

Prepare Students for Software Industry

A Case Study on an Agile Full Stack Project

José Carlos Metrôlho1,2, Fernando Reinaldo Ribeiro1,2,

Rodrigo Batista2
1R&D Unit in Digital Services, Applications and Content

2Polytechnic Institute of Castelo Branco

Castelo Branco, Portugal

e-mail: metrolho@ipcb.pt, fribeiro@ipcb.pt,

rodrigo.batista@ipcbcampus.pt

Paula Graça

DEETC of Instituto Superior de Engenharia de Lisboa

Instituto Politécnico de Lisboa

Lisbon, Portugal

e-mail: paula.graca@isel.pt

Abstract— Reducing the gap between Software Engineering

education and the needs in the software industry is a goal for

Academia. Advancement in terms of cutting-edge technical

skills and good soft skills preparation is the desired goal to

shorten the onboarding in the labour market. Generally, in

computer science or computer engineering courses, separate

subjects exist to teach requirements engineering, analysis and

design, coding, or validation. However, integrating all these

phases normally requires experience in developing a complete

project. The approach presented in this paper has involved the

staff of a software company in collaboration with the staff of an

academic Institution and resulted in a student's involvement in

a full-stack software development project. The student was

involved in an agile team composed of teachers and Information

Technology (IT) professionals. Scrum framework was followed,

and the product was developed using a low-code development

platform. Results show that this agile and full stack approach

allows students to develop cutting-edge technical and non-

technical skills. The paper presents the approach, the achieved

results, some lessons learned and some guidelines for the future.

Keywords- agile software development; cognitive services; form

recogniser; Scrum; software engineering; invoice.

I. INTRODUCTION

Nowadays, technology, namely software, is part of
ordinary people's lives, and so there is a considerable demand
for well-prepared professionals in this area of knowledge.
Preparing professionals in these areas is not easy. If, on the
one hand, they must have deep knowledge in specific
technical subjects (databases, programming languages,
requirements analysis, Web development, mobile
development, etc.), it is also increasingly important that they
have the skills to integrate or explore features in more
complex systems. This broader view of specific software
ecosystems requires a well-prepared new generation of
engineers using new approaches and a more holistic
experience of modern software development activity. These
approaches can be enablers for accelerating development
performance and obtaining better designed and high-quality
software products.

In the software industry, many advances are also
happening to speed up development. Examples of this are the
low-code development platforms, which provide an
abstraction layer that allows the developers to handle more of

the inherent complexity of application development and
simultaneously explore reuse and integrate different
frameworks. They allow fast learning development
processes, enable a more systemic view of software projects,
and provide easy integration with other application
endpoints. However, software engineering gains importance
here because its inherent abstraction requires good
development practices to be followed.

Another essential aspect nowadays is the great possibility
of integration and interconnection between various systems.
This makes it increasingly important that the new generation
of IT professionals knows the services available and what
mechanisms to use to integrate them into their applications.
This holistic knowledge can be acquired in theory, but
nothing better than consolidating it through developing
projects that use this integration and other technologies.
Cloud service providers (Amazon Web Services, Microsoft®
Azure Cloud Platform or Google Cloud Platform) are cases
in point.

Full stack development has changed, with new areas and
skill sets becoming important. In the works published in [1],
[2], in addition to the traditional definition of full stack, new
scope and challenges are presented in this development field.
In [1], the authors argue that students are “in a better position
concerning their employment opportunities if they possess
hands-on skills on the entire spectrum of full stack
technologies”. Also, the authors make clear that full stack
does not mean “all” technologies and that “students should
learn how to recognise fundamental problems to solve them
with the appropriate conceptual tools using the corresponding
technology of the day”. In this paper, we share a case study
that aims to prepare students for this reality, still in the
academic environment and in close collaboration with
partners from the software development industry.

