
Deriving Service-Oriented Dynamic Product Lines Knowledge from Informal
User-Requirements: AI Based Approach

Najla Maalaoui
National School of Computer Sciences

RIADI Lab
Manouba University, Tunisia

email: najla.maalaoui@ensi-uma.tn

Raoudha Beltaifa
National School of Computer Sciences

RIADI Lab
Manouba University, Tunisia

email: raoudha.beltaifa@ensi.rnu.tn

Lamia Labed Jilani
National School of Computer Sciences

RIADI Lab
Manouba University, Tunisia

email: lamia.Labed@isg.rnu.tn

Abstract—A Service-Oriented Dynamic Software Product Line
(SO-DSPL) is a family of service-oriented systems sharing a
set of common features. Hence, they are automatically activated
and deactivated depending on the running situation. Such prod-
uct lines are designed to support their self-adaptation to new
contexts and requirements. Particularly, user requirements can
be analyzed and enriched thanks to the existing of the SO-
DSPL ontology that we previously built. This will facilitate the
configuration of a derived service from the family of services,
corresponding both to the desired requirement and a specific
context. As we know, a user requirement can be ambiguous, vague
and incomplete, which motivate the need for the extraction of the
hidden knowledge. Our challenge is to use artificial intelligence
techniques to automatically extract new SO-DSPL knowledge
from textual user requirements and derive appropriate services of
the service line for the user. In this paper, our approach is based
on Natural Language Processing (NLP) learning techniques,
a rule engine and a reasoner. This process permits to better
understand the user requirements, to predict other information
about the requirements and to derive an appropriate service
(software application as a combination of several services) in
the SO-DSPL application engineering phase. We use the Smart
Home product line and a dataset of textual user requirements
to evaluate our proposal. Notes that when we say product, we
mean an application based on service compositions.

Index Terms—Service-Oriented Dynamic Software Product
Lines; Ontology; User requirements; Natural language processing.

I. INTRODUCTION

The demand of customized service-based systems is con-
stantly increasing from day to day. This requires tailoring
and adapting a software system according to the specific
customer needs. Faced with this challenge, Service Oriented
Architecture (SOA) provides a promising mean for supporting
continuously changing customers’ needs, context and expec-
tations, as more sophisticated software systems are connected
to the Internet. However, developing reusable and dynamically
reconfigurable service-based systems tailored to meet different
customers’ needs and contexts becomes a main challenge. To
address this issue, the reuse approach has been suggested as
one of the pioneer solutions. The Service Oriented Dynamic
Software Product Line (SO-DSPL) technique has already
been adopted as one of the most promising techniques for
reuse. This framework is addressed by combining SOA with
Dynamic Software Product Lines Engineering (DSPLE);

A SO-DSPL [15] is known as a family of service-oriented
systems sharing a set of common features. Other than the
common ones, as in Product Line Engineering, there is also a
set of variable features. These features are managed according
to the needs of a specific market segment and/or environment
and are automatically activated and deactivated according to
the running situation. SO-DSPLs support their self-adaptation
to new context and requirements.

In order to get customized software, users can use their
own language and their own knowledge to express freely
their request. In that case, providers may not understand the
client’s requirements. But, such an understanding is essen-
tial to provide better products and services to consumers.
Overall, facilitating the understanding between providers and
customers requires a knowledge representation of customer’s
requirements. In a previous work [14], we are interested
in SO-DSPL knowledge. In this work, we were studied
the semantic relationship between the SO-DSPL knwolegde
and their usability by DSPL activities. To unify the studies
knowledge, we have proposed an ontology named “OntoSO-
DSPL” that is developed in a modular way. OntoSO-DSPL
has four modules (sub-ontologies) defined as: user context
sub-ontology, service sub-ontology, DSPL sub-ontology and
adaptation sub-ontology where each sub ontology is interested
in covering a particular dimension. Based on this work, we
have concluded that the user requirements knowledge play
an important role in SPL activities, as well they influence
derived SPL product. Thus, in SPLE, it is necessary to identify,
document and maintain user requirements to be used by SPL
activities. Therefore, there is a great need for an intelligent
system able to represent, understand and interpret the user
requirements from the textual request targeting a specific
product in the SO-DSPL framework.

To tackle these challenges and facilitate the understanding
of user requirements, a knowledge representation of the re-
quirements is needed. For this purpose, we propose in this
paper an approach that enables the interpretation of the user
requirements through his/her textual request and transforms it
to a formal representation (requirements structure) that will be
later used by SPL activities such as, product derivation, user
satisfaction analysis, product adaptation, etc.

The remainder of this paper is structured as follows. Section
2 introduces SO-DSPL engineering with a brief overview. In

58Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

Section 3, we motivate our contribution with the help of an
example. In Section 4, we present the related works. Section
5 exposes our proposed approach and Section 6 presents
an illustrative case. In Section 7, we evaluate our proposed
approach. Finally, the last section concludes the paper and
deals with future works.

II. SERVICE ORIENTED DYNAMIC SOFTWARE
PRODUCT-LINE ENGINEERING

Software Product-line engineering is a paradigm within
software engineering, used to define and derive sets of similar
products from reusable assets [15].The development life cycle
of a product line encompasses two main processes: domain
engineering and application engineering [15].While domain
engineering focuses on establishing a reuse platform, appli-
cation engineering is concerned with the effective reuse of
assets across multiple products. Feature modeling is the main
activity to represent and manage product line requirements
as reusable assets by allowing users to derive customized
product configurations [15]. Product configuration refers to the
decision-making process of selecting an optimal set of features
from the product line that comply with the feature model
constraints and fulfill the product’s requirements. A common
visual representation for a feature model is a feature diagram.
The feature diagram defines common features found in all
products of the product line, known as mandatory features,
and variable features that introduce variability within the
product line, referred to as optional and alternative features. In
addition, feature diagrams often contain cross-tree constraints:
a feature can include or exclude other features by using
requires or excludes constraints, respectively.

