior of

parts of the model. As part of product testing, simple class

diagrams were created with methods whose behavior was

described in the ALF language. Subsequently, it is possible

to run the whole model or part of it directly in MagicDraw.

Once launched, a simulation window opens with a console. It

is possible to start the simulation of behavior described with

ALF, set breakpoints, and change the animation’s speed. It is

also possible to write simple tests with the help of activities. To

create a simple model in this environment, these instructions

were followed [8]. To generate code, it is necessary to create

a ”Code Engineering Set”, in which the target language and

the set of models from which the code is to be generated

are selected. There is a manual related to code generation

[9]. The problem with code generation is that only the UML

model’s skeleton is generated during code generation, and the

behavior written in ALF is not. MagicDraw does not support

code generation from ALF to target language.

Originally, ALF’s focus was to ease the writing of complete

executable UML models. Due to low market demand, this idea

was abandoned, and today ALF serves primarily as an action

language in the context of SysML model simulations. So, this

is also the primary intention of its use in the MagicDraw

environment.

V. STUDIES

Several studies show the possibilities of the ALF language

and the technologies associated with it. Several sources have

been studied for this work, and several of them are worth

mentioning.

A. Combining ALF and UML in Modeling Tools

One of these works is [10], which deals with the use of the

ALF language in the Papyrus environment. It briefly describes

the ALF language, the Papyrus environment, its limits, and

demonstrates its use on the example of a product order model.

At the end of the work, it is mentioned that the Papyrus

environment provides only essential functions for describing

models using the ALF language. It will still take some time

if new generation tools are available that would match the

common use of programming languages.

B. Executable Modeling with fUML and ALF in Papyrus:

Tooling and Experiments

[11] describes the use of ALF and fUML in Papyrus.

This work has a similar topic to [10], but it focuses on

experimentation and describes ALF’s limits.

C. On Open Source Tools for Behavioral Modeling and Anal-

ysis with fUML and ALF

Another interesting work is [12], which describes available

tools, that can be used for the ALF language. As mentioned

in the work of [10], the conclusion is that although the

instruments exist, their possibilities are limited, and they are

still in the incubation phase.

Of other studies and articles studied for this work, the most

relevant sources of information were [5], [13], and [14]. In

these three works, it was possible to generate code from ALF,

using different approaches.

104Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

D. On the Generation of Full-fledged Code from UML Profiles

and ALF for Complex Systems

[14] deals with the generation of C++ code for more

complex systems. It uses a combination of ALF language,

CHESS tool, and the CHESS-ML modeling language. The

CHESS-ML model is a model defined by a UML profile

that describes the structure. Behavior is defined using ALF.

The work describes the overall transformation, which in-

cludes the generation of structural and behavioral aspects

of the modeled system. A simplified Asynchronous Transfer

Mode (ATM) Adaptation Layer 2 (AAL2) subsystem used

in telecommunications for voice transmission was adopted to

demonstrate code generation. The code generation consists of a

set of transformations such as the conversion of a CHESS-ML

model into an unspecified Intermediate Model (InterM) using

a model-to-model transformation (M2M) using QVT. Further

transformation of the behavior model is defined in the ALF

language into InterM using QVT to extend the existing model.

The code generation is handled by a model-to-text (M2T)

transformation using Xpand [15]. For the needs of transfor-

mation between individual models, transformation rules were

created within the work, which consisted of approximately

6000 lines of code.

