
SYS2VEC: System-to-Vector Latent Space Mappings

Theo Mahmut Bulut
Computer Science

University of Kaiserslautern
Kaiserslautern, Germany

Email: mahmutbulut0@gmail.com

Vasil L. Tenev
Embedded Systems Engineering

Fraunhofer IESE
Kaiserslautern, Germany

Email: vasil.tenev@iese.fraunhofer.de

Martin Becker
Embedded Systems Engineering

Fraunhofer IESE
Kaiserslautern, Germany

Email: martin.becker@iese.fraunhofer.de

Abstract—As a product line evolves, new members emerge
and existing ones are maintained – more or less in sync with
each other. In the context of long-living software and system
product lines, the capability to predict evolution trends within
the structure of the various assets is essential. It helps to
understand the underlying dependencies between work items
now and in the future and helps to make the product line
architecture more robust against the predicted trends. With
this, unnecessary erosion can be avoided and overall engineering
efficiency can be increased. With the increasing complexity
of today’s systems, approaches that can identify and evaluate
commonalities, variabilities, and interdependencies in a large
number of complex product variants and versions are gaining
importance. In order to increase efficiency, approaches that
support an incremental analysis in the space and time dimension
are desirable. A promising approach to this end is to map the
versions of each variant to points in a vector space. Doing so,
two challenges can be efficiently addressed: (i) the similarity
measurement becomes the distance between vectors; and (ii)
the estimation of evolutionary trends can be reduced to the
well-known interpolation problem. In this paper, we present
SYS2VEC – an approach for mapping product line variants into
a latent vector space by means of machine learning techniques.
With our approach, we are able to show an increase in accuracy
by a factor of 4 and halve the execution time compared to similar
machine-learning-based solutions.

Keywords—System comparison; machine learning; graph simi-
larity; product lines.

I. INTRODUCTION

The rapid development in the embedded and IT world de-
mands steady growth of customization flexibility for products
and services. To satisfy this need, companies can do two
things. On one side, new product variants can be forked and
modified from existing ones or be derived using a strategic
reuse approach, where a variation model exists [1]. On the
other hand, existing product variants continue to develop in
new versions. Such systems often evolve over long periods,
during which they usually diverge from each other. Each
new variant typically addresses new customer requirements,
causing it to drift away from the product line’ core. At the
same time, variants can also grow closer together due to
changes in the environment and the emergence of common
architectural drivers.

Unfortunately, these tendencies are often not apparent, but
it becomes essential to predict such evolution trends within
the asset structure in the problem and solution space of a
product line. It helps to understand the underlying dependen-
cies between work items now and in the future and helps

to make the product line architecture more robust against
the predicted trends. With this, unnecessary erosion can be
avoided and overall engineering efficiency can be increased.
With the increasing complexity of today’s systems, approaches
that can identify and evaluate commonalities, variabilities,
and interdependencies in a large number of complex product
variants and versions are gaining importance. In the context
of product line engineering, assets of the system architecture
are considered. Requirements, architectural models, source
code, configuration, and test artifacts could be subject to
such analyses. In the following we focus on the analysis of
architectural models, although the presented approach can be
applied to other engineering artifacts as well.

To cope with the increasing complexity of today’s systems,
organizations are increasingly using model-based approaches
in systems and software engineering. In these models, archi-
tecture, requirements, realization and quality assurance work
items are tightly connected with each other. The models grow
proportionally with the product line size and complexity.
In principle, the models are highly interconnected graphs.
Estimating the evolutionary trends for the architecture model
aids in managing and planning of deviations that emerge
between product variants and versions.

In order to increase efficiency of analyses in large-scale
product lines, approaches that support an incremental analysis
in the space and time dimension are desirable. A promising
approach to this end is to map the versions of each variant
to points in a vector space. Doing so, two challenges can be
efficiently addressed: (i) the similarity measurement becomes
the distance between vectors; and (ii) the estimation of evolu-
tionary trends can be reduced to the well-known interpolation
problem. This raises the question, of whether there is an
efficient way to translate the structure of product line assets
into a vector space.

In this paper, we present SYS2VEC – an approach for
mapping system variants into a latent vector space by means
of machine learning techniques. SYS2VEC approach is based
on the Graph2Vec method, which uses Weisfeiler-Lehman
hashing [2] to incorporate unified relabels for node features.
With SYS2VEC, we are able to show an increase in accuracy
by a factor of 4 and halve the execution time compared to
similar machine-learning-based solutions. The paper provides
the following contributions:
● it introduces an innovative approach to analyze system

variants by representing them as graph-like structures in

61Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

a latent vector space,
● it discusses implementation aspects of the approach,
● presents validation results, and
● provides an overview on related machine learning ap-

proaches.
The remainder of the paper is structured as follows: Section

II gives an overview on the approaches, techniques and tools
related to this work. Section III discusses the main idea of
using latent space representation for addressing the aforemen-
tioned challenges. In Section IV we present our approach and
implementation in details. The validation with respect to our
goals is shown in Section V. Section VI concludes the paper.

II. RELATED WORK

In this section, we present the context in the conducted
research work and provide an overview on machine-learning
approaches, techniques and tools related to our approach.

1) Feature Extraction: In machine learning, feature extrac-
tion is a method to create input for ingestion by models.
There are various ways to extract features from textual in-
formation. One of the most common methods is the Term
Frequency-Inverse Document Frequency (TF-IDF) [3]. Some
methods extract features to embedding space directly using
Bag-of-words (BOW) methods with skip-gram models like
WORD2VEC [4]. WORD2VEC extracts features to latent space
straight from sentences. For feature extraction at the paragraph
level with multiple sentences, DOC2VEC has been proposed.
DOC2VEC has two approaches: one of them is Paragraph-
Word Distributed Memory (PV-DM), and the other one is
the Paragraph Vector-Distributed Bag Of Words (PV-DBOW)
approach [5].

Since we do not need to incorporate individual word vectors
from the fixed-length sliding window, we discard the PV-
DM approach and use the PV-DBOW approach in our work.
For our algorithm introduced in Section IV, vector output
of WORD2VEC and DOC2VEC prevents preprocessing node
attributes with vector input. Muhammad Isa et al. [6] have
successfully applied TF-IDF for semantic feature extraction.
They use frequency table output for graph representation
learning. TF-IDF allows filtering of terms with low occurrence
in the whole graph. Thus, a threshold can be used to filter the
sparse matrix output of TF-IDF. In Sections IV, IV-B, and
IV-C, we have detailed term and inverse document frequency
related filtering to supply a better canonical input for the
representation learning stages.