Dynamic Software Product Lines (DSPLs) provide config-
uration options to adjust a software system at runtime to deal
with changes in the users’ context [14] and Service-oriented
dynamic software product lines (SO-DSPL) represent a class
of DSPLs that are built on services and Service-Oriented
Architectures (SOAs) [13]. Figure 1 shows a part of the smart
home feature model.

III. RUNNING EXAMPLE

Performing service derivation by manual configuration and
adaptation can generate inconsistency. In addition, it is difficult
in the context of SO-DSPL due to the important number
of features, constraints, contexts, adaptation rules and web
services. Thus, describing requirements and their changes in a
textual format facilitates configuration, however, it requires an
automated knowledge extraction process that understand and
manage user requirements, their changes and their impact on
the current configuration in order to generate a corresponding
configuration or adapting an existing one. To illustrate the
challenges faces when configuring/ adapting based on textual
requirements, we introduce a smart home system for home
automation as an example of an SO-DSPL. The smart home
consists of smart devices equipped with sensors and web
service based actuators interconnected through a software
system, which aims to automate a connected home. The smart

home SO-DSPL aims to develop customized smart home
products for its customers. Its customers can be an external
client or a developer that needs to derive or adapt product.
Based on the description of the smart home options, customers
express their requests in natural language. As an example,
the following request is given by a customer to express the
important functionalities that must be covered by the derived
product in order to satisfy his/her needs.

Req1: In the morning, I am very lazy so I think that my smart
home shall have voice command feature to operate activities
from bathrooms which accelerates my morning routines. Be-
cause my children Lora and Alex are always doing something
stupid, my home shall have a vacuum cleaner to clean my
home floors when anything spills. Sometimes, I am very tired
since I work all the day, so I prefer that the smart delivery of
my home may be able to order delivery food by simple voice
command.

Requirement ”Req1” is very vague and its description
does not directly include the smart homes features, which
makes matching more difficult. Thus, it must be processed
to : 1) better present the needs, 2) predict features relative
to the described requirements in order to derive the desired
customer product, 3) to reuse fragments of requirements
and/or to adapt previous product requirements to new ones.
As a result, ”Core requirements” are extracted.
A core requirements have the following structure:
<feature>+ <obligationdegree>? <goal>+ <item >*
<condition>*
Where :
– * : denotes a zero repetition to an infinite number of times
repetitions.
– + : denotes repetition once or more number of times.
– ? :denotes a repetition zero or one time.
– — :denotes a disjunction (it signifies OR).
– ! : denotes a negation

Feature is the system or the feature denoted by the require-
ment, obligation degree, which denotes the importance of the
action that must be performed by the system or the feature,
goal, which denotes the objective that must be attended by
the feature/system, item, which denotes the entities affected
by the goal that can be also a feature or all the system, and
condition, which denotes self-adaptation triggering constraint
in most cases. The condition is presented by a subject, action
and additional parameters denoted by entities.

From the request “Req1”, we can extract three core re-
quirements presented in Table I: From the extracted core
requirements, we derive two abstract partial products based
on the DSPL associated to the feature model of Figure 1.
We note that the feature “Smart delivery” is considered as
an optional feature because its associated obligation degree
indicates “should”, which generate this two abstract partial
products:
AbstractPartialProduct1 = Voice command, vacuum cleaner,
smart delivery
AbstractPartialProduct2 = Voice command, vacuum cleaner

59Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

Figure. 1. Smart home SO-DSPL

TABLE I
EXTRACTED THREE CORE REQUIREMENTS

Elements Core requirement1 Core requirement2 Core requirement3
feature voice command vacuum cleaner smart delivery
obligation degree must should
goal operate clean order
item activities from bathrooms floors food
condition when anything spills voice command

However, the extracted partial products are note completed
since the user has been restrictive in his choices. Thus,
partial products are then enriched by other recommended
features to satisfy the customer, with respect to SO-DSPL
constraint. Then, the extracted features are then mapped to
the correspond smart home features (sensors, actuators and
web services) to derive the partial smart home product and
activate the corresponding services at instant t.

Product1 = [Sensor, Fire, Alarm, Visual alarm, Smart
TV, Voice command, cleaning, vacuum cleaner, smart
delivery, air purify, Care, child care]
Product2 = [Sensor, Fire, Alarm, Visual alarm, Smart TV,
Voice command, cleaning, vacuum cleaner, vacuum cleaner,
air purify]
Product3 = [Sensor, Fire, Flood, Alarm, Siren, Smart TV,
Voice command, cleaning, vacuum cleaner, robot cleaner,
smart delivery, air purify]

Then, the extracted features are then mapped to the
correspondent smart home features (sensors(denoted by S)
and web services (denoted by WS) that trigger actuators)
to derive the partial smart home product and activate the
corresponding services at instant t.

SO-Product1 = [Fire WS35, S fire, S Movement, Visual
alarm WS10, Smart TV WS13, S voice,Voice command
WS1101, vacuum cleaner WS125, smart delivery WS22, air
purify WS45, child care WS234]
SO-Product2 = [S fire, Fire WS35, S Movement, Visual
alarm WS10, Smart TV WS13,S voice, Voice command
WS1101, vacuum cleaner WS125,S Dirt detect, air purify

WS136]
SO-Product3 = [Fire WS35, S fire, S Movement, S flood,
Flood WS321, Alarm WS1, Siren WS132, Smart TV WS13,
S voice, Voice command WS110, vacuum cleaner WS125,
robot cleaner WS127, smart delivery WS22, S Dirt detect,
air purify WS136]

To achieve this goal, features, obligation degree, goals, items
and conditions of the three core requirements are used. The
selection of the features mentioned in the core requirements
in a product and their deselection in another one, are managed
by the obligation degree of the core requirement. For example,
if the obligation degree associated to the feature is “should”
then the feature is optional, while if it is equals to “must” then
the feature is mandatory. Then, based on the partial features
selection, the rest of the features will be selected based on the
feature model of the SO- DSPL and the contextual elements
that influence it. Then, web services, sensors and actuators are
associated with the selected features and then selected and so
the service composition of the product is derived. This process
is performed in first step by using an ontology populated by
the extracted core requirements components (feature, obliga-
tion degree, goal, item, condition). The populated ontology
includes a set of axioms and rules that: 1) allow in one hand
the derivation of the product’s service composition, and 2) the
selection/ deselection of features based on the constraints of
the feature model, and the constraints of contextual elements
that influence the products derivation and adaptation (such
as, user context, weather, etc.). For example, in the context
where the user is a father, the created ontology axioms/rules
recommend the feature “child care” in the product because

60Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

child existence in the home is deduced. Recall that our aim
is to automatically derive such knowledge based on core
requirements from given requests and conceptualize them in
an ontology to be used to infer new knowledge and used
by different SO-DSPL activities, such as contextual product
recommendation, derivation and adaptation.

