
Continuous Information Processing Enabling Real-Time Capabilities:
An Energy Efficient Big Data Approach

Martin Zinner∗, Kim Feldhoff∗, Wolfgang E. Nagel∗
∗ Center for Information Services and High Performance Computing (ZIH)

Technische Universität Dresden
Dresden, Germany

E-mail: {martin.zinner1, kim.feldhoff, wolfgang.nagel}@tu-dresden.de

Abstract—A considerable part of data aggregation during
information processing in industry is still carried out in nightly
batch mode. In contrast, using our method termed Continuous
Information Processing Methodology (CIPM), the aggregation
can be started as soon as the data collection is initiated. Our
method was motivated by a real-world application scenario at
a semiconductor company. During the data collection process,
partial aggregated values are determined, such that, after the
data collection phase has been completed, the final aggregated
values are available for evaluation. In order to benefit from the
rigour of a formal approach, a mathematical model is introduced
and the conversion from batch mode to CIPM is exemplified.
The most common aggregation functions used in various field
of industry and business can be easily adapted and used within
CIPM. The major additional benefits of the CIPM are reduced
and spread aggregational effort over the whole collection period
as well as tightened and straightforward computational design
strategies. To conclude, the CIPM supports a paradigm shift from
more or less subjectively designed individualistic conceptions in
software design and development towards objectively established
optimal solutions.

Index Terms—Continuous information processing; Continuous
aggregation; Energy efficient computation; Real-time capabili-
ties; Data Analytics; Data processing; Stream processing; Batch
processing; Business Intelligence; Big Data.

I. I NTRODUCTION

At first, the core of our aggregation theory in a nutshell
is succinctly addressed, some definitions such as Big Data
are tightened up and the principal motivation of our paper,
i.e., increased real-time requirements in the industry, is pre-
sented. Cisco, in a white paper, identified the deficiencies
of the classical nightly batch jobs aggregation strategy and
summarised them in five Pain Points. All except for Pain
Point 3 regarding ad-hoc reporting, will be addressed within
this paper. The statistical functionstandard deviationis used
to illustrate our methodology. The usual representation of the
standard deviation is adapted to fit our needs.

Aggregation is an operation to obtain summarised informa-
tion by using aggregate functions. A new methodology for
information aggregation based on a very simple and straight-
forward starting point is formulated in this paper – namely,
that within the information flow,the process of information
aggregation should be started as early as possible, best as
soon as the collection phase is initiated. This strategy assumes
a strict and clearly defined architectural design strategy of the
computational framework and enables real-time capabilities
of the system, therefore, the new methodology is termed

Continuous Information Processing Methodology(CIPM). In
order to be able to in-depth analyse the CIPM, a formal,
mathematical model is set up, the conversion of the underlying
structure is defined and the pros and cons of CIPM, as opposed
to the classical batch jobs strategy, are discussed.

According to [1] “Big Data is the information asset char-
acterised by such ahigh volume, velocity and variety to
require specific technologyand analytical methodsfor its
transformation into value”. According to the definition above,
Big Data is much more that high volume of data and needs
unconventional methods to be processed.

At the same time, a cultural change should accompany the
process of investing in interdisciplinaryBusiness Intelligence
and Data Analyticseducation [1], involving the company’s
entire population, its members to “efficiently manage data
properly and incorporate them into decision making pro-
cesses” [2].

A. Motivation

1) Rapidly increasing data amount:The total amount of
data created, captured, and consumed globally is forecast to
increase rapidly, reaching more than 180 Zettabytes in 2025,
as opposed to 64.2 Zettabytes in 2020 and 15.5 Zettabytes
in 2015 [3]. Real-time information processing has become
a significant requirement for the optimal functioning of the
manufacturing plants [4]. Worldwide by 2022, over 50 bil-
lion Internet of Things(IoT) devices including sensors and
actuators are predicted to be installed in machines, humans,
vehicles, buildings, and environments.

2) Real-time requirements:Demand is also huge for the
real-time utilisation of data streams instead of the current
batch analysis of stored Big Data [5]. The operations of a real-
time system are subject totime constraints(deadlines), i.e., if
specified timing requirements are not met, the corresponding
operation is degraded and/or the quality of service may suffer
and it can lead even to system failure [6]. In a real-time system
deadlines must always be met, regardless of the system load.
A system not specified as real-time cannot usually guarantee
a response within any time frame. There are no general
restrictions regarding the magnitude of the values of the time
constraints. The time constraints do not need to be within
seconds or milliseconds, as often they are understood. There is
a general tendency that real-time requirements are becoming
crucial requisites.

155Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Travellers require current flight schedules on their portable
devices to be able to select and book flights; in order to
avoid overbooking, the flight plans and the filled seats must
be kept reasonably current. Similarly, people expect instant
access to their business-critical data in order to make informed
decisions. Moreover, they may require up-to-date aggregated
data or even ad-hoc requests. This instant access to critical
information may be crucial for the competitiveness of the
company [7].

B. Aim

Cisco [8] identified a couple ofPain Pointsin the Business
Intelligence (BI) area, but these Pain Points carry a more
general validity:

1) the race against time; managing batch window time
constraints,

2) cascading errors and painful recovery; eliminating errors
caused by improper job sequencing,

3) ad hoc reporting; managing unplanned reports in a plan-
based environment,

4) service-level consistency; managing service-level agree-
ments,

5) resources; ETL resource conflict management.

Our approach will address all points except Pain Point 3),
which is subject for future research.

In conclusion, continuous information processing enables
a new perspective on aggregation strategies, such that aggre-
gation is performed in parallel to the data collection phase.
Preliminary aggregated values corresponding to the current
state of the retrieved data are available for evaluation. Nightly
batch aggregation becomes obsolete.

C. Outline

The remainder of the paper is structured as follows: Sec-
tion II gives an overview regarding existing work related
to the described problem. An informal presentation of the
continuous aggregation strategy is presented in SectionIII ,
whereby SectionIV introduces the mathematical model and
describes how the batch aggregation can be transformed into
continuous aggregation. The presentation of the main results
and discussions based upon these results constitute the content
of SectionV, whereas SectionVI concludes this paper and
sketches the future work.

II. RELATED WORK

The focus of this Section is primarily on algorithmic ap-
proaches regarding the previous art. The analysis of different
one-pass algorithms [9] and their efficient implementation is
beyond the scope of this paper as well as pure technical
solutions based on database technologies.

A. SB-trees

A B-tree is a balanced tree data structure, that keeps data
sorted and allows searches, sequential access, and deletions
in logarithmic time; the tree depth is equal at every position,
whereas the SB-tree is a variant of a B-tree such that it offers

high-performance sequential disk access [10], [11]. Zhang [11]
outlines the key challenges of spatio-temporal aggregate com-
putation on geo-spatial image data, focusing primarily on data
having the form of raster images. She gives a very detailed
overview of the state of the art regarding efficient aggregate
computation. Her approach is based onaggregate queries
common in the database community, including data cubes,
whereas our approach (CIPM) does not focus on database
technology when calculating the aggregation functions. For
example, the improved multi-version SB-tree consumes more
space than the size of raw data. Other approaches use only a
small index, reducing the space needed, but supporting only
count and sum aggregate functions. The main idea behind
the SB-trees is to provide through a depth-first search, –
by accumulating partial aggregate values – a fast look-up of
computed values [11], [12].

B. Scotty

Scotty [13] is an efficient and general open-source operator
for sliding-window aggregation for stream processing systems,
such as Apache Flink, Apache Beam, Apache Samza, Apache
Kafka, Apache Spark, and Apache Storm. It enables stream
slicing, pre-aggregation, and aggregate sharing including out-
of-order data streams and session windows [14]. The aggregate
window functions are: avg(), count(), max(), min(), sum().
Being a toolkit, the out-of-the-box aggregate functions are
restricted to the above. Implementation details are disclosed
in a preprint paper [15]. Scotty can be extended with user-
defined aggregation functions, however, these functions must
be associative and invertible. Since Scotty is open source,
additional user extensions are always possible.

Sliding window aggregation is also a main topic regarding
this paper, even if sliding windows are not used for report-
ing/evaluation. There is always the possibility that erroneous
data is captured. This cannot be avoided, since a data set may
look formally correct, but may be wrong with regard to its
content. Such anomalies can be detected hours after the data
has been processed and should be corrected.