2) Unsupervised Machine Learning: Unsupervised ma-
chine learning methods learn the representations with minimal
or no external intervention [7]–[10]. Unsupervised methods are
broader in scope and fit the context of variant analysis better,
as they incorporate hierarchies and node contents and features.
One of the unsupervised approaches to feature learning over
graph descriptions is OhmNet [11]. OhmNet originates from
bioinformatics and generates multiple neural network layers
for all protein sequences that are similar to each other. To this
end, it trains a single machine learning model that maps the
layers of protein structures to the corresponding tissue. In the

context of variant analysis, each system variant corresponds to
a different tissue. The training time depends on the number of
system variants and increases linearly. Applied to our context,
this method does not provide accurate prediction as it tends
to converge to the global minima of all variants. Whereas in a
real scenario, the variants may not even be related and should
not even be considered and trained together.

Non-Negative Matrix Factorization (NNMF) is one of the
Blind Signal Separation (BSS) techniques widely used in
unsupervised methods. It learns graph structures while incor-
porating both graph shape and node content into embedding
space. One of the adapted NNMF method is FSCNMF (Fusing
Structure and Content via Non-negative Matrix Factorization
for Embedding Information Networks) [12], where the model
uses attribute context of the nodes to learn node feature
representation. This node based embedding generation method
works with factorizing both adjacency and feature matrices.
Node and feature embeddings are regularized together for
create a representation in embedding space. It doesn’t embed
full graph shape, as it is supposed to be, since this method uses
adjacency as main driver for embedding vector generation. The
FSCNMF method outputs an N-dimensional representation,
where N is the maximum nodes between training graphs.
This output needs to be combined with manifold methods
like t-distributed Stochastic Neighbor Embedding (t-SNE) [13]
to produce a sensible output from the original output with
dimensionality reduction techniques. When the methods are
adopted in variant analysis context, multiple graphs of the
same product line will fit the same model. That said, contextual
inference will be high, but the graph shape will not be
preserved very well.

Another approach for creating embedding for nodes, which
utilizes a random-walk-based approach, is text-associated
DeepWalk (TADW) [14]. TADW, like FSCNMF, factorizes
textual node attribute matrix with actual representation matrix.
Apart from FSCNMF, this method does random walks over the
graph and creates matrices from the these walks. These walks
are used as similarity measure for the graph’s core represen-
tation. When adapted to variant analysis context, this method
creates a single vector representation from both content and
structure together. By default this method assumes that two
graphs are different when they have different shapes. TADW
doesn’t apply to variant analysis domain very well, because
content and structure might vary differently and if either one
of them is different, they are assumed different by the learning
method. Since this method also outputs an N-dimensional
representation, it needs to be combined with manifold methods
for more sensible outputs for the identification of formed
clusters.

In addition to attribute-based graph embedding methods,
whole graph embedding methods are most suitable to learn the
representation of graphs [15]. They rely on various techniques
and incorporate different partial information about the graphs.
These methods can enrich an embedding graph structure by
embedding edge features [16], by node features only [17], or
by permutation preservation [18]. For large datasets, tracing

62Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

R

EY

DC

X

BA

↝

(a) Graph representation of system
variant S1.

R

Z

E

Y

DCB

X

A

↝

(b) Graph representation of system
variant S2.

x
y

z

S⃗1

S⃗2

d⃗′

(c) Similarity measurement between
S1 and S2.

Figure 1: Input system variants and output vector representations of
example system S1 and S2.

based on Taylor series by eigenvalue decomposition is a hard
task. Since first-order terms in Taylor expansions tend to
approximate to a local maximum of the distribution, large
graph eigenvalue growth rate cannot be estimated for large
graphs [19]. These methods fallback is always hit for graphs,
i. e., making the method’s main optimization discarded for
NetLSD.

The Weisfeiler-Lehman Kernel (WLK) can be used to
incorporate graph topology information into the nodes and
take the vertex neighborhood into consideration. WLK allows
the quantization of neighborhood groups to the individual node
attributes through hashing. Other than WLK, there are random
walk kernels that do random walks with varying lengths over
the graphs. DeepWalk is one of the methods that incorporate
a random walk approach to learning the graph representation
with unbiased, fixed-length, random walks starting from each
node. According to Narayanan et al. [17], these methods
tend to have low confidence values against the WLK based
methods. Graph2Vec [2] is a method, which uses Weisfeiler-
Lehman hashing to incorporate unified relabels for node
features. Graph2Vec approach is well aligned with the variant
problem, due to its graph representation learning. Furthermore,
its base accuracy is good enough to deliver meaningful results
out of non-linear substructures.

III. LATENT SPACE REPRESENTATION

Latent space is a multi-dimensional vector space, where
representation vectors for variants are used to make correlation
for similarity. The similarity between the variants is related
to the angles between the vectors, their magnitude, and their
orientation. For example, let S1 and S2 be two system variants
(see Figures 1a and 1b). The similarity between them can be
computed in three-dimensional space, as shown in Figure 1c.
Here S⃗1 is the vector representation of S1, S⃗2 represents S2,
and ∥d′∥ corresponds to their similarity. In general, we work
with finite-dimensional vectors in vector space, also known as
finite-dimensional Hilbert space.

Distance measures between vectors enable computing sim-
ilarities. We can compute the pairwise similarity between two
variants in the vector space using the Euclidean norm. In
Figure 1c, we can see that ∥d′∥ is the Euclidean norm between
two vector representations. For computing pairwise similari-
ties, SYS2VEC relies on the Euclidean norm of vectors.

For having consistent vector representation for ingested
systems coming out from SYS2VEC, variant hierarchies
should have a consistent notation. Our algorithm uses PV-
DBOW, which doesn’t produce word vectors in a fixed window
of elements like the other alternative model of DOC2VEC
called Paragraph-Word Distributed Memory (PV-DM). But
even though the order of the words in the graph’s corpus is not
essential for us. For this very reason, using a graph traversal
notation is crucial to always get a consistent representation of
the graph. When given a set of systems, our algorithm runs
with Deep First Search (DFS) with vertex ordering notation
of preordering. Since this approach can build a topological
sort for nodes, it is a natural choice for the SYS2VEC. The
underlying DOC2VEC [5] model works by doing subgraph
sampling, and this approach can always yield the correct final
form for any given subset of the graph.