In turn, the job market needs more technically well-
prepared graduates with good soft skills. Thus, preparing the
new generation of engineers requires training not only in the
technical subjects that are the knowledge base, but also the
vision, and more holistic experience about the paths followed
today by software companies and the soft skills. Tackling all
these aspects can be achieved with strategies and case studies
like the one presented in this article. The product developed
in this case was an application for household accounting,

75Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

automatically recognising data from existing invoices in
digital format (pdf, photo) using cognitive services.

In this case study, an important fact was that a company
that develops software for the international market was
involved. The company defined the product/goal. A student
from a higher education institution (academy), integrated into
a distributed team, developed it, using Scrum [3] as a
software development process. This combination of several
contributions and developing a full stack project using an
agile software development process allows the student to
acquire the knowledge and preparation necessary for today's
challenges in the modern competitive software development
market. The main goal is to contribute to reduce the gap that
sometimes exists between what is learned in academia and
what is needed in the industry. In this paper, based on the
experience observed in a successful case, we share some
practices in the teaching of software engineering to best
prepare students for software industry.

The remainder of this article is organised as follows.
Section II presents a background and related work. In Section
III, the case study is presented. In Section IV, results and
discussion about lessons learned are presented. Finally, some
conclusions are presented in Section V.

II. BACKGROUND

Developers often do not just play a single role in software
development; they must be multifaceted, often taking on the
role of designers, coders, and database specialists. Therefore,
having this knowledge and multi-tasking skills is essential
and allows the developer to use them to complete a project or
software development independently. This is also an
advantage because it will enable the developer to be more
familiar with all stages of the development process, making
cooperation inside and outside the team more optimised, and
contributing to reducing software development costs. These
professionals should be able to work both in Web and mobile
platforms with also knowledge of design through the Web
like Hyper Text Markup Language (HTML) and Cascading
Style Sheets (CSS). In addition, they should be able to use
software development tools and techniques that allow the
development team to be at its highest level of productivity.

However, higher education institutions face a challenging
task in preparing students to work proactively in these high-
performance teams. Many approaches have been proposed to
teach and learn Software Engineering subjects. Some attempt
to motivate students to take a more active role in their training
and provide them more realistic experiences by replicating
the settings used in the software development profession.
Project-based Learning (e.g., [4]), flipped classroom (e.g.,
[5]), and gamification (e.g., [6], [7]) are some of these
strategies that are frequently used to teach Software
Engineering. Some other strategies promote a closer
involvement of software companies to reduce the gap
between Software Engineering education and the needs and
practice in the software industry. For instance, in the
approach described in [8], the industry actively supervises
software product development. Another approach is to create
supplementary training programs that aid in the screening of
qualified candidates, as presented in [9]. These approaches

are essential for students because they provide real
challenges, more realistic experiences, and recreating
industry software development environments. Nevertheless,
they are also crucial for companies. For them, networking
with students and other corporate sponsors, building ties with
faculty, and promoting their business and products among
college students are some potential advantages.

From a different perspective, software engineering
teaching has been adapting to new developments and trends,
namely the agile methodologies. Frequently, teaching agile
methodologies have focused on teaching a specific
framework like Scrum (e.g., [10]–[12]) or Extreme
Programming (e.g., [13][14]). A study on using Agile
Methods in Software Engineering Education [15] concluded
that using Agile practices would positively influence the
teaching process, stimulating communication, good
relationships among students, active team participation, and
motivation for present and future learning.

Besides the good results obtained by several of these
strategies, software engineering teaching and learning can
still benefit from a more participative and closer involvement
of software development companies in the training process.
This can enable students to join distributed teams, enhance
their non-technical skills, and engage themselves in the
practices used in these companies.

III. THE CASE STUDY

A. People/Team

In this case, the agile team was composed of 6 members.
This is following the recommendations of Scrum [3].
Regarding the role of each one: 1 member of the company
acted as product owner; 2 members of the company (with vast
experience in terms of development using the adopted
platforms) acted as coaches/development technical support;
1 member was the student that acted as a developer; 2
teachers acted as Scrum masters and, for some tasks, as
coaches (involved in documentation, timeline, etc.). In this
process, the student, the central element of the approach,
interacted with the other people. Besides getting support for
the development of the project/product, he also gained
experience in terms of teamwork (soft skills), realising the
difficulties and aspects that are common in business projects
of this type. The members' posture was demanding and
methodical, continually adopting practices equal to what is
done in the day-to-day business activity.

