
Developing for Testability: Best Practices and the Opinion and Practice of

OutSystems Professionals

Fernando Reinaldo Ribeiro1,2, José Carlos Metrôlho1,2, Joana Salgueiro2
1R&D Unit in Digital Services, Applications and Content

2Polytechnic Institute of Castelo Branco

Castelo Branco, Portugal

e-mail: fribeiro@ipcb.pt, e-mail: metrolho@ipcb.pt, e-mail: joana.salgueiro@ipcbcampus.pt

Abstract— Implementing best practices during the software

development process can significantly influence the test

automation process. This is true in all software applications,

regardless of the platform or the programming language used,

but it is even more important when the software is developed

using low-code development platforms. These platforms are

commonly used together with agile methodologies, and they

are designed to accelerate software development with a

minimum of hand-coding. Generally, when using these

platforms and methodologies, the focus is on verbal and

informal communication rather than documentation. The

focus is on getting high-quality source code, adequate test sets,

and greater interaction with the end customer. This highlights

the need to use best practices in software development to

achieve better quality software and facilitate the test

automation process. In this work, we analyse the test

automation on low-code development platforms and, more

specifically, how the best practices for OutSystems

development influence the test automation process. A survey

on the opinion and practice of OutSystems platform

professionals, 27 respondents, is also analysed and discussed.

The goal is to understand how they recognise the influence that

best development practices have on the testing automation

process and how they apply these best practices in their daily

activities.

Keywords- low-code platforms; OutSystems; software quality,

software testing; test automation.

I. INTRODUCTION

More than 3,300 IT professionals in all kinds of
industries share their insights in a research report on the state
of application development. Findings from this report [1]
show that forty-one per cent of respondents said their
organisation was already using a low-code platform, and a
further 10% said they were about to start using one. They
also report that the number of applications respondents had
planned for delivery in 2019 was 60% higher than the
assessment they had done in the previous year. This growing
demand is one of the reasons why most organisations have
invested in customer-centric practices in the past year
(2018), including agile (60%), design thinking (30%),
customer journey mapping (20%), and lean UX (11 %) [1].
These results show the growing interest in adopting agile
methodologies and adopting Low-Code Development
Platforms (LCDP). Similar conclusions are also presented by
the Low-Code Development Platform Market [2], as it is

notice that the global LCDP market size is projected to grow
at a rate of 28.1% during the 2020-2026 period. These
studies show the growing popularity of LCDP and its
growing adoption by IT companies. They may help fill the
gap between business and IT through abstraction and
automation and accelerate the software release time.

Some of the reasons that have been used to justify this
growth are the same ones that are often pointed out as
advantages of these platforms: they allow to reduce the
software delivery time and to update and deliver new
features in shorter periods [3]; they allow applications to be
built for multiple platforms simultaneously [3]; they
integrate many of the same tools’ functionalities that
developers and teams use to design, code, deploy and
manage their applications [4]; developers may still need to
do some coding for a specific task, but a significant part of
the job can be done through the drag-and-drop interface [5],
and many of the data integration features have already been
developed and can be easily customised. [3]. Also, LCDP are
often associated with agile development (e.g., [6][7]), which
have implications for the way tests are managed. This is
because agile methodologies are based on reduced use of
documentation and more frequent interactions with end-
users. However, it is also because, in certain situations, the
testing process may derail some of the benefits associated
with the low-code development and agile methodologies.
Bug fixing and application scalability are made easier in
these platforms using high-level abstractions and models, but
low-code development is not synonymous with error-free
development. LCDP democratise application development to
software practitioners with distinct backgrounds. This brings
more professionals to IT areas, reskilling some of them from
different areas of knowledge and greater employability
difficulties, but the lack of specialised knowledge can lead to
a higher number of bugs in the developed software. This
further highlights the need to test the software developed on
these platforms and the importance of studying various test
strategies and tools that best suit these platforms. A study [8]
of around 5K Stack Overflow forum posts that contain
discussions of nine popular LCDP found that most of the
questions are related to the development phase, and low-code
developers also face challenges with automated testing.
Low-code development introduces new concepts and
characteristics that led to new challenges and opportunities in
the software testing process.

81Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

mailto:fribeiro@ipcb.pt
mailto:metrolho@ipcb.pt

Some of the best practices that should be used during

software development are discussed, and a study to

understand how OutSystems professionals know and apply

these best practices and how they value testing activities in

software developed at OutSystems LCDP is presented and

discussed. We choose this platform because it is a platform

widely used by software development companies in

Portugal and because we have a collaboration with that

company for several years, under which we have accessible

software licenses. Another important fact in the choice is

that this platform is one of the leaders in the low-code

market [9]. The goal is to investigate the importance of the

best practices in low-code development, their impact on the

test automation process, and to understand how

professionals know and apply these best practices. As a

methodology to achieve this goal, the influence of best

practices in low-code development in the software testing

process was first analysed and then a survey was carried out

to understand the professionals’ opinion and practice.

Section 1 presents a brief overview of the problem under

study and presents its motivation and objectives. Section 2

describes some works that addressed test automation on

low-code platforms. Section 3 presents background about

test automation on LCDP and analyses the best practices for

OutSystems development and its influence on test

automation. Section 4 presents and discusses the results

based on a survey about the opinion and practice of

OutSystems platform practitioners about best practices in

development in low-code software testing automation.

Finally, Section 5 presents some conclusions that were

obtained while conducting this study.

II. RELATED WORK

 Software testing and test automation are essential topics

that deserve the attention of everyone involved in the

software development process, regardless of the

technologies or the methodologies they used. However, in

the specific case of software developed using LCDP, usually

following agile methodologies, there is not much

documentation and research on this topic.

 Some well-known LCDP have made efforts to provide

some documentation on this topic and provide tools to

support testing activities. The Mendix Application Test

Suite [10] is a suite of tools for embedding testing in the

application lifecycle. These tools are built-in Mendix, on top

of Selenium. In Power Apps, testing can be performed with

test studio [11] that is developed specifically to support

automated end-to-end UI testing of an application.

OutSystems provide the BDD Framework [12] that is an

open-source application that provides a set of tools for

producing Behaviour Driven Development (BDD) Test

Scenarios and can also be used for automated testing. Other

studies have looked at various LCDPs to compare their

approaches to testing. In [13] five commercial LCDP

(Mendix, Power Apps, Lightning, Temenos Quantum,

OutSystems) were analysed to identify low-code testing

advancements from a business point of view. They analyse

the testing facilities embedded in each platform and they

identify some challenges when testing low-code software.

When using LCDP, automation is possible on all test levels.

Component testing is essential for developers to test the

software they develop. Moreover, as low-code applications

use many integrations to other services using APIs, besides

system/ End-to-End tests, automated integration/API tests

are also essential. A good testing strategy enables

continuous quality assessment and is essential. It is well

known that development practices influence the test

automation process. It is therefore important that developers

know and apply best practices in development to facilitate

subsequent testing activities. In this context, some works

have analysed the development/tests relationship when

LCDP is used. A study of the test automation process on the

OutSystems low-code development platform is described in

[14]. Their focus is on Unit, Integration / API and System /

End-to-End testing levels. Their examples illustrate that the

implementation of best practices during the development

process can have a significant influence on the test

automation process.

 Few research works address test automation on LCDP

and how development practices influence testing activities.

It is necessary to study this relationship and understand the

awareness of LCDP professionals regarding the importance

of testing the software developed using LCDP.

III. LOW-CODE SOFTWARE TESTING AUTOMATION

 Automated testing is essential, and there are many

situations where these approaches are more beneficial than

manual testing approaches. These advantages are important,

especially when it may be helpful to repeat tests already

carried out, such as regression tests. Nevertheless, there are

other advantages. Manual testing is often complex, or

impractical, or can be time-consuming and vulnerable to

inaccurate results. Test automation enables continuous

quality assessment and may save significant time and effort.

In LCDP, test automation is possible on different tests such

as unit tests, Integration/API tests, System/E2E tests, etc.

However, the specific features of those platforms raise a set

of challenges in low-code testing. Some of these challenges

are identified in [13], namely:

• The role of citizen developer and its low-level

technical knowledge in the testing activities: Test

cases are usually derived from the requirements,

and it is common to involve partners with low-

level technical knowledge in the testing activities,

which poses some challenges.

• The importance, and the challenges, in offering

high-level test automation: In software developed

using LCDP, several situations should be

continuously tested (e.g., many integrations to

other services, and these integrations should be

continuously tested). To facilitate test automation,

these tools should allow high-level test automation,

82Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

be undemanding technical skills, and require little

manual scripting for writing tests.

• Leveraging the cloud for executing tests and for

supporting testing of cloud-based applications:

LCDP are cloud-based and they support the

development of cloud-based applications using

cloud resources. Test automation must be adapted

to this environment.