IV. SYS2VEC APPROACH

SYS2VECs core processing pipeline and its processing
stages can express a single variant with row vector representa-
tion. This Section discusses the algorithm’s workflow and its
stages in depth.

This section explains our main algorithm’s stages which are:
● System Variant Traverser. Traversing systems structure

and preparing a system variant as input for the normal-
ization passes are explained in Section IV-A (cf. stage 1
in Figure 2).

● Normalization Scheme. In Section IV-B, we explain
how system contents are normalized as input for the
Weisfeiler-Lehman kernel and how its output is used by
the representation learning (cf. stage 2 in Figure 2).

● Representation Learning. Section IV-C explains impor-
tant arguments for SYS2VEC and its core representation
learning model. In addition to that, we will discuss gener-
ated embedded space representations and their properties
in Section IV-D (cf. stages 3 and 4 in Figure 2).

● Latent Space Similarity. Section III describes our ap-
proach of computing similarity based on the latent space
representation (cf. stage 5 in Figure 2).

● Method Optimization. For getting most of the accuracy
from our approach, we have developed model optimiza-
tion. Section IV-E explains how SYS2VECs hyperparam-
eter tuning approach works in detail. In addition to that,
we explain how additional optimizations considered and
incorporated into SYS2VEC.

A. System Variant Traverser

However the system represented digitally, we traverse
through the system, and create variant trees. Our traversal
algorithm (stage 1 in Figure 2) uses the Depth-First Search

63Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Different vectors generated from different variants

Figure 2: SYS2VEC, Similarity Seeking Variant Analysis Machine Learning Pipeline.

(DFS) to extract the hierarchical structure of the variants. DFS
traversal gives us a consistent view between all graph variants
and for their subsampling undergoing in DOC2VEC [5]. Since
our data model is a generalized model for software variant
graphs, our algorithm should also work with large graphs
and datasets. Datasets containing elements over one billion
nodes should be organized at scan time, which reveals the
internal structure of graphs for achieving better results for
machine learning models. Finding ordering with optimizing
a cost function is solely an NP-hard problem. Since finding
optimal ordering relies on vertex locality and can vary between
graphs [20], we skip finding vertex ordering for each graph
and utilizing DFS for all graphs.

B. Normalization Scheme

In order to do the graph core extraction using Weisfeiler-
Lehman Kernel (WLK), [2], data of content filled elements
should be normalized. In Section II-2, we explained the
necessity of WLK pass for the extraction of graph topology.
The content normalization scheme we have defined (stage
2 in Figure 2) will be used for creating Weisfeiler-Lehman
hashable features after traversal (see Figure 3). Moreover,
through a content-oriented normalization scheme, terms of low
importance (aka lonely terms) can be optionally detected and
eliminated.

Reduction parses all content definitions and then creates vo-
cabulary with unique terms received after tokenization. Based
on this vocabulary, first term frequencies and then graph-
wide inverse document frequencies are generated. Learned
frequencies produce document-term matrices based on single
key-value tuples reduced from their sparse representations
held in TF-IDF. By reduction, these corresponding tuple sets
are added to ordered feature sets in all nodes of the graph.
Normalized contents are generated with this method refills
content filled elements to make graphs ready to be processed
by WLK in the next stage.

1: procedure CONTENTNORM(V, c) ▷ Where V - array of
vertices’ contents, c - count of all content filled elements
in variants

2: X =makevectorizer() ▷ Create TF-IDF vectorizer
3: D =X(V) ▷ Process variants through vectorizer
4: Let L[1 . . . c] be new array
5: for j = 1 to c do ▷ Iterate over each content filled

element
6: k = len(V [j]) ▷ Get number of TF-IDF tuples
7: Aj = create ordered set with size(k) ▷

Create ordered set for content filled element at index j
8: for b = 1 to k do
9: Aj .append(D[V [b]]) ▷ Append TF-IDF

pairs to ordered set
10: end for
11: L[j] = Aj ▷ Assign content filled element’s

ordered set to the aggregation set
12: end for
13: return L
14: end procedure

Figure 3: Content Normalization.

After reduction, vertex contents are made into a TF-IDF
document matrix. At this state, every vertex content state has
filled key-value dictionary item. Before fed into Weisfeiler-
Lehman Kernel, normalized inverted index pairs in ordered
dictionaries can further be ranked. Moreover, if needed, lonely
terms can be filtered by their threshold of occurrence. In
addition to all the previous steps, preprocessing can be done
[21]. In addition to that, the proposed normalization scheme
can work with an ample amount of content (which is bounded
by the underlying TF-IDF implementation). Since every nor-
malization run is a one time pass for a single graph, most of
the time is taken for building the vocabulary for graphs with a

64Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

large degree. In [22], authors define ”large graphs” as graphs
with hundreds to thousand nodes. Our experiments showed
that SYS2VEC already works with approximately 2400 and
more nodes. We detailed our experiments in Section V-A.

The researcher can configure the tokenization algorithm for
the TF-IDF system. Standard structured formats like XML and
JSON can easily be converted to dictionaries and then fed into
dictionary-based tokenizer. Dictionary-based tokenization al-
lows SYS2VEC to consume different system views like control
flows, configuration files, structured binary representations,
and various other formats by a simple adaptation of normalizer.
For control flow graphs, one can use the original SYS2VEC
repetitively for every node’s control flow. Since control flows
are applying the rule of rooted graphs, they can be usable
with SYS2VEC. When it comes to configuration files, text
objects can be either translated into record formats like CSV
or TSV then fed into the normalization scheme with a comma
or tab-separated tokenization. When compared to control flows
and file configurations, binary objects are needed to be either
parsed into structured plain-text representations or encoded
with binary-to-text encoding algorithms. The latter solution
decreases TF-IDF confidence in normalization passes since
binary data (when directly encoded into text) won’t give good
term frequency but rather give inverse document frequency.
For dealing with binary data, recent bioinformatics papers [23]
[24] followed an approach where authors created weighted
sparse binary matrices with a predefined aggregation window
and then applied TF-IDF for normalization.

C. Representation Learning

Fundamentally, the algorithm creating latent space repre-
sentation of the system variants should be task agnostic with
a row vector output. Task agnosticism needed for whatever
input features given, we should be able to produce a row
vectors for the given system variants. Since we need to
compare whole graphs, we take advantage of the paragraph
vector-distributed bag of words (PV-DBOW) [5] representation
used in Graph2Vec [17] . Since Graph2Vec is a transductive
approach, intrinsically, SYS2VEC is transductive [25]. In
SYS2VEC, ”transductive” means that vector representations
are generated for a given fixed set of graphs to generate vector
space lookup matrix.