IV. RELATED WORKS

Requirements management in software reuse paradigms is
supported by NLP in numerous tasks. There is an important set
of well known techniques, used throughout the entire computer
science field for these purposes, from which we can name
Part Of Speech tagging [16] (POS), Name Entity Recognition
(NER) [16], chunking [17]and types dependencies [18]. In the
literature, we can find several proposals that try to combine
different requirement engineering tasks with NLP tools. Some
papers aim towards automatic or assisted generation of models
(such as UML model) [1], [2], [3] and [21], some others
try to extract requirements from free text documents [4],
[4] and [6], in other cases authors look to improve and
extend requirements documents [7] and [8] and some even
try to use NLP to manage reusable software artifacts and
requirements documents [9], [10] and [11]. For instance, In
[25], the authors propose an approach to the interpretation,
organization, and management of textual requirements through
the use of application-specific ontologies and natural language
processing.

Particularly, in SPLE, few works [6], [5], [12] are interested
in requirement management using NLP tools. Thus, each
requirements source varies from proposal to proposal, using
as input software requirements in requirements specifications
or extracted, for example, from public software project de-
scriptions and even user opinions from download sites. Fol-
lowing, these requirements are pre-analized and semantically
pre-processed with the objective of finding common features
between them. Found features are later analyzed to detect
which one of them can be represented as a feature model.

In [6], the authors propose a natural language processing ap-
proach based on contrastive analysis to identify commonalities
and variabilities from the brochures of a group of vendors. In
[12], the authors propose a semi-automated approach to extract
features for reuse of Natural Language requirements. This
approach uses the techniques from IR Information Retrieval
and NLP. Latent Semantic Analysis with Singular Value De-
composition has been used to find similar review documents.
This is followed by applying various clustering algorithms to
cluster similar review documents. In [5], the authors present
a semi-automatic approach for feature identification in the
existing specifications. This is done by lexical analysis meth-
ods. Arias et al. have proposed a Framework for Managing
Requirements of Software Product Lines in [13]. The proposed
approach aims to define a working framework that allows
structuring reusable artifacts of a software product line and
retrieving them when new requirements arise. The proposal is
composed of five steps, starting from elicited requirements to

be pre-processed and divided into elemental pieces. Then, pre-
processed requirements are semantically expanded and used to
retrieve software artifacts. Then, the final product is a list of
reusable software artifacts.

Based on the studied works, we conclude that requirements
are used as input to be managed and to extract feature models.
However, the success of requirements-based approaches is re-
lated to their relevance,the knowledge that they conceptualize
and their ability to derive other relevant knowledge. Thus,
the activity of requirement recognition to derive knowledge is
very important. Such a user expresses his requirements with
different forms in order to be satisfied by a product.To tackle
this challenge, we propose in this work a framework for Core
requirement Recognition from user requirement and their use
to infer relevant knowledge to derive service-oriented product.
The extracted core requirements are used then to populate
the part of user context sub-ontology [14]in order to exploit
the relationship between the requirements and other SO-DSPL
concepts to infer new relevant knowledge.

V. PROPOSED FRAMEWORK FOR SO-DSPL KNOWLEDGE
EXTRACTION

In previous works we have defined an ontology for SO-
DSPL [14] named “OntoSO-DSPL” that provides a knowledge
capitalization in SO-DSPL framework by structuring, unifying,
reasoning, disseminating SO-DSPL data and to be used in
SO-DSPL activities such as services recommendation and
selection, dynamic adaptation, runtime variability management
and SO-DSPL context reasoning. Thus, the ontology should
harmonize the SO-DSPL terminology and help engineers,
configurators, and researchers to configure products, build and
propose approaches that address the SO-DSPL’s activities.
In addition, our proposed ontology includes swrl rules that
are responsible for inferring new knowledge and providing
new facts through its reasoning capabilities. In this work, we
used a fragment of the proposed ontology which includes
concepts, data objects, data properties impacted by the user
requirement knowledge, that we present by Figure 2. The
knowledge extraction starts by the derivation of core require-
ments from textual user requirements. The obtained result
is used by the reasoner engine to infer new knowledge and
derive SO-DSPL products. As Figure 3 shows, the SO-DSPL
knowledge extraction process is composed of three steps: 1)
Requirements pre treatment and token extraction 2) Mapping
of the extracted token and the core requirements elements
by linguistic rules and core requirements derivation, 3) SO-
DSPL ontology population and knowledge inferring. As we
have mentioned in section 3, we define a core requirement as
a product requirement that have the Following pattern:
CoreReq= <feature>+ <obligationdegree>? <goal>+ <item
>* <condition>*

Our input is a product request represented as an informal
text. The process of recognition and extraction of core re-
quirements from this text involves three modules as shown in
Figure3. The first module is an initialization one. It consists of
request parsing and analyzing where grammatical information

61Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

Figure. 2. OntoSO-DSPL meta-model

(ie part of speech (POS) [16]) and syntax information (ie type
dependencies) [18]) are generated for each sentence) with the
appropriate tokens. Many parsers, such as Stanford parsers and
parsers in NLTK(Natural Language Toolkit),have been devel-
oped to recognize sentences and determine their corresponding
parse trees. Based on the experimental evaluation performed
in [14], the Stanford analyzer (which has also been integrated
into NLTK) can perform better than various existing analyzers.
We used Stanford Parser in this module to analyze the user
requirements. We note that we can extract more than one core
requirement from a product request.