B. Process

Tools were adopted for this purpose to carry out the
development process. Thus, Jira [16] was used to manage all
stages so that details of the evolution of the project and its
rhythm could be adequately monitored in an articulated
manner. This choice requires everyone to follow good
communication practices and compliance with activity logs
and user stories in this case.

Figure 1 presents the timeline of one of the semesters, and
in Figure 2, we can see the Jira interface with part of the
product backlog (the content is in Portuguese because it was
the language agreed by the team for it).

76Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

Figure 1. Timeline.

Figure 2. View of backlog in Jira UI.

On the left side of the Jira interface of Figure 2, we can
see the list of user stories and, on the right side, the
corresponding status (finished, in progress, not accepted or to
test).

Scrum's artefacts [3] were all met, such as having a
product backlog, sprint backlog, etc. In addition, there were
daily meetings between the student and his mentors and
checkpoints to clear any impediments to progress. The sprints
were 2-4 weeks long, but every week there was a meeting
(weekly meeting) between all the team members to review
the progress of the work. There were sprints for development,
but there were also periods when the goal was to learn how
to develop or optimise the project. For example, how to
integrate Azure [17] cognitive services into the product under
development. In addition, the definition of the sprint periods
were not unrelated to the academic activity, which took place
in parallel, so that the student could also be able to fulfil the
academic requirements in his other subjects. Thus, there were
different sprint periods as there were also different
workloads.

C. Project

Since an agile approach was adopted, it followed the
value [18]:

"Working software over comprehensive documentation."

In terms of requirements documentation and modelling,
the requirements were documented using user stories, and in
addition, we used wireframes and the Entity-Relationship

(ER) model. The team did not follow an extensive and deeper
documentation approach because the student knew it from
previous work in other curricular units. However, taking
advantage of this knowledge, the student also represented the
use cases and the ER model for the final report.

The research work was demanding for the student and the
other members involved. New challenges were posed that
required research, pre-experimentation, and analysis. For
example, to implement the synchronism between the mobile
application and the backend, it was necessary to analyse
several patterns and adjust them to the concrete objective of
this new product. The same happened in relation to security
aspects of the application or the use of Azure cognitive
services. In other words, the fact that it is an application with
ambitious goals also posed interesting challenges to all team
members. The product owner defined the initial requirements
and documented them in the product backlog. For the user
stories, the acceptance criteria were defined, which helped to
design the test cases and thus contribute to a robust
application.

Although the student had general knowledge about
Artificial Intelligence (AI), it required him to be prepared on
how to take advantage of the resources provided by Azure not
only in terms of parameterisation and integration, but also in
training to get the best performance. This is important
because what was at stake in this challenge was to implement
the functional requirements and user stories and obtain a final
product with the highest possible accuracy in terms of
automatic detection of fields of interest present in invoices.

Thus, the project involved research, development,
software integration, application synchronisation (Web and
mobile), security, agile Scrum framework, teamwork, and
new tools (low-code platform, integration with cloud Azure,
cognitive services, Jira, etc.). A detailed report of all phases
and details of each aspect covered during the implementation
process was also made. In the final stage of the project,
acceptance tests were done to determine if the implemented
features were useful and satisfied the users’ needs.

This work covered many aspects of a software project,
which could hardly be contemplated in a purely academic
project. In addition to the technical-scientific coverage
evidence, the agile methodology was chosen, and the fact that
there was permanent communication between all its members
was central. This leads us to verify in practice that one more
value of the agile manifesto followed results in a successful
path [18]:

"Individuals and interactions over processes and tools"

All these aspects mentioned above were considered, and
the project includes documentation on user stories, database
modelling, wireframes, and systems software architecture,
among other valuable and necessary documentation.