Since our variant representations are rooted graphs,
Graph2Vec does subgraph matching over the given set of
system variants (stage 4 in Figure 2). During the normalization
of the previous step, feature dictionaries were created for
all nodes. These features are hashed for compression with
their neighborhood similarities with Weisfeiler-Lehman kernel
(stage 3 in Figure 2). Thus at each iteration phase, neighbor-
hoods and features have been stored in nodes. Finally, graphs
with aggregated data in their nodes dispensed and can be feed
into DOC2VEC [5] to learn the representation with subgraph
sampling followed by matrix factorization steps.

Representation learning for graph clustering doesn’t incor-
porate task-specific information from SYS2VECs reduction
mechanism. This feature of Graph2Vec allows us to extend

or manipulate feature dictionaries in the content nodes to
represent relations. Moreover, the separation of SYS2VECs
reduction mechanism from the representation learning model
provides great flexibility to change the underlying model with
other techniques in the field. Example relations like includes
excludes at the package level, composition, and aggregation
for classes can be appended to content dictionaries and prepro-
cessed with the same workflow that we have described Section
IV-B. Graph2Vec performs better generic representation when
task-specific information doesn’t factorize together with the
underlying PV-DBOW model [17]. Via underlying PV-DBOW,
DOC2VEC skip-gram training learns the graph representation
interpreted as document representation and yields a row vector.

Configuration of SYS2VEC relies on various parameters;
these parameters are scattered through the pipeline compo-
nents seen in Figure 2. Parameters below adjust representation
learning from graphs in SYS2VEC. Variant traverser (in Figure
2 marked with 1) receives these arguments:

Vertex ordering notation: Vertex ordering that nodes
placed to form the graph after traversal. Ordering notation can
change how row vector values are displaced through repre-
sentation learning. Indirectly it changes vector orientation and
magnitude in Hilbert space.

Tokenization scheme for creating the variant knowledge
corpus: Tokenization procedure given to tokenizer for extract-
ing sensible words as input for TF-IDF algorithm underneath.
By default, SYS2VEC comes with word tokenization, which
allows feature extraction by parsing two or more characters
that assemble a word. Tokenization can be changed to adapt to
structured data formats like XML, JSON, or blobs. SYS2VEC
can create meaningful normalized features from existing vari-
ant data when tokenization is adapted. Adaptation can be made
by changing the regular expression of tokenizer or supplying
a custom function closure.

(Optional) Normalization stage bypass argument for ex-
perimenting with untouched vertex features: Optional flag for
skipping normalization stages as will. By default, skipping
normalization is disabled. If features are not meant to be
preprocessed, TF-IDF reverse lookup can be skipped. In
that case, Weisfeiler-Lehman will process all of the non-
normalized feature set. Our experimentation showed that if
the non-normalized feature set is in key-value format, this
doesn’t change representation learning. Moreover, it doesn’t
change the pairwise similarity computation. If nodes have
heterogenous data scattered among them, it is better to use
normalization passes to create homogenous representation for
the graph.

Learning rate of the model: A factor that enables how
much generalization should be memoized from the previous
iteration of the training. Feature slices given to DOC2VEC
should incorporate all details of normalized feature sets. For
this reason, the learning rate during the training should be con-
trolled for how much generalization memoized from a batch.
A higher learning rate lowers the generalization, and a lower
learning rate won’t incorporate most of the features given
in a graph. Finding a good learning rate is an experimental

65Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

discovery. A good learning rate gives a low loss value but
won’t prolong the model’s training duration. For this exact
reason, we have a learning rate as a parameter to optimize at
the hyperparameter optimization stage in Section IV-E.

Output vector dimensions: Graph representation’s row
vector size, in other words, dimension output per variant.
In Hilbert space, vector dimensions are essential to represent
generalized notions of graphs. The row vector representations
should have enough dimensions for variants to achieve better
vector space similarity. Increasing dimensions can output
better vectors for condensed features in content filled elements.
When data is not enough, higher dimensions won’t create
a difference. Hyperparameter tuning is utilized to detect an
optimized dimension count (as explained in Section IV-E).

Frequency threshold for features: Before running
Weisfeiler-Lehman hashing, TF-IDF pairs can still have lonely
terms that mightn’t contribute to overall graph representation
learning. This threshold behaves like a high-pass filter for TF-
IDF frequencies in the ordered set. SYS2VEC comes with the
tuning option of filtering terms with a low term occurrence
frequency (see Section II-1). We have explained that option
in Section IV-B as lonely term filtering. This option filters
learned TF-IDF frequencies below a particular threshold value.
SYS2VEC doesn’t implement key-specific inverse transform
for filtering by specific thresholds. Since filtering specific keys
is an expert decision, and we don’t want to incorporate another
function to increase the time complexity of the processing. Not
having additional key-specific filtering doesn’t have downsides
for SYS2VEC.

Epochs: Defines how many times full dataset batches are
fed into the model. Almost all machine learning models have
epochs to adjust how many times batches are fed as a complete
cycle to a model. When epochs increased, subsampling for PV-
DBOW will give different data attention and weights to update
vector representations. Increasing epochs for large datasets
enables producing more generalized vector representation. If
epochs are kept less, the model can underfit and will not gener-
alize enough to make meaningful vector space representations.
Since accuracy determines the generalization of the model and
generalization directly dependant on epochs, this value is also
optimized by our hyperparameter optimization scheme (see
Section IV-E).

D. Embedding Space Representation

After system traversing, normalization, and graph kernel
extraction, learned graph representations need careful tuning
from the machine learning model parameters’ perspective.
As explained in Section IV-C, subgraph representations are
incorporated into embedding space with the influence of
both SYS2VECs parameters and underlying Graph2Vec model
parameters. The dimension for vector representation wasn’t se-
lected arbitrarily. Higher dimension count gives longer training
times and sparse graph representations. Thus accuracy for the
similarity correlation decreases due to heavy entropy interfer-
ence and sparsity of generalized model parameters. Mentioned
entropy interference prevents convergence of the model for

very high output dimensions. In [26], authors noting having
more parameters to generalize will increase the error rate of
the model inference. When dimensionality increased parallel
to model parameters, the model’s accuracy will first seem to
improve but then decrease drastically. This phenomenon is
called Hughes phenomena [27]. In [28], empirical observations
showed that after 1000 dimensions, convergence to at most
50% probability of error is relatively slow.