 Despite the challenges it raises, test automation allows

continuous quality assessment, and it is essential in agile

and low-code development. To be efficient and beneficial, it

is also vital that best practices are used during development.

This can help to reduce the work required for test

automation and significantly reduce the need to write

manual scripting.

A. Testing on the OutSystems Low-Code Development

Platform

 Low-code development is often associated with error-free

development. However, although these platforms provide

several features that allow reducing the probability of errors

occurring, they can always occur, introducing bugs that may

later lead to failures in the software. In the OutSystems

LCDP, several features are available that help developers to

develop software with fewer bugs and consequently with

better quality. The OutSystems platform performs

continuous integrity validation that checks the impact of all

changes in application layers (data model, business logic or

presentation) to ensure that everything is integrated at the

time of implementation. When changes are made in the

applications data models, API, and architecture, the

OutSystems platform automatically updated all existing

dependencies. At a more general level, the OutSystems

platform performs an impact analysis for multiple

applications when creating deployment plans, evaluating the

impact of moving new versions of selected applications to

the target environment before the deployment is performed.

As a result of this process, the number of bugs introduced is

generally lower than traditional development technologies,

leading to fewer test cycles and issue fixes, reducing the

effort associated with development and delivery.

 Despite this support provided by the OutSystems

platform, there is no guarantee that errors will not occur,

and the need for testing remains. Therefore, the life cycle of

an OutSystems application includes several stages when

testing activities must be performed. The four levels of

testing, provided in the International Software Testing

Qualifications Board (ISTQB) classification [15], are

included:

• Component Tests are used to verify the behaviour

of code units. In some cases, code units are not

easily accessible to be tested. The developers

deliver these tests as part of the activities

developed in the sprint performed in the

development environment (DEV) and the

continuous integration environment (CI). Usually,

they are automated tests performed using the BDD

Framework [16].

• Integration Tests are tests to verify the integration

with external systems. These tests are critical since

it is widespread that LCDP make use of external

API. These tests must be performed in the DEV

environment by the developers or Quality

Assurance (QA). These tests can be automated.

• System Tests are usually run through a web or

mobile interface. They are performed considering

the perspective of the end-user or the system (End-

to-End tests). The quality team can automate this

type of test if they are UI tests. Usually, they are

performed in a quality QA environment.

• The clients perform Acceptance Tests. Usually,

they are performed manually in the QA

environment.

 Also necessary, the Regression Tests. They must be used

whenever new features are added. In addition to these tests,

other tests are also planned, such as Security Tests and

Performance Tests.

B. Best Practices for OutSystems Development and its

Influence on Test Automation

 Regardless of the development platform or programming

language used, applications must be developed to facilitate

testing activities to facilitate tests that validate its

correctness. This is often called developing for testability.

To make this possible, there is a set of good practices,

architectural and design decisions, which must be followed.

Some of these best practices are applicable when developing

applications on the OutSystems platform, but they are also

applicable when applications are developed on other LCDP

or programming languages. Some of these practices can

significantly facilitate test automation at various levels, and

their influence on the testing process has already been

studied (e.g., [14]). For example:

• Integration Tests (API tests): to facilitate the

automation of these tests, it is important to isolate

the API consumption in a specific module that

exposes the API methods through public actions.

Other modules, which need access to the API, will

have to do it through this specific module, avoiding

implement and run tests on every module that is

consuming this specific API.

• System Tests: in this case, test automation usually

involves simulating and recording a user's

interactions in a browser to complete the

functionality under test. To be less hard work, test

automation tools, which are being used, should

correctly identify the web elements found on the

web page. To make it possible, it is necessary that

the web elements identifiers (names and ID) are

easily found and identified by the test tool. It often

implies the use of personalised identifiers in place

of the identifiers assigned by the development

83Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

platforms. In applications developed in

OutSystems, those elements should be

appropriately identified in Service Studio by the

developer. The developer must customise the

elements' identifiers to ensure that all elements

have an identifier that would be uniquely identified

during the test automation process. This will have a

positive effect on the test automation process but,

on the other hand, will require more time and more

resources and can be a complex task for developers

without specialised skills.

These practices, and their effect on the test automation

process, are known. Nevertheless, it is important to know

how they are applied and the opinion and practices of

professionals regarding their use. This is particularly

important when referring to LCDP professionals since the

allocation of time to facilitate or develop the tests, and the

adoption of certain development practices can undermine

some of the benefits associated with the use of low-code

platforms.