E. Unifying Modeling and Programming with ALF

Standard tools for working with the ALF language are

not used in [13]. Instead, they implemented their tools. As

described in work, for development in ALF language, it is

possible to create own text editor using Eclipse framework

Xtext [16], which is primarily used to develop programming

and domain-specific languages. It allows to build a language

infrastructure directly above the Eclipse environment, includ-

ing linking, parsing and code validation, syntax highlighting,

and more. It also allows to modify standard environment

components using Xtend [17]. For the ALF language needs, it

is necessary to implement own validation rules for displaying

meaningful error messages and modify grammar rules in

Xtext, given that ALF uses left-recursive rules, and the Xtext

parsing generator does not support them by default. It is also

necessary to modify the rules for determining the scope for

the needs of importing ALF elements and implement their own

type system [13]. Regarding code generation, ALF code is not

generated directly, but using model transformations. The idea

of transformations is that the ALF model is transformed with

the help of transformation rules into another model, specifi-

cally the MoDisco Java model. The code is generated with the

help of existing generators. The transformation between the

ALF model and the MoDisco Java model is performed using

the Atlas Transformation Language (ATL) [18], in which it is

necessary to define own rules. The paper states that the cre-

ation of transformation rules was problematic, mainly because

the abstraction of the ALF language is significantly higher

than in Java. There were problems with access modifiers, code

navigation, and others. In total, the implementation of the ATL

rules consisted of more than 9000 lines of code [13].

F. On the automated transnational execution of the action

language for foundational UML

In [5], the authors chose a different approach to this prob-

lem. No rules have been created to transform an ALF model

into another model, but a tool has been created that generates

C++ code from an ALF model. This is the first solution that

automatically generates code directly from the ALF language.

Their solution allows the translation of ALF behavior concepts

within the minimum syntactic match. It provides a subset of

the ALF language that can be used to describe behavior within

the UML model. This includes only the options available in

the procedural programming [19]. It also allows the translation

of ALF units used to describe the structure of the model

(namespaces, packages, classes, operations, and properties).

It also provides a memory management system based on the

smart pointers principle, a type deduction mechanism, and a

scope mechanism. The transformation process can take place

in two scenarios.

• Scenario 1 - Structure and behavior are written using

the ALF language. In terms of structure, code is directly

generated from ALF units, and types are derived using a

deduction mechanism. Three actions can be performed to

generate behavior. In the case of the behavior described

in ALF, the generator starts transforming the model into

text, which results in the C++ code. If the behavior is

defined in the C++ language, this block is only copied to

the resulting file. In the case the behavior is described in

another language, the generator will not take any action.

• Scenario 2 - The structure is defined by UML elements,

the behavior is defined using the ALF language. The

translation of the structure defined in UML takes place

with the help of a transformation, which is not specified

in work. To translate the behavior, the generator starts the

transformation of the model into text, as in Scenario 1.

ALF syntax transformation is performed by mapping ALF

concepts to C++. In the discussed work, the mapping tables

were created according to the place where the translation is

performed. These mappings are in the form <ALF code,

C++ code> and include pairs of qualified names, various

expressions, name declarations, conditions, loops, class defi-

nitions, operations, indexing, and more. The functionality of

this generator was tested on a robot system consisting of two

classes written in ALF [5].

VI. EVALUATION

Regarding the implementation of the conference review

system, it is not possible to capture the application’s com-

plexity using the ALF language. No work has been found to

create web systems or tools to make this possible. What is

possible is to create a skeleton in the Papyrus environment,

without considerable functionality. Most applications need to

manipulate the data stored in the database. For these tasks, it

is necessary to have libraries that allow such operations, but

none have been found. Following an unsuccessful search, an

inquiry was raised with OMG, which confirmed that there were

no libraries to connect to the database or other subsystems.

105Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

At the beginning of ALF’s development, there were plans to

design a Ruby on Rails-style version of ALF that would allow

the development of Service-Oriented Architectures (SOAs).

Still, due to other business priorities, it was abandoned over

time. The only option would be to implement the libraries

manually. Another problem is that there are no freely available

tools to generate code from the ALF language. So even if the

whole system could be described in the ALF, it would be

necessary to implement either your own transformation rules

to convert the ALF model to model X or to design your code

generator.

Communication with OMG revealed an Interaction Flow

Modeling Language (IFML) for modeling web-based user

interfaces. Furthermore, the communication showed that OMG

managed to demonstrate the IFML frontend connection to the

back-end business logic implemented using unspecified xUML

in a simulated environment. So far, the possibilities of these

technologies are the subject of discussion and active research.