Figure 3 shows the general architecture of the
implemented system.

This work involved full-stack Web and mobile
development using the OutSystems low-code platform [19].
This choice, teamwork, and adopting the agile framework
(Scrum) allowed us to design from scratch, implement and
test a complex and challenging software product during the
normal period of a school year.

77Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

Figure 3. Systems Architecture.

D. Product

The recognition and automatic extraction of data from
documents (invoices, receipts, etc.) are complex to
implement and require various aspects to make it work
successfully. With this project, we intended to apply
mechanisms to recognise and extract data from invoices and
store, organise and manage these data.

Using the OutSystems platform to develop the current
project was a requirement from the company. The company
proposed this product idea to develop a Web and mobile
application using the OutSystems low-code platform,
allowing users to manage their expenses in a digital format,
independently of the users receiving the documents digitally
or on paper. One of the characteristics of this platform is the
speed of development and the integration with other
necessary tools for the implementation of the objectives of
this work (e.g., integration with Azure services). It allows to
build and deploy full-stack Web and mobile applications
[19].

The product owner proposed the product backlog.
However, in each sprint review meeting, there were
adjustments to the user stories. A sprint retrospective was
always carried out so that the improvement process was
constant from sprint to the next sprint, fostering a continuous
pace. This demonstrates to the student the importance of the
3rd and 4th values of [18]:

“Customer collaboration over contract negotiation”

and

“Responding to change over following a plan”.

The final product was developed on time, and all goals
were achieved. In other words, at the end of the project, the
resulting product was an application (Web and mobile) that
was developed in OutSystems with the integration of Azure
cognitive services (Azure form recogniser [20]) that allows
(among other functionalities) the user to:

• Register invoices automatically.

• Process invoices (recognise and extract) data from
pdf or an image captured by a smartphone.

• See spending statistics of a specific type and period.

The mobile application was implemented to be used even
when it is offline. Because of that, mechanisms to
synchronise both applications (Web and mobile) were
implemented.

Figures 4 and 5 show the final layout of both the Web
portal User Interface (UI) and one of the mobile applications
UI.

Figure 4. Examples of portal Web UIs (On top: Invoice’s historic view;

Bellow: Output of automatic processed invoice view).

Figure 5. Examples of mobile app UIs (Left: select new invoice; Right:

expenses).

78Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

In Figure 4 (top), we can see a dashboard to consult
invoice’s historic, with filters, charts presenting the collected
data of different service providers (Telecommunications
companies, electricity suppliers, etc.) and the list of stored
invoices by designation, date, service provider, and monetary
value. In Figure 4 (bellow), we can see the result of an
automatically processed invoice view, presenting the
invoice’s file and the automatically captured fields.

Invoice templates can be configured in the administration
portal for different service providers. The training and
configuration of the recognition algorithms, using Azure
cognitive services, can be configured through a dedicated
Web portal.

The company's representatives validated the visual
aspects (UI/User Experience (UX)), the synchronisation
between the Web and the mobile applications, and security
issues. The performance results obtained with the recognition
of invoices were also analysed and improved.

IV. RESULTS AND LESSONS LEARNED

According to the opinion of all those involved, the result
of the project was very positive. In addition to completing the
entire system within the planned period of 2 semesters, a
high-quality software product was developed (all
requirements implemented and good acceptance from
potential external end-users). In other words, in addition to
providing all the intended features identified throughout the
project, the developed software also performs with good
performance results. After several tests with invoices from
various service providers, the performance was excellent in
all cases. As in any of these cases, the better organised the
information on the invoice is (input), the easier it will be to
train the system and, obviously, the better the accuracy of the
data obtained (output). In the tests carried out, in most cases,
all data was recognised automatically from the original pdf
invoices received by email from the service providers (e.g.,
gas company, energy company or telecommunications
providers). A lower accuracy rate was achieved if the
invoices were digitised using the smartphone camera (even
so, in the performed experiments, at least 46.5% of the fields
were well recognised, and the user manually entered the
remaining fields). After having a first version of the system
available (Web and mobile), several potential users were
asked to install and use the application and to respond to a
survey. The survey included 14 questions. Twelve questions
were answered using the Likert Scale (1–5), and one question
asked for a numerical answer. The other question was an
optional free response question where respondents could
include any information. The results obtained at this stage
serve three crucial goals: 1) to provide a better insight into
the platform, which may identify novel issues/problems to
consider; 2) to obtain initial feedback on potential users'
acceptance and perception of the platform’s key features and
3) to evaluate the usefulness of the proposed system. Twelve
users completed the survey. To exclude the outliers, the
survey with the best evaluation and the survey with the worst
evaluation were excluded. This resulted in 10 valid answered
questionnaires.