IV. OPINION AND PRACTICE OF OUTSYSTEMS

PLATFORM PRACTITIONERS

In this section, we present the survey addressed to IT

professionals, with experience in OutSystems development.

The goal is to analyse their perception of the importance of

software testing in low-code development and the influence

of the best development practices in test automation.

A. Survey

The survey was disseminated among professionals from 4

software companies that use the OutSystems LCDP to

develop their products and was organised in two parts. The

first part was aimed to characterise the respondents

regarding their experience in the IT area and, in particular,

their experience with LCDP and in the area of software

testing and quality. This part had seven questions about:

age; years of experience in IT; technologies/software

development tools that they use, or have used, in their

professional activity; LCDP that they use/have used in their

professional activity; activities/roles to which they dedicate

more time in their professional activity; if their professional

activity involves development, for which platforms they

develop; and most common development methodologies in

the projects in which they have participated. With this first

part of the survey, we were able to characterise the universe

of respondents in terms of experience, roles, skills and

dominant activity of their respective professional activities.

We had the participation of 27 respondents.

The second part was intended only for participants who

had some experience in testing activities. The objective was

to allow a characterisation of the respondents to perceive

testing activities and how functionality description and

development practices influence test automation activities.

Furthermore, it was also an objective to obtain a

characterisation about the tools they use for testing. This

part had nine questions, where information was collected

about: the importance they give to testing; difficulty in

deciding what should be tested; how the way of describing

the functionalities (use cases, user stories, etc.) contribute to

facilitating the test design; how the way the code is

developed contributes to facilitating the test activity (write,

implement, and execute the test cases); the way the test

cases are written; types of functional tests that are

performed more frequently; tools/platforms used to perform

the tests; opinion about the BDD Framework (if used by the

respondent); for those who use the BDD Framework,

opinion on advantages and disadvantages of it. We had the

participation of 25 respondents for this part.

From the analysis of the responses to the first part of the

survey, we conclude that:

• Most of the participants in the survey (48.1%) are

between 26 and 30 years old, and 25.9% are

between 36 and 40 years old.

• In terms of years of experience in IT, 88.8% of the

respondents have between 3 and 15 years of

experience, 40.7% have between 3 and 5 years,

25.9% have between 6 and 10 years, and 22.2%

have between 11 and 15 years.

• Regarding the technologies used, most of the

respondents answered that they use, or have used,

HTML/CSS, JavaScript, C#, Java, and PHP.

• Regarding the LCDP that they use/ have used in

their professional activity, all the participants

answered that they use, or have used, OutSystems.

Two of them pointed out that they have also used

two other LCDP.

• As for the feedback on the professional activity to

which the participants currently devote more time,

we found that almost 59.3% of respondents are

developers and 22.2% of respondents are team

leaders or managers.

• In terms of target platforms (web, Android, iOS or

Multiplatform), we obtained 26 responses, of

which 73.1 % of respondents indicated multi-

platform and 26.9% for the web.

• Regarding the development methodology that is

most common in the participants' projects, only 1

of the participants answered "Lean", while the

remaining 26 participants answered Scrum.

In summary, the sample involved an experienced

population, from 4 different companies, with development

experience in OutSystems, experience in Agile Scrum

methodology and in several development technologies, and

mainly composed of staff dedicated to both web and multi-

platform development tasks.

B. Data analysis and discussion

The second part of the survey was addressed only to

professionals with experience in software testing.

• The question of this part was intended to find out

how the participants see the testing activity. With a

84Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

total of 25 answers, 100% of the participants

considered that "Testing is important and should be

performed regardless of the development

methodology used".

• The second question, to evaluate the difficulty of

the participants in evaluating what should be tested

and how it should be tested, revealed that 52% of

the respondents (13 of 25 feel these difficulties

sometimes and still 16%, 4 participants, feel

difficulties many times.

• From the 25 respondents, 13 answered that they

strongly agree, and 9 that they agree that the way

functionalities are described (use cases, user

stories, etc.) contribute to facilitating the test

design. The other 3 respondents had no opinion.

• To the question, "Does the way the code is

developed contribute to facilitating the testing

activity (write, implement, and execute the test

cases)?", 11 out of 25 participants answered that

they agree, eight answered that they strongly agree,

five neither agree nor disagree, and only one

answered that he disagrees. In other words, 76%

(19 out of 25) of the respondents acknowledge that

the way they develop their software has

implications on the testing activities of that

software.