There is currently no solution on how to generate web systems

directly from ALF code or UML models.

Continuous testing of technologies, a study of materials,

communication in various discussion groups, communication

directly with OMG, and technical support of MagicDraw, it

was found that it is impossible to create and generate complex

systems using the ALF language. Although there are studies

where it was possible to generate functional code from the

ALF language, for this to be possible, it is necessary to

implement your tools or transformation rules that would allow

this.

VII. FUTURE WORK

One of the fundamental questions for the successful adap-

tation of MDE techniques for real software projects is the

connection of standard and already used modeling techniques

with tools to support simulation verification, preferably in

real conditions, and generate complex pieces of code in the

implementation language.

Adapting standard techniques, such as UML models or

simulation of state diagrams, will facilitate the transition from

conventional practices to MDE. Designers will not be faced

with the question of entirely new techniques. At the same time,

tool support must be available to support the above concepts,

ideally combined with existing development environments. As

mentioned in the article, the basics of these tools often exist as

a plugin to existing tools. Still, they are not very connected to

the original environment, and it is always necessary to learn an

entirely new concept or formalism for modeling and design.

Another problem is the different variants of the new spec-

ification languages, which should allow universal use for

different target environments. This approach seems difficult

to implement. An important aspect is a possibility of incor-

porating a programming language into specification models,

which will facilitate their comprehensibility and subsequent

transformation. Thus, it is not necessary to create new spec-

ification languages but to allow existing ones to describe the

system behavior, which could, if necessary, be replaced by

another one. Although the design system conceived in this

way lacks universality, on the other hand, it increases its

practical applicability and applicability to a broader part of

the community of software system developers.

VIII. CONCLUSION

The ALF language can be used to simulate models in

SysML, which is its primary use now. It is also possible

to implement simple programs using two approaches, either

alone based on the reference implementation of ALF or in

combination with ALF and UML. However, this language is

not suitable for implementing complex systems due to limited

capabilities and missing tools.

The ALF language is relatively clumsy, necessary libraries

offer limited capabilities, and there are no third-party libraries

to facilitate development. Due to the fact that ALF is not very

widespread, the only reliable guide is the official standard of

ALF and academic studies that have dealt with this language.

There are also only a limited number of environments in

which ALF can be developed. These environments alone

are insufficient, so various extensions need to be installed.

Combining these environments is much more complicated than

programming. Due to limitations, the ALF language cannot

describe the whole system, but only part of it. There are

no libraries that allow, for example, authorization, database

connection, or communication via the REST API. If we look at

the development in terms of time, the case study’s preparation

and implementation using a standard approach took about

a month. In the case of the ALF approach, exploring its

possibilities, studying the issue, finding relevant resources,

reading various studies, and testing multiple technologies and

environments took over three months.

Regarding the implementation of the conference review

system, it is impossible to capture the application’s complexity

using the ALF language. No work has been found to make

this possible. What is possible is to create a system skele-

ton, without considerable functionality. The ALF language

can be used to simulate models in SysML or to implement

simple programs. However, this language is not suitable for

implementing complex systems due to limited capabilities and

missing tools. Adapting standard techniques, such as UML

models or simulation of state diagrams, will facilitate the

transition from conventional practices to MDE. At the same

time, tool support must be available. Another problem is the

different variants of the new specification languages, which

should allow universal use for different target environments.

It is not necessary to create new specification languages but

to let existing ones to describe the system behavior.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project

FIT-S-20-6427.

REFERENCES

[1] J. Bezivin, “Model Driven Engineering: An Emerging Technical Space,”
Generative and Transformational Techniques in Software Engineering,
GTTSE. Lecture Notes in Computer Science. Springer, Berlin, Heidel-
berg, vol. 4143, 2005, pp. 36–64.

106Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

[2] Object Management Group, “Meta Object Facility
(MOF) 2.0 Query/View/Transformation Specification,”
https://www.omg.org/spec/QVT/1.0/PDF, [online; retrieved: September,
2022].

[3] S. J. Mellor and M. J. Balcer, Executable UML: A Foundation for
Model-Driven Architecture, 2002.

[4] T. Mayerhofer, P. Langer, and M. Wimmer, “xMOF: Executable DSMLs
Based on fUML,” Software Language Engineering, SLE. Lecture Notes
in Computer Science. Springer., vol. 8225, 2013, pp. 56–75.

[5] F. Ciccozzi, “On the automated translational execution of the action lan-
guage for foundational uml,” Software and Systems Modeling, vol. 17,
no. 4, 2018, doi: 10.1007/s10270-016-0556-7.

[6] S. S. Nejati and M. Maleki, “Report on How to Use ALF
Action Language and fUML execution/debugging with Moka,”
https://wiki.eclipse.org/images/5/5a/ALF fUML Moka.pdf, [online; re-
trieved: September, 2022].

[7] “ALF Reference Implementation,” http://modeldriven.github.io/Alf-
Reference-Implementation/, [online; retrieved: September, 2022].

[8] “ALF Language - Getting started,”
https://docs.nomagic.com/display/ALFP185/Getting+Started, [online;
retrieved: September, 2022].

[9] “Code Engineering,” https://docs.nomagic.com/display/MD190/Code+
Engineering, [online; retrieved: September, 2022].

[10] E. Seidewitz and J. Tatibouet, “Tool paper: Combining alf and uml
in modeling tools an example with papyrus,” in 15th Internation
Workshop on OCL and Textual Modeling, MODELS 2015, pp.
105–119, [online; retrieved: September, 2022]. [Online]. Available:
http://ceur-ws.org/Vol-1512/paper09.pdf

[11] S. Guermazi, J. Tatibouet, A. Cuccuru, S. Dhouib, S. Grard, and

E. Seidewitz, “Executable modeling with fuml and alf in papyrus:
Tooling and experiments,” in 1st Internation Workshop on Executable
Modeling, MODELS 2015, pp. 3–8, [online; retrieved: September,
2022]. [Online]. Available: http://ceur-ws.org/Vol-1560/paper1.pdf

[12] Z. Micskei, R.-A. Konnerth, B. Horvth, O. Semerth, A. Vrs, and D. Varr,
“On open source tools for behavioral modeling and analysis with fuml
and alf,” in 1st Workshop on Open Source Software for Model Driven
Engineering, MODELS 2014, pp. 31–41, [online; retrieved: September,
2022]. [Online]. Available: http://ceur-ws.org/Vol-1290/paper3.pdf

[13] T. Buchmann and A. Rimer, “Unifying modeling and programming
with alf,” in SOFTENG 2016: The Second International Conference on
Advances and Trends in Software Engineering, 2016, pp. 10–15.

[14] F. Ciccozzi, A. Cicchetti, and M. Sjdin, “On the generation of full-
fledged code from uml profiles and alf for complex systems,” in 12th
International Conference on Information Technology - New Generations,
2015, pp. 81–88.

[15] “Eclipse Model To Text Project,”
https://www.eclipse.org/modeling/m2t/?project=xpand, [online;
retrieved: September, 2022].

[16] “Eclipse Xtext Project – A Framework for Development of Programming
Languages,” https://www.eclipse.org/Xtext/, [online; retrieved: Septem-
ber, 2022].

[17] “Eclipse Xtend – A Flexible and Expressive Dialect of Java,”
https://www.eclipse.org/xtend/, [online; retrieved: September, 2022].

[18] “Eclipse ATL – A Model Transformation Technology,”
https://www.eclipse.org/atl, [online; retrieved: September, 2022].

[19] OMG, Action Language for Foundational UML, Version 1.1,
2017, [online; retrieved: September, 2022]. [Online]. Available:
https://www.omg.org/spec/ALF/1.1/PDF

107Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