The second module consists in the mapping between the
pretreated sentence results and the core requirement by identi-
fying the corresponding element to each requirement token. In
the last module, the core requirement is automatically derived
in accordance with the core requirement template. Notes that it
can be a simple core requirement or a combination of several
ones as previously shown in the running example.

A. Pre-treatment phase

We start with request segmentation with a tokenization
and lemmatization process for morphological and syntactic
analysis. A tokenization is the result of parsing a document
down to its atomic elements named tokens. To this end,
each token is labeled with PoS as a noun, verb, adverb, etc.
Their dependencies are then analyzed. These two activities are
performed using two natural language processing methods that
are part of speech (PoS) and dependency analysis. The result is
then passed in a ” Phrase chunking ” phase, which consists in
segmenting and separating a sentence into its sub-constituents,
such as noun, verb, and prepositional phrases.

Figure. 3. SO-DSPL Knowledge Extraction Framework architecture

We built a few filter rules based on POS tagging to extract
the appropriate content from the client’s request. This is
accomplished by creating a shallow parser. The latter parses
the first step’s tagged output chunk by chunk and word by
word, applying filter rules to extract relevant content based on
the chunk tag and the grammatical category (verb, singular
noun, etc.) of the words that make up the chunk.

We maintain just Noun Chunks (NC), Verb Complex (VC),
specifically those composed of infinitive verbs, ADJeCtive

62Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

chunks (ADJC) and Prepositional Chunk (PC)(starting by the
preposition IN followed by a Proper Noun NP). This stage
produced a list of relevant components, each of which is made
up of one or more words. After that, stop words (the most
common words in a language and based on the analysis of the
dataset) were removed from these chunks. This final step was
again accomplished through the use of a filter rule, but this
time by extracting the common terms from each chunk and
preserving them as relevant components.

B. Core requirements extraction and derivation

To associate each token of the chunks results to its accorded
Core requirement form element, we have compiled a list of
linguistic rules that cover the most possible cases. Each rule
refers to: 1) the grammatical category of the token (the used
“PoS” are presented in Table II), 2) its linguistic environment
that is the series of units that precede and follow it and 3)
its typed dependencies with the other tokens. By applying
the suitable rule for the token, we can associate it with the
corresponding core requirement element and then, a textual
core requirement will be derived based on its corresponding
pattern. Moreover, a certainty factor is assigned to each
rule serving later as a degree of membership to the core
requirement element attributed with the rule.

1) Core requirements extraction linguistic rules: In this
step, we split each component derived from the first module
into semantically coherent tokens. Secondly, we apply linguis-
tic rules according to the grammar category of each token. By
applying the appropriate rule for the token, we can link it to
the corresponding element of the core requirement form. We
present some of these rules in Table II.

To describe these rules, we use a set of tags which represent
the Part of Speech (PoS) of a token with the combination of
dependency types as shown in II. Each rule consists of an
antecedent and types dependencies that must be true to execute
the rule. The antecedent concerns the grammatical category of
the token (PoS) and its linguistic environment (the PoS of the
token in question is in bold in the Table II), that is, the series of
units that precede and follow the token. The type dependencies
denote dependencies between the running token (mentioned
t1) and another token (mentioned t2) (a conjunction of one or
more conditional statements) and a consequent (a conclusion
that can be made if the conditions in the antecedent hold true).
Based on our running example, we have the user requirement:
“My sensor should detect movement”. The chunk “My sensor”
is composed of the token PRP for personal pronoun “My” and
the token NN for the noun ”sensor”. They are followed by a
modal verb “MD”, and a verb “VB”. Thus, by applying rule
R1 from Table II, we conclude that the token “sensor”is a
feature.

2) Core requirement rule’s Certainty Factor : The chal-
lenge of understanding natural language writings may be
fraught with uncertainty. As a result, we need to be able to deal
with ambiguous reasoning. A more accurate representation of
knowledge needs to assign a weight to each rule. This weight

can be interpreted as an evaluation measure of a rule of its
correctness and pertinence.

Inspired by the Shortliffe’s research [19], where the relation
between the antecedents and the consequent of the rule is
measured by a certainty factor which is associated with each
rule, we propose to automatically compute this factor. It
represents uncertainty.

Its value is greater when there is a close relation between
the antecedents and the consequent. Thus, a factor CF is
assigned to a rule. To calculate such weights, we conducted
an empirical study of the set of linguistic rules on a dataset
of users requirements [20]. It consists in running our system
on the dataset and preserving the history of application of
each rule for all the examples in test. Then, we calculate the
measures of belief and disbelief, defined by experts, for each
rule with (1) and 2 respectively:

MB(Ri) =
NCA

NA
(1)

with NCA:he number of correct applications of the rule Ri
NA:total number of applications of the rule Ri

MD(Ri) =
NWA

NA
(2)

with NWA : the number of wrong applications of the rule Ri

MB(Ri) +MD(Ri) = 1 (3)

MB(Ri) means that the rule Ri leads to a correct classification:
the token can really be considered as an instance of a core
requirement element, if not, we are talking about MD (Ri) (see
(3)). The rules that are responsible only for a small number of
correct classification can be deleted from the rule base because
they are covering the exceptions in the dataset. An expert can
specify a percentage value that has to be reached by each rule
to remain in the rule base.

To select the relevant rules, we have fixed a minimum
threshold of belief in the truth of a rule at 30 % (CF=0.3)
based on methods proposed by Michael Hannon in [24]. Thus,
we have trying different thresholds in the interval of [0.2 ..
0.5] to fix the threshold that maximize the precision and the
recall of our proposed approach. Therefore, all the rules with
a CF below this threshold are deleted because they deal with
particular cases and helps to improve the error rate of the
system.

After deleting uninteresting rules, we now have a set of
linguistic rules each of which encompass an evaluation weight
leading to deriving a textual core requirement and core re-
quirement’s concepts of the user context ontology by tokens
extracted from a user’s requirement. The majority of CF values
of the remaining rules such indicated in Table II, do not exceed
the 94% value. This is due to the fact that we deal with vague
text input by clients.

63Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

TABLE II
AN EXTRACT OF LINGUISTIC RULES AND THEIR CF MEANS CERTAINTY FACTOR

Rule Principal Pos Dependency type
antecedent

Grammar antecedent Description CF

R1 NN Nsubj(t2, t1) (PRP?|JJ*)|
(DT?|JJ*)
NN(MD|VB|
CC)

If the token t1 is a noun (NN), it has a dependency
nsubj with a verb (t2) and the antecedent is true then
the t1 is a feature

0.93

R2 NN Conj(t1,t2) (CC|,) (PRP?|JJ*)|
(DT?|JJ*) NN(MD|VB)

If the token t1 is a noun (NN), it has a dependency
Conj with a verb (t2) and antecedent is true then the
t1 is a feature

0.91

R3 VB Nsubj(t1,t2) MD?TO? V B|VBN If the token t1 is a verb (V B|VBN), it has a
dependency nsubj with a noun (NN) the antecedent
is true then t1 is a goal

0.9

R4 VB Nsubj(t1,t2) MD? TO? V B|VBN
|VBP RP

If the token t1 is a verb (V B|VBN |VBP), it have a
dependency nsubj with a noun (NN), it is by a token
t2 having the type “RP” and the antecedent is true
then the concatenation of t1 and t2 is a goal

0.92

R5 MD Aux(t2,t1) MD VB If the token t1 is a modal Verb (MD),its followed
by a verb, it has an aux dependency with a verb the
antecedent is true then t1 is an obligation degree

0.94

R6 (NN |NNS) Obj(t2,t1) VB(PRP?|JJ*)|
(DT?|JJ*)NN

If the token t1 is a noun (NN), it is included in a NP
chunk,it has an obj dependency with a verb the and
antecedent is true then t1 is an item

0.92

R7 NN Nsubj(t2, t1) (PRP?|JJ*)|
(DT?|JJ*)NN (MD?)
(V B?|VBZ)VBN (IN)

If the token t1 is a noun (NN), it has a dependency
nsubj with a verb (t2) and the antecedent is true then
the t1 is an Item

0.3

R8 (PRP |NN
|NNS)

Nsubj(t1,t2) IN (PRP?|JJ*)|
(DT?|JJ*)
PRP |NN|NNS
(V B|CC)

If the token t1 is a noun or a possessive pronoun
(PRP),it is proceeded by an “IN” that is equals to if/
when/where, it has a Nsubj dependency with a verb
and the antecedent is true then t1 is a Subject of a
condition

0.89

R9 (V B|VPB
|VBZ)

mark(t1,t2) V B?|VPB RP?|VBZ RB If the token t1 is a verb, it has a mark dependency
with a preposition (IN) and the antecedent is true
then t1 is an action of a condition

0.92

R10 (NN |NNS) advmod(t2,1) obj
(t2, t1) obl(t2, t1)

(V B|VPB RP?|VBZ
RB) DT? JJS? JJ* NP?
NN |NNS

If the token t1 is a noun, is preceded at the position
p-i by “IN” that is equals to if/ when/where, it has
a advmod, obj and obl dependency with a verb then
t1 is an entity of a condition

0.82

C. Ontology Population and Knowledge inferring

We intend, in this step, to populate the ontology with the
new core requirements instance and derive new knowledge
based on the extracted core requirements and knowledge that
already exists to conceptualize the running SO-DSPL. As
input of this step, we have the list of core requirements
components extracted in the previous step to create the core
requirement. In the first step, core requirement’s concepts are
instantiated. Then, with the given input, we start by creating
a relationship between the CoreRequirement instance and
the ObligationDegree instance. Next, we create instances of
Composition relationship between CoreRequirement instance
and Goal instances, between CoreRequirement instance and
feature instances, between CoreRequirement instance and item
instances and between CoreRequirement instance and Condi-
tion instances, as many as there are instances in Goals,items,
features and condition.

We note that users can express their desired options(i.e.
feature) by different terms that are different from the terms
used to express DSPL features, thus, for the mapping between
the two terms we use similarity to identify the associated
DSPL feature (For example vacuum cleaner can be named
robot cleaner or Aspirateur Vacuum Cleaner). As well, since

core requirement’s condition presents the situation to trigger
the goal, matching core requirement’s condition and the
service condition aims to select the WS that satisfy the user
core requirement. Thus, we calculate similarity between core
requiment’s condition and WS condition; if the similarity
result is higher than a threshold fixed after a similarity
analyses, the web service must be selected in the derived
product. to attend our objectif, we use Cosine similarity [22]
(eq4) to calculate the mentioned instances, and “ sentence
transformer“ method for sentence embedding [23] (it is the
technique to transform (map) words of a language into vectors
of real numbers)following its accuracy and its usefulness in
measuring similarity between sentence [23]

CosineSimilarity =
A.B

||A||.||B||
(4)

where A and B are vectors.
Based on the calculated similarity, we create instances

of the similarity concept. The similarity concept denotes
the similarity between the core requirement’s feature and
the DSPL feature in one hand, between core requirement’s
goal and DSPL goal, and between the core requirement’s
condition and the service condition in another hand. Then,

64Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

relationships between similarity instances and the associated
instances are created. For instance, a core requirement fea-
ture “has-a-similarity” “calculated-with” the DSPL feature.
A core requirement condition “has-a-similarity” “calculated-
with” the web service condition. A core requirement goal “has-
a-similarity” “calculated-with” the web DSPL goal.

In a second step, the created instance and the semantic
relation that relate them are used to infer new SO-DSPL
knowledge using SWRL rules mentioned in [14]. In addition
to the rules created in [14], we have enriched our ontology
with new rules presented in Table III. Based on the instanced
concepts and the execution of the SWRL rules, products are
derived based on the inferred knowledge.

VI. ILLUSTRATIVE CASE

All along the present study, many experiments have been
fulfilled to evaluate the applicability and the feasibility of our
proposed approach to extract core requirement, populate the
ontology and derive a service-based product. In this section,
we consider an illustrative case which belongs to a product
requirement given by a user and in the context of our running
example.