In contrast to that, giving a low dimension to the SYS2VEC
prevents capturing all given system variants’ features. Sim-
ilarity metrics don’t diverge when no attention is given to
the system variants specific properties. For this reason, output
embedding dimensions should carefully be picked between
multiple systems. Selecting the optimum dimension can be
automatized and optimized by various parameter optimization
methods, which are explained in section IV-E.

Representation learned from graphs projected from latent
space to embedding space and generates row vectors for every
system variant individually. SYS2VEC heavily relies on PV-
DBOWs embedding projection. Embedding representations
for SYS2VEC is unchanged Graph2Vec embeddings. After
pairwise similarity computations finished, dimensionality re-
ductions can use embeddings to visualize vectors’ density in
vector space.

Apart from the embedding generation, there are various
improvements suggested for PV-DBOW. PV-DBOWs embed-
ding projection uses dot product similarity for word-paragraph
correlation. In SYS2VEC, the mentioned projection corre-
sponds to a random subsample of a graph against the whole
graph. For this reason, representations are heavily influenced
by the distribution of subsamples over a graph. Though there
are suggestions to improve PV-DBOW for better embedding
generation for randomly distributed subsamples [29], we didn’t
consider subsample randomness as a problem in a diverse set
of systems and their graphs since they are not relevant to our
approach.

E. Method Optimization

Representation vector generation after model training gives
output vectors for every variant. Since SYS2VEC is taking
parameters mentioned in Section IV-C, accuracy against the
validation dataset varies with different model parameters for
both SYS2VEC and underlying Graph2Vec implementation.

Successful representation vector and similarity matrix gen-
eration don’t mean that our system is perfectly working with
its full potential. For getting better accuracy from the model,
hyperparameter optimization methods exist. For this purpose,
we have included an automatic hyperparameter tuning method
inside SYS2VEC. Our autotuning optimization strategy is
using the Optuna framework, which is a cutting-edge black-
box optimization toolbox for machine learning models [30].
We have defined Optuna’s optimization goal for its’ black-box
approach as the maximization of the accuracy scalar defined
by pairwise similarity of sampled variants throughout trials of
representation learning with different parameter spaces, which

66Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

the framework has estimated throughout the hyperparameter
optimization.

SYS2VECs hyperparameter tuning configures the parameter
spaces listed below for maximizing the accuracy with given
categorical and range-based parameter space. Parameter spaces
are manually selected and tweaked based on the knowledge
about our problem. First, we have tested minimum and max-
imum values of parameters with our approach, then we set
them as a parameter range:
● Weisfeiler-Lehman iterations over the system variants.

Integer parameter space from 2 to 10.
● Output dimensions. Categorical parameter space with

powers of 2 as in 128, 256, 512, 1024, 2048, 4096.
● Epochs Categorical parameter space with multiples of 10

as in 10, 20, 30, 40, 50.
● Learning rate Uniform distribution between 0.005 and

1.0.
The aforementioned parameters and their parameter space

are explored and tested for the convergence to the global
maximum during the hyperparameter optimization. After the
hyperparameter optimization trials finish, the framework out-
puts the best parameter selection and accuracy received with
these parameters. If received accuracy is better than our
method’s initial accuracy, we are accepting this parameter
set as the new basis for SYS2VEC. We have observed that
after optimizations successfully finished, we see nearly 10%
accuracy improvement against the validation dataset.

A tree-structured Parzen estimator [31] does parameter sam-
pling for the hyperparameter optimization. SYS2VEC comes
with hardcoded 100 trials for optimization passes, which is
seen enough during our optimization trials. Since sampling and
objective function seeks the global maximum throughout the
optimization, we haven’t defined any early termination criteria
when no accuracy improvement has been seen during these
trials.

With hyperparameter optimization, accuracy levels rise to
64%. When our optimization for hyperparameters runs, it
lays out better quality than the out-of-the-box method. These
results can be compared with the accuracy of the graph2vec
model [17] using the MUTAG dataset. MUTAG is a data set
containing graphs of 188 chemical compounds labeled with
respect to their mutagenic effect on bacteria. MUTAG dataset
can be processed by SYS2VEC since our method’s core for
learning graph representations is the same as Graph2Vec.
Generated representations will be the same as processing data
through the Graph2Vec method.

SYS2VEC consists of various runtime optimizations in its
stages, which makes representation generation and similarity
computation faster compared to unoptimized interpreted code:

Embedding generation: The DOC2VEC implementation
we are using has C extensions for parallelizing the computa-
tion and working faster with native code. In our experiments,
precompiled C implementation brought nearly sixty times
faster epochs than pure Python implementation [32].

Similarity calculations: SYS2VECs vector space simi-
larity calculation is using LLVM’s vectorization backend for

faster similarity computation through the Numba just-in-time
(JIT) compiler for Python [33]. Vectorization enables us to use
SIMD instructions dedicated to vector processing. Normally
this optimization is only possible with a backend dedicated to
analyzing loop specialization. LLVM’s JIT compilation engine
gives code auto-vectorization and enables faster similarity
computation for our case [34]. We can compute similarities for
the given variant pairs faster with single instruction multiple
data (SIMD) instructions. The mentioned JIT compiler only
compiles pairwise similarity distance methods for variants
to enable compiled bytecode reuse across the whole variant
ranges during similarity computation. This compilation hap-
pens once at the very beginning when vector space similarity
calculation starts; after that, it is cached to reuse across all
given systems [33].

Model and vectorizer caching: TF-IDF vectorizer used in
the normalization scheme can save the vocabulary and don’t
need to rebuild between the runs of the SYS2VEC. SYS2VEC
can freeze models and load and save dictionaries and embed-
dings. These actions allow bypassing the traversing stage if
needed and enable faster experimentation over the variants.
Moreover, it allows running inference tasks on SYS2VEC.
These optimizations are incorporated for improving the perfor-
mance for processing high volume variant data in SYS2VEC.

V. VALIDATION

In this section, we validate the SYS2VEC method and
compare it with other approaches in the field, following
different approaches to solve the similarity computation for
system variants.

The main validation obstacle for the research is having a
broader set of graph data to test full accuracy against the
approximation-based methods in the field. Graph datasets used
for validation in research either lack graph counts (cf. Zitnik
et al. [11], where authors use a dataset with 219 graphs
describing cellular systems) or the amount of nodes per graph
is way less (cf. Bai et al. [7], where authors have at most
100 nodes). Nevertheless, initial observations showed that
SYS2VEC performs with good accuracy for the graph-based
similarity analysis.