The analysis of the responses shows that:

• 90% of respondents rated the application as useful
or very useful.

• 80% of respondents rated the application as easy or
very easy to use.

• All the respondents were satisfied or very satisfied
with the automatic reading of invoice information.

• Importing invoices in pdf format was considered
very important by 80% of respondents. The import
of invoices from a photo was considered important
or very important by 60% of the respondents.

• In the open answer question, it was possible to
obtain some feedback on usability improvements
and the reporting of some bugs.

In terms of lessons learned, this approach requires a
dedication of at least one h/week (average) from the teachers
and the company's members. In the case of the mentor, this
period was longer due to all the daily meetings. The
dedication paid off because the result (resulting product,
preparation of the student (technical and non-technical
skills)) was very positive. The fact that everyone was
engaged in developing a comprehensive project that involved
all stages and components of the proposed architecture was
challenging, motivating and clearly beneficial for all parties,
that is, for teachers, students, and staff involved from the
partner company.

V. CONCLUSIONS

The presented case study shares an agile approach to
preparing students for the job market regarding Software
Engineering (SE) practices in the context of final year
projects (in the 5th and 6th semesters of the course curricular
plan to complete the degree). This approach reduces the gap
between SE education and practice in the software industry.
The student was involved in a distributed team with teachers
and IT professionals from a software house to develop a
product that demanded full stack development and agile best
practices. The case study presented illustrates the work
methodology and the resulting product. In other words, the
paper described people, the process, the project, and the
product.

These industry-academia partnerships helps students
become better and quickly prepared to work in high-
performing teams. They raise students´ employment
opportunities by preparing them in cutting-edge fields and
improving their soft skills to have better performance in
software development teams. These partnerships are also
advantageous for the other involved partners. Hiring
qualified human resources is good for the companies, as well
as for the participating higher education institutions
(contributes to improve their employability rate).

ACKNOWLEDGMENT

We thank the members of the company Do iT Lean who
were also involved in this case study providing technical
support.

79Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

REFERENCES

[1] A. Taivalsaari, T. Mikkonen, C. Pautasso, and K. Systä, “Full

Stack Is Not What It Used to Be,” in International Conference

on Web Engineering, 2021, pp. 363–371.

[2] A. R. C. Akshat Dalmia, “The New Era of Full Stack

Development,” Int. J. Eng. Res. Technol., vol. 9, no. 4, pp. 7–

11, 2020, doi: 10.17577/IJERTV9IS040016.

[3] K. Schwaber and J. Sutherland, “The Scrum Guide. The

Definitive Guide to Scrum: The Rules of the Game.,” 2016.

https://www.scrum.org (accessed Jul. 20, 2022).

[4] R. Brungel, J. Ruckert, and C. M. Friedrich, “Project-Based

Learning in a Machine Learning Course with Differentiated

Industrial Projects for Various Computer Science Master

Programs,” in 2020 IEEE 32nd Conference on Software

Engineering Education and Training, CSEE and T 2020,

2020, pp. 50–54, doi: 10.1109/CSEET49119.2020.9206229.

[5] L. Gren, “A Flipped Classroom Approach to Teaching

Empirical Software Engineering,” IEEE Trans. Educ., vol. 63,

no. 3, pp. 155–163, 2020, doi: 10.1109/TE.2019.2960264.