In the remainder of this section, we will show the results of
applying the different steps of our approach to the selected
example: ”My sensor should detect movement. if I get up
late night, lights in my house should turn on to enhance
convenience and safety”.

In the first step of the first module, stop words and empty
words are removed then the input text is analyzed with
Stanford, the mentioned type of chunks are extracted and
the analyzer generates their relative POS tags, and typed
dependencies of the requirement’s token. The second step
applies filter rules. Thus, we obtain the following chunks:
my sensor, should, detect, movement. If, I, get up, late night,
light, in my house, should turn on, to enhance convenience
and safety. Table IV presents the chunks, POS tag and types
dependencies result given by stanford analyser. In the second
phase we apply linguistic rules to match each token with the
corresponding concept of the ontology. On the other hand, we
derive the product core requirement as a textual form.

Based on the PoS, Chunk and the types dependencies of
each token, we choose the category of linguistic rules to be
applied.

From this product requirement, these two core requirements
are extracted as a textual form:
Core requirement 1: sensor should detect movement
Core requirement 2: lights should turn on if I get up night

The associated product core requirements became: Sensor
should detect movement. Lights should turn on if I get up
night.

Then, the OntoSO-DSPL ontology is population and the cor-
respond concepts are instanced. Thus, the mentioned SWRL
rules are executed, products are derived and web services are
selected.

VII. EVALUATION

To validate our approach, we have implemented a tool that
supports our proposed approach steps including the linguistic
rules. OWL (Web Ontology Language) is used to populate
the proposed SO-DSPL ontology using data from the input
client’s product requirements. A series of experiments were
performed via the implemented tool in order to validate our
work. We first present in Subsect. 6.1, the dataset used. We
then highlight in Subsect. 6.2 the selected evaluation measures
to perform the evaluation step.

A. Dataset

To evaluate the performance of our implemented approach,
we applied our approach the smart home requirements data set
[20]. In order to evaluate the performance of our approach on a
larger volume of data, we have augmented the existed dataset
using data Augmentation algorithms [23], which consists in
altering an existing data to create a new one. The objective is
to augment the dataset by generating new product requirements
with the same meaning as the existing requirements but written
in another form. Thus, we have used “nlpaug” libraries using
the Substitution by contextual word embeddings RoBERTA
technique. The result data collection consists of 9000 textual
product requirements. This collection of examples contains
different informal texts that express product requirements in
different manners.

B. Evaluation measures

In our experiments, we used recall and precision to evaluate
our approach. These measures fit well to our objective which
consists in identifying core requirements. It should be noted
that the set of customers requests were examined to extract
different core requirements. This result was compared to the
output of our proposed component. For this purpose, we
adopted the evaluation measures to our context of work, which
we define as follows:

• Precision represents the number of found relevant in-
stances of concepts or relationships between concepts
among the found instances.

• Recall represents the number of found relevant instances
of concepts or relationships among all the relevant in-
stances to create an intention instance (detected by the
expert).

Precision and recall are calculated using the formula 5 and
6 respectively:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

where:
• TP (true positives): are the correct identification of core

requirement elements by the core requirement Recogni-
tion component.

65Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

TABLE III
SOME SWRL RULES (THERE ARE SEVERAL OTHER RULES BUT SPACE LIMITATION)

ID SWRL Rule Description

R1

uc:Feature(?f1) ∧dspl : Feature(?f2)∧Similarity(?s)
∧has-a-similarity(?f1, ?s)
∧similarity − calculated− with(?s, ?f2)∧

similarityValue(?s, ?v) ∧swrlb : greaterThan(?v, 80)
-> is-similar-to(?f1, ?f2)

if the similarity of a core requirement feature and a
DSPL feature is greater than 80 then the two feature
are similar.

R2

uc:goal(?g1) ∧dspl : goal(?g2)∧Similarity(?s)
∧has-a-similarity(?g1, ?s)
∧similarity − calculated− with(?s, ?g2)∧

similarityValue(?s, ?v) ∧swrlb : greaterThan(?v, 80)
-> is-similar-to(?g1, ?g2)

if the similarity of a core requirement goal and a
DSPL goal is greater than 80 then the two goal are
similar.

R3

dspl:configuration(?cf) ∧uc : coreRequirement(?cr)∧
satisfy(?cf,?uc) ∧uc : condition(?c1)∧
is-composed-of(?cr,?c1) ∧ws : condition(?c2)∧
triggered-based-on(?s,?c2) ∧is− similar − to(?c1, ?c2)
->selected(?s,true) ∧satisfy(?c1, ?c2)∧implement(?s, ?f)
∧composed− of(?cf, ?f)

if the similarity of a core requirement condition and
a web service condition is greater than 75 then the
two condition are similar.

R4 dspl:configuration(?cf) ∧composed− of(?cf, f1)∧
recommended-with(?f1,?f2) -> composed-of(?cf,?f2) if a feature is selected in a configuration and it rec-

ommends another feature (with the semantic relation
”recommended-with” then the recommended feature
is with be selected in the running configuration.

R5 swrlx:makeOWLThing(?S, ?y) ∧dspl : Feature(?y))−>
implements(?y, ?S)) ∧ws : Service(?S)

For each dspl feature an individual service is created
and related by the relationship “implements” to ex-
ecute its functionalities.

R6 swrlx:makeOWLThing(?f, ?c) ∧dspl : Feature(?F)−>
composed-of(?f, ?c) ∧Configuration(?c)

each configuration must be composed by more than
one feature.

R7

uc:CoreRequirement(?CR1) ∧uc : CoreRequirement(?CR2)
∧uc : ProductRequirement(?PR)
∧uc : composed− of(?PR, ?CR1)∧

uc:composed-of(?PR,?CR2) ∧has− priority(?CR1, Desirable)∧
has-priority(?CR2, Essential) ∧dspl : Feature(?F1)
∧dspl : Feature(?F2)∧dspl : alternative− with(?F2, ?F1)
∧dspl : satisfy(?F1, ?CR1)
∧dspl : satisfy(?F2, ?CR2)∧dspl : Configuration(?CF)
∧satisfy(?CF, ?PR)∧dspl : composed− of(?CF, ?F1)

-> dspl:composed-of(?CF,?F2) ∧dspl : selected− for(?CF, ?F2)
∧dspl : eliminated− for(?CF, ?F1)

The features associated to a product’s core require-
ments and their are related with the relationship
”alternative-with” then an adaptation is triggered to
the running configuration by eliminating the optional
feature and selecting the essential one.