Our method uses the transductive approach of Graph2Vec
[17], but it is flexible enough to use another representation
learning method. Stages of SYS2VEC can be independently
used to feed graph data back into the deep learning tech-
niques like Graph Matching Networks (GMN) [35] [36] for
representation learning. In addition to that, our approach’s
accuracy baseline without hyperparameter tuning is 55%. With
hyperparameter tuning, it goes beyond 65%. Additionally,
SYS2VEC is flexible for adaptation with various model bases
as mentioned in Section IV-C.

A. Correctness

As shown in Table I, SYS2VECs dataset contains five
systems by the same tier one supplier with variant count
varying from 16 to 91 variants for each system. Each variant
corresponds to a software-hardware management system for

67Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

TABLE I: SUMMARY OF THE DATASET USED FOR THE
EXPERIMENTATION.

System Name Variant Count min. Nodes max. Nodes
System Z 63 1864 3462
System Y 23 952 2458
System X 16 1079 3267
System W 91 1209 2406
System V 51 229 3397

TABLE II: RELATIVE ACCURACY AND ERROR BOUND OF
SYS2VEC COMPARED TO OTHER METHODS.

Algorithm Accuracy
(avg. ± std.)

δ - Mean
Error Bound Total Runtime Algorithm Type

Multiple
Alignment 87.2 ± (0.2) ∽ 12.8 <1 hour Deterministic

OhmNet 16.1 ± (0.9) ∽ 80.0 ∽ 3 hours ML based
SYS2VEC 65.4 ± (2.3) ∽ 42.0 <30 minutes ML based

an automotive facility. More concretely, we analyzed the
configuration data structured in hierarchical sets, where each
node in the set represents a pair of a configuration item and the
associated value. Our approach is validated against the similar-
ity computation method, called Multiple Alignment, developed
by Tenev [37] and additionally described by Duszynski [38].

In Table II, we have compared our method with relative
success rate against similarity heuristic of multiple alignment
method in [37]. The relative accuracy of SYS2VEC against the
deterministic Multiple Alignment method [37] is lower than
expected. But SYS2VEC can be used as internal heuristics
to guide Greedy algorithms to converge to optimal alignment
solution as an alternative to the proposed modified Center-Star
heuristic [37]. With an error rate of likely 40 percent against
the approach mentioned in [37], [39], SYS2VEC can also be
used to get an overview of which variants are highly similar
and what is possible evolutionary tree can be consolidated
from them.

Our next aim to improve SYS2VEC is to incorporate
accuracy improvements. The main breakthrough of SYS2VEC
is operating on graphs without extra micro-tuning for their
content and structure. SYS2VEC creates embedding, which
is reusable across various vector space algorithms. Moreover,
our method is flexible enough to substitute the embedding
generation model with different algorithms. This substitution
will be towards improving the accuracy of the representation
learning by experimenting with deep neural networks.

B. Comparison to Other Techniques

Experiments ran with various methods showed that our
method’s transductive approach exploits the representation
learning and similarity calculation well over the large graphs.
As shown with the dataset specifications in Table I, our method
handed out better accuracy than other machine learning meth-
ods, which can be observed from Table II. In addition to
that, total runtime where the sum of training and inference
runtime is way less compared even to deterministic methods.
Moreover, since it doesn’t need Graph Edit Distance (GED),

or Tree Edit Distance (TED) as a supervisory signal for
representation learning, it’s time complexity is lower than
other methods. As shown in Table II, Zhang-Sasha [9] TED
approximations are taking ample amount of total runtime
on very large graphs. For similarity calculation, we aim for
an interactive analysis approach; for this reason, the Zhang-
Sasha-based SimGNN method is not suitable with a runtime
of 2 days. This timing behavior is too long, and it is not
useful for practical use case scenarios. In addition to that,
GED calculation is NP-hard [40]. For this reason, we have
also experimented with approximate GED methods with error
bound [41]. But these methods time complexity increases
exponentially with respect to the graph’s node count, like in
the Zhang-Sasha case in Table II. Above a certain degree of
the graphs, machine learning methods execution is dedicated
mostly to the edit distance calculation.

Experiments showed that SYS2VEC has an acceptable error
rate against the baseline of the greedy alignment in [37].
Unlike edit distance-based approaches, our approach can work
with a vast amount of data. Also, SYS2VEC doesn’t need
to learn for correspondence of certain systems into vector
representations like OhmNet. Since our systems are separated,
and the learning correspondence doesn’t bring value for gen-
eralizing representation learning, the OhmNet [11] method
does not add extra features to the whole-graph embedding
generation procedure.

Apart from Machine Learning methods we have experi-
mented, Clustal [42] has been used on our dataset. Initial
experiments showed that Hidden Markov Model (HMM) states
are way larger than bioinformatics problems. Multiple se-
quence alignment tools like Clustal takes node coloring into
consideration, which corresponds to nucleobases. For system
variant analysis case, this can grow based on the features gen-
erated from the normalization scheme, and later combined for
neighborhood feature incorporation using Weisfeiler-Lehman
hashing. Thus, for large graphs, node coloring can have
way more elements than nucleobases. While bioinformatics
problems have well-known nucleobases (AGCT) to accept
as node coloring, they are less than our dataset’s distinct
variant count. Thus, HMM-based tools are not working with
an arbitrary number of node coloring for fixed ordered graphs.

Nevertheless, we have experimented with this approach
by changing the Clustal Omega code to accept UTF-8 table
characters to see how it will be done in practice. But this
gave us a lot of states which took a long time to process. So
we have to terminate our experiment because of this method’s
time complexity. Even with modified Clustal code, we haven’t
successfully made it work with systems with 91 variants.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce SYS2VEC, a new approach
that analyzes system variants by combining a novel nor-
malization scheme with unsupervised machine learning for
fast graph comparison. Moreover, our method improves the
time performance in comparison to other machine-learning
approaches and can easily be applied to existing system

68Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Sys2Vec generated vectors using
UML as input as discrete features

ReLU
(Rectified Linear Unit)

(64)

ReLU
(Rectified Linear Unit)

(256)

Regressor

Concatenated Layer

Time variables

+

Figure 4: Example evolutionary tree deep learning methodolody using
SYS2VEC.

variants. SYS2VEC is exploiting the stochastic nature of
the machine learning models to decrease the time taken for
pairwise similarity comparison using row vectors in the finite-
dimensional vector space. Additionally, our approach enables
inference tasks like clustering and trend estimation using
supervised methods for variant analysis.