[6] P. Rodrigues, M. Souza, and E. Figueiredo, “Games and

gamification in software engineering education: A survey with

educators,” in 2018 IEEE Frontiers in Education Conference,

2018, vol. 2018-Octob, pp. 1–9, doi:

10.1109/FIE.2018.8658524.

[7] R. Malhotra, M. Massoudi, and R. Jindal, “An innovative

approach: Coupling project-based learning and game-based

learning approach in teaching software engineering course,”

in Proceedings of 2020 IEEE International Conference on

Technology, Engineering, Management for Societal Impact

Using Marketing, Entrepreneurship and Talent, TEMSMET

2020, 2020, pp. 1–5, doi:

10.1109/TEMSMET51618.2020.9557522.

[8] W. E. Wong, “Industry Involvement in an Undergraduate

Software Engineering Project Course: Everybody Wins,” in

120th ASEE Annual Conference and Exposition, 2013, pp.

23.742.1-23.742.12, doi: 10.18260/1-2--19756.

[9] E. Tuzun, H. Erdogmus, and I. G. Ozbilgin, “Are Computer

Science and Engineering Graduates Ready for the Software

Industry? Experiences from an Industrial Student Training

Program,” in 2018 IEEE/ACM 40th International Conference

on Software Engineering: Software Engineering Education

and Training (ICSE-SEET), 2018, pp. 68–77.

[10] A. Heberle, R. Neumann, I. Stengel, and S. Regier, “Teaching

agile principles and software engineering concepts through

real-life projects,” in 2018 IEEE Global Engineering

Education Conference (EDUCON), 2018, pp. 1723–1728,

doi: 10.1109/EDUCON.2018.8363442.

[11] G. Wedemann, “Scrum as a Method of Teaching Software

Architecture,” in Proceedings of the 3rd European

Conference of Software Engineering Education, 2018, pp.

108–112, doi: 10.1145/3209087.3209096.

[12] I. Bosnić, F. Ciccozzi, I. Čavrak, E. Di Nitto, J. Feljan, and R.

Mirandola, “Introducing SCRUM into a Distributed Software

Development Course,” in Proceedings of the 2015 European

Conference on Software Architecture Workshops, 2015, pp.

1–8, doi: 10.1145/2797433.2797469.

[13] J. J. Chen and M. M. Wu, “Integrating extreme programming

with software engineering education,” in 38th International

Convention on Information and Communication Technology,

Electronics and Microelectronics, 2015, pp. 577–582, doi:

10.1109/MIPRO.2015.7160338.

[14] B. S. Akpolat and W. Slany, “Enhancing software engineering

student team engagement in a high-intensity extreme

programming course using gamification,” in 27th Conference

on Software Engineering Education and Training, 2014, pp.

149–153, doi: 10.1109/CSEET.2014.6816792.

[15] S. Al-Ratrout, “Impact of using Agile Methods in Software

Engineering Education: A Case Study,” in 2019 6th

International Conference on Control, Decision and

Information Technologies (CoDIT), 2019, pp. 1986–1991,

doi: 10.1109/CoDIT.2019.8820377.

[16] ATLASSIAN, “Jira Software.”

https://www.atlassian.com/br/software/jira (accessed Oct. 13,

2022).

[17] Microsoft Corporation, “AZURE. INVENT WITH

PURPOSE. Learn, connect, and explore.”

https://azure.microsoft.com/en-us/ (accessed Oct. 13, 2022).

[18] “Manifesto for Agile Software Development,” 2001.

https://agilemanifesto.org (accessed Jul. 20, 2022).

[19] OutSystems, “OutSystems Developers: Develop more. Ship

more. Get more done.”

https://www.outsystems.com/developers/ (accessed Jul. 26,

2022).

[20] Microsoft Corporation, “Azure Form Recognizer.”

https://azure.microsoft.com/en-us/services/form-recognizer

(accessed Jul. 20, 2022).

80Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