R8

uc:CoreRequirement(?CR1) ∧uc : CoreRequirement(?CR2)
∧uc : ProductRequirement(?PR)
∧uc : composed− of(?PR, ?CR1)∧

uc:composed-of(?PR,?CR2) ∧has− priority(?CR1, Essential)∧
has-priority(?CR2, Essential) ∧dspl : Feature(?F1)
∧dspl : Feature(?F2)∧dspl : alternative− with(?F2, ?F1)
∧dspl : satisfy(?F1, ?CR1)
∧dspl : satisfy(?F2, ?CR2)∧dspl : Configuration(?CF)
∧satisfy(?CF, ?PR)∧dspl : composed− of(?CF, ?F1)

-> uc:alternative-conflict(?CR1,?CR2)

The features associated to a product’s core require-
ments and their are related with the relationship
”alternative-with” and the two core requirements
are essential then a conflict of alternative constraint
violation is detected.

• FP (false positives): are the wrong identification of core
requirement elements by the core requirement Recogni-
tion component.

• FN (false negatives): are the core requirement elements
that have not been extracted by the core requirement
Recognition component.

C. Experimental Results and Analysis

Table V shows the results across the dataset. We achieve
precision scores of up to 89.87 % and recall scores of up to
92.85% by applying the population process while taking into
account all the rules. In fact, by analyzing the outputs of our

approach corresponding to each client’s request in the dataset,
errors can be found if the user use a long phrase to express
the condition of the requirement. These results can further be
improved by intervening, this time, in the first phase of the
approach. In fact, as customers freely express their request and
requirement, they, sometimes, do not respect the writing rules.

Therefore, the same content can be interpreted differently by
the analyzer. For example “4 PM” and “4PM ” without spaces,
are labeled differently by this chunker. For the first one, it tags
the token 4 by the PoS “CD” and by “$” for the “$”, but for
the second, it considers the whole as “CD” Pos.This type of

66Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

TABLE IV
CHUNKS, POS TAG AND TYPES DEPENDENCIES

Chunks POS tag Types dependencies
(ROOT (S
(NP (PRPMy)(NNsensor))
(VP (MD should)
(VP (VB detect)
(NP (NN movement))))
(. .)))
(ROOT
(S
(SBAR (IN If)
(S
(NP (PRP i))
(VP (VBP get)
(PRT (RP up))
(NP
(NP (JJ late) (NN night) (NNS
lights))
(PP (IN in)
(NP (PRPmy)(NNhouse)))))))
(VP (MD should)
(VP (VB turn)
(PRT (RP on))
(S
(VP (TO to)
(VP (VB enhance)
(NP (NN convenience)
(CC and)
(NN safety)))))))

nmod:poss(sensor-2, My-1)
nsubj(detect-4, sensor-2)
aux(detect-4, should-3)
root(ROOT-0, detect-4)
obj(detect-4, movement-5)
mark(get-3, If-1)
nsubj(get-3, i-2)
csubj(turn-12, get-3)
compound:prt(get-3, up-4)
amod(lights-7, late-5)
compound(lights-7, night-6)
obj(get-3, lights-7)
case(house-10, in-8)
nmod:poss(house-10, my-9)
nmod(lights-7, house-10)
aux(turn-12, should-11)
root(ROOT-0, turn-12)
compound:prt(turn-12, on-13)
mark(enhance-15, to-14)
xcomp(turn-12, enhance-15)
obj(enhance-15, convenience-16)
cc(safety-18, and-17)
conj(convenience-16, safety-18)

nmod:poss(sensor-2, My-1)
nsubj(detect-4, sensor-2)
aux(detect-4, should-3)
root(ROOT-0, detect-4)
obj(detect-4, movement-5)
mark(get-3, If-1)
nsubj(get-3, i-2)
csubj(turn-12, get-3)
compound:prt(get-3, up-4)
amod(lights-7, late-5)
compound(lights-7, night-6)
obj(get-3, lights-7)
case(house-10, in-8)
nmod:poss(house-10, my-9)
nmod(lights-7, house-10)
aux(turn-12, should-11)
root(ROOT-0, turn-12)
compound:prt(turn-12, on-13)
mark(enhance-15, to-14)
xcomp(turn-12, enhance-15)
obj(enhance-15, convenience-16)
cc(safety-18, and-17)
conj(convenience-16, safety-18)

TABLE V
RECALL AND PRECISION OF THE OVERALL APPROACH

TP FP FN Precision Recall
DataSet 55400 6241 4261 89.87% 92.85%

tagging error can influence the entire instantiation process. A
possible contribution to the improvement of results would be,
therefore, to have a text filtering or rectification stage of each
input according to the NLP rules.

VIII. CONCLUSION

In order to extract information and knowledge from user
requirements and for being able to derive the most appropriate
product in the context of a SO-DSPL, we have presented
an approach that analyses and understands automatically the
user requirement. We reuse the structure of user requirements
from SO-DSPL [14]ontology and benefit from the use of
NLP algorithms. Indeed, the proposed approach extracts user
requirements and builds a requirement in accordance with the
core requirement structure. This latter is defined by the basic
requirements that must be covered by the derived product to
satisfy the user. Our recognition approach is based on a set
of linguistic rules and the support of uncertainty. These rules
facilitate the building of core requirement structure which is
then loaded as an instance of the SO-DSPL ontology. Based
on the derived core requirements, relevant knowledge are
inferred and relevant services are selected to derive the entire
user product. The originality of the proposed approach is, on
the one hand, that the entire process of the extraction and
population approach is made automatically and in a semantic

and intelligent way thanks to ontology reasoning capabilities.
This will enhance SPL activities such as: product recommen-
dation, user satisfaction, feature extraction and service (DSPL
product) adaptation. On the other hand, it can be applied
both on a short and a long text. Our near future work is to
continue the experimentation of the approach and to enrich
it with linguistic rules that allow the extraction of context
changes. In a second step, we aim to combine this work with
recommender system that will derive the appropriate services
for the generated requirement.