In addition to creating an unsupervised graph comparison
method for variant analysis, we have explored various existing
machine learning models (e. g., SimGNN [7], FSCNMF [12],
OhmNet [11], TADW [14]) for either learning graph structures
in a supervised manner to create a heuristic for alignment
methods, or learning whole-graph representations to utilize
similarity metrics to assemble a comparison heuristic for
known graphs.

A. Future Work

SYS2VEC can be used to predict evolution trends with
supervised learning methods like LSTM. Supervised methods
can be trained with time-series data using our vector represen-
tation per time slice to predict the evolution of software and
system products. The inference of evolution trends will help
to consolidate product lines and will make variant aggregation
easier. For this, first using Unified Modeling Language (UML)
as variant content input for the SYS2VEC for generating simi-
larity, and then using these similarities and time information to
building evolution steps with UML evolutionary notation [43]
is possible. As shown in Figure 4, utilizing deep learning and
selecting time as a continuous feature in addition to discrete
embeddings generated by SYS2VEC is possible to model
evolutionary trees.

Our future work will include exploring other similarity mea-
surement methods for variant analysis in SYS2VEC. These in-
clude, but are not limited to, Jensen-Shannon distance, first or
second Kulczynski coefficients, and Hellinger distance. These
methods are promising, since better similarity results can be
achieved with them for document learning and classification
tasks compared to Euclidean and Manhattan distances [44].

In future research, good exploration can be on Graph
Matching Networks [35] as a supervised message passing
neural network (MPNN) for embedding generation stage to
improve the method’s accuracy. Moreover, one of our future
explorations will be on unsupervised learning methods like
embedding propagation [45]. For improving ordering passes
in the normalization scheme, experimenting on token posi-
tion preserving advanced embedding techniques like Google

BERT [46] is another way to improve embedding structure
for SYS2VEC. In the long term, we focus on developing
time-series-based evolution-prediction (as suggested in Figure
4) with the help of SYS2VEC vector space mapping out-
put, auto-tuning for learning, and the normalization scheme
improvements. These improvements will enable aggregating
DTIs and allow experimenting on product line consolidation
with machine learning methods.

REFERENCES

[1] D. Faust and C. Verhoef, “Software product line migration and deploy-
ment,” Software: Practice and Experience, vol. 33, no. 10, pp. 933–955,
2003.

[2] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-Lehman graph kernels,” Journal of
Machine Learning Research, vol. 12, pp. 2539–2561, 2011.

[3] Q. Liu, J. Wang, D. Zhang, Y. Yang, and N. Wang, “Text features extrac-
tion based on tf-idf associating semantic,” 2018 IEEE 4th International
Conference on Computer and Communications, ICCC 2018, pp. 2338–
2343, 2018.

[4] T. Demeester, I. Sutskever, K. Chen, J. Dean, and G. Corado, “Dis-
tributed Representations of Words and Phrases and their Composition-
ality,” EMNLP 2016 - Conference on Empirical Methods in Natural
Language Processing, Proceedings, pp. 1389–1399, 2016.

[5] Q. V. Le and T. Mikolov, “Distributed Representations of Sentences and
Documents,” 31st International Conference on Machine Learning, ICML
2014, vol. 4, pp. 2931–2939, may 2014.

[6] S. Muhammad Isa, R. Suwandi, and Y. Pricilia Andrean, “Optimizing
the Hyperparameter of Feature Extraction and Machine Learning Clas-
sification Algorithms,” Bina Nusantara University Jakarta, Tech. Rep. 3,
2019.

[7] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “SimGNN:
A Neural Network Approach to Fast Graph Similarity Computation,”
WSDM 2019, 2020.

[8] C.-L. Lin, “Hardness of approximating graph transformation problem,”
in Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 1994, vol.
834 LNCS, pp. 74–82.

[9] K. Zhang and D. Shasha, “Simple Fast Algorithms for the Editing
Distance between Trees and Related Problems,” SIAM Journal on
Computing, vol. 18, no. 6, pp. 1245–1262, dec 1989.

[10] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann, “An optimal
decomposition algorithm for tree edit distance,” ACM Transactions on
Algorithms, vol. 6, no. 1, pp. 1–19, dec 2009.

[11] M. Zitnik and J. Leskovec, “Predicting multicellular function through
multi-layer tissue networks,” Bioinformatics, vol. 33, no. 14, pp. i190–
i198, jul 2017.

[12] S. Bandyopadhyay, H. Kara, A. Kannan, and M. N. Murty, “FSCNMF:
Fusing Structure and Content via Non-negative Matrix Factorization for
Embedding Information Networks,” CoRR, apr 2018.

[13] L. Van Der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2625, 2008.

[14] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information,” Tsinghua University
and HTC Beijing Advanced Technology and Research Center, Tech.
Rep., 2015.

[15] H. Cai, V. W. Zheng, and K. C. C. Chang, “A Comprehensive Survey
of Graph Embedding: Problems, Techniques, and Applications,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 9, pp.
1616–1637, 2018.

[16] H. Chen and H. Koga, “GL2vec: Graph Embedding Enriched by
Line Graphs with Edge Features,” in Neural Information Processing
- 26th International Conference, ICONIP 2019, Sydney, NSW, Australia,
December 12-15, 2019, Proceedings, Part III, ser. Lecture Notes in
Computer Science, T. Gedeon, K. W. Wong, and M. Lee, Eds. Cham:
Springer International Publishing, 2019, vol. 11955, pp. 3–14.

[17] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu,
and S. Jaiswal, “graph2vec: Learning Distributed Representations of
Graphs,” 28th Modern Artificial Intelligence and Cognitive Science
Conference, MAICS 2017, pp. 189–190, jul 2017.

69Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

[18] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, and E. Müller,
“NetLSD: Hearing the Shape of a Graph,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. New York, NY, USA: ACM, jul 2018, pp. 2347–2356.

[19] C. Moler and C. Van Loan, “Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later,” SIAM Review, vol. 45,
no. 1, pp. 3–49, 2003.

[20] K. Zhao, Y. Rong, J. X. Yu, J. Huang, and H. Zhang, “Graph Ordering:
Towards the Optimal by Learning,” CoRR, jan 2020.