• 33.3% of the participants (8 of 24) answered that

they use common sense to write the test cases, and

45.8% (11 of 24) answered that they use

recognised design techniques, such as BDD (Given

- When - Then) and user stories acceptance criteria.

• To the question "In your testing activities, when

you perform functional tests, at what level do you

perform the most frequently?", 23 respondents

answered, of which 73.9% of the participants (17

out of 23) answered that they perform

unit/component tests, 17.4% (4 out of 23) answered

that they perform system tests and, finally, 8.7% (2

out of 23) answered that they perform integration

tests. These answers seem to be in line with the fact

that a significant number of the respondents are

currently developers, and therefore unit/component

testing is more common.

• 14 respondents answered to the question "If your

professional activity includes implementation and

execution of tests, and if you use any testing tool,

please indicate which you have used". All of them

(14) pointed out that they have used BDD

Framework, and 1 respondent has also used

Tricentis Tosca and Katalon.

• Regarding the experience with the BDD

Framework tool, it was asked that "If you use BDD

Framework in your testing activity, how do you

rate your experience with this tool?". In response,

53.3% of the participants (8 out of 15) answered

that they have had or have a positive experience,

33.3% (5) answered that the experience was neither

positive nor negative, and finally, 13.3% (2) of the

participants answered that they have had or have a

very positive experience with BDD Framework.

• Finally, the last question allowed respondents to

write an open-ended answer to the following

question "In relation to your answer to the previous

question; please indicate the most positive aspect

(strength) and the most negative aspect (weakness)

of the tool you use". All respondents reported

having used the BDD Framework tool. In their

opinion the strengths of the BDD Framework, in

the opinion of the participants are:

− Ease of use and organisation of tests.

− Tests are developed oriented to the user story,

which enables task-test mapping.

The weaknesses mentioned were the following:

− Heavy reliance on the user story.

− If the user story is not well written, the tests

may not be implemented correctly.

− Requires extra time to implement, which can

have a significant impact on the project

delivery time.

− In agile, if the requirements change a lot, the

tests developed may become useless, and

therefore there is a waste of time.

− It generates an extra effort in preparation.

In other words, some limitations to the use of BDD

Framework are pointed out by some of the survey

respondents, but it is a user-friendly tool. The fact

that tests are related to user stories is also a point of

disagreement among the participants because some

say that it enables task-test mapping while others

say that they are dependent on user stories.

A cross-check was also done to analyse the impact of

years of experience in the testing activities. That is, to

analyse if there are some relationships between the number

of years of experience and the knowledge or techniques

applied at the testing process. First, the relationship between

the number of years of experience and their perception of

how the application code is developed to facilitate the

testing activity was analysed. In this context, the inclusion

of the best practices during the software development is of

fundamental importance. As can be seen in Figure 1, only

25% of the participants who have between 11 and 15 years

of experience disagree that the way code is developed can

facilitate the implementation of tests. All professionals with

more than 16 years of experience (despite the low number

of respondents) strongly agree that the way code is

developed to facilitate the implementation of tests. These

results seem to suggest that professionals with more

experience are more aware of this issue.

85Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Figure 1. Years of experience vs how the code is developed.

The relationship between years of experience and

difficulty in the testing activity was also analysed (see

Figure 2). There are slots with more experience (6-10 and

11-15) that express difficulties more often than participants

with between 3 and 5 years of experience. Overall, the

results to this question seem to indicate that there is no

cause-effect relationship between the years of experience

and difficulty in the testing activity. The difficulties in

testing, manifested by the respondents, were transversal to

all professionals.

Figure 2. Years of experience vs difficulties in testing activities.

The relationship between years of experience and the

way they plan and write test cases was also analysed and

presented in Figure 3. In this case, the data is quite similar,

and many participants still use only common sense as a way

of writing tests regardless of their years of experience.

These results reveal that participants do not have training in

this area to know and use more test writing techniques to

optimise this component of their work.

Figure 3. Years of experience vs the way they plan and write test cases.

V. CONCLUSION AND FUTURE WORK

 Regardless of the development platform or programming

language used, applications must be developed to facilitate

testing activities to facilitate tests that validate its

correctness. To achieve this, a set of good practices,

architectural and design decisions, must be followed. These

practices, and their effect on the test automation process, are

well known. This becomes particularly important when the

software is developed using an LCDP since the allocation of

time to facilitate or develop the tests, and the adoption of

certain development practices can undermine some of the

benefits associated with the use of LCDP.