REFERENCES

[1] B. Tanmay, N. Nan, S. Juha and M. Anas, “Leveraging topic model-
ing and part-of-speech tagging to support combinational creativity in
requirements engineering”, IN Requirements Engineering, vol. 20, no.
3, pp. 253–280, 2015.

[2] G. Sarita and C. Tanupriya, “An efficient automated design to generate
uml diagram from natural language specifications,” In Cloud System and
Big Data Engineering (Confluence), 2016 6th International Conference,
pp. 641–648, IEEE, 2016.

[3] Y. Mu,Y. Wang, and J. Guo, “Extracting software functional require-
ments from free text documents,” in Information and Multimedia Tech-
nology, 2009. ICIMT’09. International Conference on, pp. 194–198,
IEEE, 2009

[4] C. Arora, M. Sabetzadeh, L. Briand,and F. Zimmer, “Automated extrac-
tion and clustering of requirements glossary terms,” IEEE Transactions
on Software Engineering, 2016.

[5] E. Boutkova, and F. Houdek, “Semi-automatic identification of features
in requirement specifications,” in 2011 IEEE 19th International Require-
ments Engineering Conference, pp. 313–318, Aug 2011.

67Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

[6] A. Ferrari, G. Spagnolo, and F. Dell’Orletta, “Mining commonalities
and variabilities from natural language documents,” in Proceedings of
the 17th International Software Product Line Conference, pp. 116–120,
ACM, 2013.

[7] S. J. Korner and T. Brumm, “Natural language specification improve-
ment with ontologies,” International Journal of Semantic Computing,
vol. 3, no. 04, pp. 445–470, 2009.

[8] Y. Wang, “Semantic information extraction for software requirements
using semantic role labeling,” in Progress in Informatics and Computing
(PIC), 2015 IEEE International Conference on, pp. 332–337, IEEE,
2015.

[9] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and S. Panichella,
“Improving ir-based traceability recovery via noun-based indexing of
software artifacts,” Journal of Software: Evolution and Process, vol. 25,
no. 7, pp. 743–762, 2013.

[10] G. J. Hahm, M. Y. Yi, J. H. Lee and H. Suh, “A personalized query
expansion approach for engineering document retrieval,” Advanced
Engineering Informatics, vol. 28, no. 4, pp. 344–359, 2014.

[11] S.-P Ma, C.-H. Li Tsai and C.Lan, “Web service discovery using lexical
and semantic query expansion,” in e-Business Engineering (ICEBE),
2013 IEEE 10th International Conference on, pp. 423–428, IEEE, 2013

[12] N. H. Bakar, Z. M. Kasirun, N. Salleh and H. A Jalab, “Extracting fea-
tures from online software reviews to aid requirements reuse,” Applied
Soft Computing, vol. 49, pp. 1297–1315, 2016

[13] M. Arias, A. Buccella and A. Cechich, “A Framework for Managing Re-
quirements of Software Product Lines”, Electronic Notes in Theoretical
Computer Science, vol. 339, pp. 5-20, 2018

[14] N. Maalaoui, R. beltaifa, L. Labed and R. Mazo, “An Ontology for
Service-Oriented Dynamic Software Product Lines Knowledge Manage-
ment”,16th International Conference on Evaluation of Novel Approaches
to Software Engineering, vol. 314, pp 314-322, 2021

[15] R. Capilla,J. Bosch,P. Trinidad,A. Ruiz-Cortes and M. Hinchey,
”Overview of Dynamic Software Product Line Architectures and Tech-
niques:Observations from Research and Industry”,The Journal of Sys-
tems and Software,pp 3-23, 2014

[16] C.D. Manning, ”Part-of-Speech Tagging from 97% to 100%: Is It
Time for Some Linguistics?”. In: Gelbukh A.F. (eds) Computational
Linguistics and Intelligent Text Processing. CICLing 2011. Lecture
Notes in Computer Science, vol 6608. Springer, Berlin, Heidelberg. 2011

[17] A. Mansouri, L.S. Affendey and,A. Mamat, ”Named Entity Recognition
Approaches”,IJCSNS International Journal of Computer Science and
Network Security, VOL.8 No.2, February 2008

[18] H. Bo, P. Cook, T. Baldwin, ”Lexical normalization for social media
text”.ACM Transactions on Intelligent Systems and Technology Volume
Article No.: 5pp 1–27, 2013

[19] D. Dubois,J. Lang and H. PradeFuzzy, sets in approximate reasoning,
Part 2: logical approaches. In ”Fuzzy Sets and Systems”,pp 203-
244,1992

[20] K. Pradeep,A. Nirav, and P. Munindar, ”Acquiring Creative Require-
ments from the Crowd: Understanding the Influences of Personality
and Creative Potential in Crowd RE”.Proceedings of the IEEE 24th
International Requirements Engineering Conference (RE), pp 176–185.,
September 2016,

[21] A. Arellano, E. Carney, and M.A. Austin, “Natural Language Process-
ing of Textual Requirements,” The Tenth International Conference on
Systems (ICONS 2015),pp. 93– 97, Barcelona 2015

[22] S. Pinky, P.a. Kritish, T. Pujan and S. Subarna,” Comparison of Semantic
Similarity Methods for Maximum Human Interpretability”,In IEEE,
2019

[23] https://github.com/makcedward/nlpaug,Online; accessed 12-july-2022
[24] M. Hannon, A solution to knowledge’s threshold problem. Philosoph-

ical Studies: An International Journal for Philosophy in the Analytic
Tradition, 174(3), 607–629. http://www.jstor.org/stable/26001716, 2017

[25] A. Arellano, E. Zontek-Carney, A. Austin, Frameworks for Natural
Language Processing of Textual Requirements. International Journal on
Advances in Systems and Measurements. 8. 230-240,2015

68Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