[21] T. N. Phan, J. Küng, and T. K. Dang, “An Efficient Similarity Search in
Large Data Collections with MapReduce,” in Future Data and Security
Engineering - First International Conference, FDSE 2014, Ho Chi Minh
City, Vietnam, November 19-21, 2014, Proceedings, ser. Lecture Notes
in Computer Science, T. K. Dang, R. Wagner, E. Neuhold, M. Takizawa,
J. Küng, and N. Thoai, Eds. Cham: Springer International Publishing,
2014, vol. 8860, no. May 2019, pp. 44–57.

[22] Y. Tian and J. M. Patel, “TALE: A tool for approximate large graph
matching,” EECS Department, University of Michigan, Tech. Rep.,
2008.

[23] D. A. Cusanovich, A. J. Hill, D. Aghamirzaie, R. M. Daza, H. A.
Pliner, J. B. Berletch, G. N. Filippova, X. Huang, L. Christiansen, W. S.
DeWitt, C. Lee, S. G. Regalado, D. F. Read, F. J. Steemers, C. M.
Disteche, C. Trapnell, and J. Shendure, “A Single-Cell Atlas of In Vivo
Mammalian Chromatin Accessibility,” Cell, vol. 174, no. 5, pp. 1309–
1324.e18, 2018.

[24] M. Moussa and I. I. Măndoiu, “Single cell RNA-seq data clustering
using TF-IDF based methods,” BMC Genomics, vol. 19, no. Suppl 6,
2018.

[25] M. Grohe, “Word2vec, node2vec, graph2vec, X2vec: Towards a Theory
of Vector Embeddings of Structured Data,” Proceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, pp. 1–16, 2020.

[26] M. R. B. Clarke, R. O. Duda, and P. E. Hart, “Pattern Classification
and Scene Analysis.” Journal of the Royal Statistical Society. Series A
(General), vol. 137, no. 3, p. 442, 1974.

[27] G. F. Hughes, “On the Mean Accuracy of Statistical Pattern Recog-
nizers,” IEEE Transactions on Information Theory, vol. 14, no. 1, pp.
55–63, 1968.

[28] G. V. Trunk, “A Problem of Dimensionality: A Simple Example,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
1, no. 3, pp. 306–307, jul 1979.

[29] J. H. Lau and T. Baldwin, “An Empirical Evaluation of doc2vec
with Practical Insights into Document Embedding Generation,” in Pro-
ceedings of the 1st Workshop on Representation Learning for NLP.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2016,
pp. 78–86.

[30] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A
Next-generation Hyperparameter Optimization Framework,” Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2623–2631, jul 2019.

[31] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Proceedings of the 24th International

[36] X. Ling, L. Wu, S. Wang, T. Ma, F. Xu, A. X. Liu, C. Wu, and S. Ji,
“Multilevel Graph Matching Networks for Deep Graph Similarity Learn-
ing,” IEEE Transactions on Neural Networks and Learning Systems, pp.
1–15, jul 2020.

Conference on Neural Information Processing Systems, ser. NIPS’11.
Red Hook, NY, USA: Curran Associates Inc., 2011, p. 2546–2554.

[32] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, %urlhttp://is.muni.cz/publication/884893/en.

[33] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-based Python
JIT Compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC - LLVM ’15. New York, New York,
USA: ACM Press, 2015, pp. 1–6.

[34] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
“A Survey on Compiler Autotuning using Machine Learning,” ACM
Computing Surveys, vol. 51, no. 5, pp. 1–42, jan 2019.

[35] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph Matching
Networks for Learning the Similarity of Graph Structured Objects,”
DeepMind, Google, Tech. Rep., 2019.

[37] V. Tenev, “Directed coloured multigraph alignments for variant analysis
of software systems,” Bachelor Thesis, University of Kaiserslautern,
Germany, 2011.

[38] S. Duszynski, Analyzing similarity of cloned software variants using
hierarchical set models, ser. PhD theses in experimental software engi-
neering. Stuttgart: Fraunhofer Verlag, 2015, vol. 51.

[39] D. Gusfield, “Efficient methods for multiple sequence alignment with
guaranteed error bounds,” Bulletin of Mathematical Biology, vol. 55,
no. 1, pp. 141–154, jan 1993.

[40] L. Chang, X. Feng, X. Lin, L. Qin, W. Zhang, and D. Ouyang, “Speeding
Up GED verification for graph similarity search,” Proceedings - Interna-
tional Conference on Data Engineering, vol. 2020-April, pp. 793–804,
2020.

[41] Z. Abu-Aisheh, R. Raveaux, J. Y. Ramel, and P. Martineau, “An exact
graph edit distance algorithm for solving pattern recognition problems,”
ICPRAM 2015 - 4th International Conference on Pattern Recognition
Applications and Methods, Proceedings, vol. 1, pp. 271–278, 2015.

[42] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li,
R. Lopez, H. McWilliam, M. Remmert, J. Söding, J. D. Thompson,
and D. G. Higgins, “Fast, scalable generation of high-quality protein
multiple sequence alignments using Clustal Omega,” Molecular Systems
Biology, vol. 7, no. 539, 2011.

[43] R. France and J. Bieman, “Multi-view software evolution: a UML-based
framework for evolving object-oriented software,” in Proceedings IEEE
International Conference on Software Maintenance. ICSM 2001, no.
Icsm. IEEE Comput. Soc, 2001, pp. 386–395.

[44] K. Rieck KONRADRIECK and F. Pavel Laskov PAVELLASKOV,
“Linear-Time Computation of Similarity Measures for Sequential Data,”
Journal of Machine Learning Research, vol. 9, pp. 23–48, 2008.

[45] A. Garcia-Duran and M. Niepert, “Learning Graph Representations with
Embedding Propagation,” Advances in Neural Information Processing
Systems, vol. 2017-Decem, no. Nips, pp. 5120–5131, oct 2017.

[46] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,”
NAACL HLT 2019 - 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies - Proceedings of the Conference, vol. 1, no. Mlm, pp.
4171–4186, oct 2018.

70Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

	Introduction
	Related Work
	Feature Extraction
	Unsupervised Machine Learning

	Latent Space Representation
	SYS2VEC Approach
	System Variant Traverser
	Normalization Scheme
	Representation Learning
	Embedding Space Representation
	Method Optimization

	Validation
	Correctness
	Comparison to Other Techniques

	Conclusion and Future Work
	Future Work

	References