 To understand the opinion of IT professionals about the

importance of software testing and their perception of the

importance of best development practices and their

influence on the process of test automation, a survey was

conducted. The respondents that work with OutSystems,

have some experience with testing activities and use the

BDD Framework as a test implementation tool. Although it

is the tool most used by the participants and is easy to use, it

has some weaknesses in the participants' opinion. All of

them recognise the importance of testing regardless of the

type of application to be developed, and more than 50%

recognise that they often have some difficulty assessing

what should be tested and how. They also express the

influence that the way functionality is described and how

software is implemented have on the process of testing

activity.

 It results from the analysis made in the study presented in

this paper that developing for software testability is

recognized as very important also in the case of LCDP. The

code abstraction allowed by these platforms does not

exclude the need to follow best practices during the

development cycle. It is also important that professionals

have knowledge of adequate testing techniques and tools

that allow more support for testing activities. This stage, due

to the importance it assumes for the delivery of high-quality

products, requires care so that (as with software

development) it is carried out quickly and completely.

86Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

REFERENCES

[1] OutSystems, “State of Application Development Report

2019/2020,” 2019.

[2] Marqual IT Solutions Pvt. Ltd (KBV Research), “Global

Low-Code Development Platform Market By Component By

Application By Deployment Type By End User By Region,

Industry Analysis and Forecast, 2020 - 2026,” Report, 2020.

[Online]. Available: https://www.kbvresearch.com/low-code-

development-platform-market/ (accessed Aug. 31, 2021).

[3] J. Idle, “Low-Code rapid application development - So,

what‘s it all about?,” Platinum Business Magazine, pp. 52–

53, 2016.

[4] OutSystems, “The Low-Code Development Guide,” 2019.

https://www.outsystems.com/low-code-platforms/ (accessed

Jul. 01, 2021).

[5] C. Boulton, “What is low-code development? A Lego-like

approach to building software,” CIO (13284045), 2018.

https://intellyx.com/2018/03/27/what-is-low-code-

development-a-lego-like-approach-to-building-software/

(accessed Jul. 01, 2021).

[6] J. C. Metrôlho, F. R. Ribeiro, and P. Passão, “Teaching Agile

Software Engineering Practices Using Scrum and a Low-

Code Development Platform – A Case Study,” in The

Fifteenth International Conference on Software Engineering

Advances, 2020, no. c, pp. 160–165.

[7] “Mendix Predicts Low-CodeOps Will Deliver Radical New

Efficiencies for IT Operations,” 2021.

https://www.mendix.com/press/mendix-predicts-low-

codeops-will-deliver-radical-new-efficiencies-for-it-

operations/ (accessed Jul. 19, 2021).

[8] M. A. Al Alamin, S. Malakar, G. Uddin, S. Afroz, T. Bin

Haider, and A. Iqbal, “An Empirical Study of Developer

Discussions on Low-Code Software Development

Challenges,” in Mining Software Repositories Conference,

2021, p. 12.

[9] J. R. Rymer and R. Koplowitz, “The Forrester WaveTM:

Low-Code Development Platforms For AD&D

Professionals, Q1 2019,” 2019.

[10] Mendix, “Test Automation & Quality Assurance.”

https://www.mendix.com/evaluation-guide/app-

lifecycle/test-automation-quality-assurance/ (accessed Aug.

31, 2021).

[11] “Test Studio,” 2020. https://docs.microsoft.com/en-

us/powerapps/maker/canvas-apps/test-studio (accessed Aug.

31, 2021).

[12] OutSystems R&D, “BDDFramework,” 2016.

https://www.outsystems.com/forge/component-

overview/1201/bddframework (accessed Aug. 31, 2021).

[13] F. Khorram, J.-M. Mottu, and G. Sunyé, “Challenges &

Opportunities in Low-Code Testing,” in Proceedings of the

23rd ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems, 2020, pp. 1–10, doi:

10.1145/3417990.3420204.

[14] J. Salgueiro, F. Ribeiro, and J. Metrôlho, “Best Practices for

OutSystems Development and its Influence on Test

Automation,” in 9th World Conference on Information

Systems and Technologies, 2021, pp. 85–95.

[15] International Software Testing Qualifications Board,

“Certified Tester Foundation Level Syllabus (Version 2018

V3.1).” 2019.

[16] J. Proença, “BDDFramework: overview,” 2016.

https://www.outsystems.com/forge/component-

overview/1201/bddframework (accessed Jul. 02, 2021).

87Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