According to [16] research on sliding-window aggregation
has focused mainly on aggregation functions that are asso-
ciative and on FIFO windows. Much less is known for other
nontrivial scenarios. Is it possible to efficiently support asso-
ciative aggregation functions on windows that are non-FIFO?
Besides associativity and invertibility, what other properties
can be exploited to develop general purpose algorithms for fast
sliding-window aggregation? Tangwongsan et al. [17] present
the Finger B-tree Aggregator (FiBA), a novel real-time sliding
window aggregation algorithm that optimally handles streams
of varying degrees of out-of-orderness. The basic algorithms
can be implemented on any balanced tree, for example on
B-trees.

C. Holistic functions

The median is the middle number in an ordered list of items.
The median is a holistic function, i.e., its result has to rely on
the entire input set, so that there is no constant bound on the

156Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

size of the storage needed for the computation. An algorithm
suitable for continuous aggregation based on heap technology
can be found in [7]. For the sake of completeness, the main
idea is presented below. Two heaps are used, one for the higher
part and one for the lower part of the data. The newly collected
dataset is inserted into the corresponding heap; if the total
number of items is even and if the case arises, the heaps are
balanced against each other, such that the two heaps contain
the same number of items, etc. Hence, holistic aggregation
functions can be used with continuous aggregation techniques,
they should however satisfy the foreseen time constraints.

D. Quantile

A survey of approximate quantile computation on large-
scale data is given by Chen [18]. In streaming models, where
data elements arrive one by one in a streaming way, algorithms
are required to answer quantile queries with only one-pass
scan. Formulas for the computation of higher-order central
moments or for robust, parallel computation of arbitrary order
of statistical moments can be found here [19], [20], some of
them are one-pass incremental approaches.

In conclusion, the main focus of the existing research has
been to develop aggregate queries for efficient retrieval and
visualisation of persisted data. However, with Scotty a general
open-source operator for sliding-window aggregation in stream
processing systems, such as, for example, the Apache family,
has been developed. Scotty incorporates the usual aggregate
functions like avg(), sum(), etc., and it has the possibility
to include special user defined functions. Tangwongsan [16]
points out that much less is known for nontrivial scenarios, i.e.,
functions that are not associative and do not support FIFO
windows. Our approach, however develops the strategy and
technology for continuous information processing, abbreviated
CIPM and shows that functions, which allow efficient one-pass
implementations are suitable for CIPM. Moreover, holistic
functions allowing appropriate implementation, for example
median [7] can be used with CIPM.

III. PROBLEM DESCRIPTION

The term information function and aggregation function [21]
are used synonymously within this paper. Corporate reporting
aims to provide all of the counterparties with the information
they need in order to transact with a company. This can be
termed theinformation functionof corporate reporting [22].
Within this paper, we assume that the data collection and
the subsequent data transformation are continuous processes,
aggregation being the process that succeeds transformation.
The terms continuous information processing and continuous
aggregation are used alternatively, emphasising that within the
continuous information processing, the continuous aggregation
is the challenging part.

1) Overview of the CIPM :Following, the fundamental
issues of the continuous aggregation strategy are outlined by
using two simple flow diagrams, Figure (1) presenting the
classical nightly jobs aggregation strategy, whereas Figure (2)
describing very succinctly the continuous aggregation strategy.

It is assumed, that reporting is based on daily aggregated
data. Data collection starts at 00:00:00 for the current day
and it ends, retrieving data generated till 23:59:59 of the same
day. Whenever applying the classical batch jobs strategy, the
transformation/aggregation is started only after the data is fully
retrieved/collected for the current day, which we are referring
to. In this case, the transformation/aggregation can be started
only after midnight.

On the other hand, the CIPM is carried out on small chunks
of data, usually such that the transformation/aggregation is
performed on data loaded into memory during the collection
phase. This way, reloading data into memory for aggregation
purposes is obsolete.

The continuous aggregation strategy is quite straightfor-
ward: after midnight, the collection phase for the current day
is started, i.e., the chunksC1, C2, ..., Cn are retrieved one
after another. While the second chunkC2 is retrieved, the
first chunk C1 is transformed/aggregated, and so on and so
forth. At the end of the current day, most of the collected data
is aggregated. The subsequent day, the remaining chunk(s)
are transformed/aggregated and a post-aggregation phase is
started, during which the final calculations are performed. In
the end, the aggregated values are ready for reporting soon
after midnight.

In order to keep the presentation simple and accessible
and to avoid technical complications, it is required that the
time to perform the transformation/aggregation of a chunk is
slightly lower than the corresponding time of the collection
phase. In real-world systems, under some circumstances, this
is obviously not necessary. Let us suppose that the time to
retrieve a chunk ist, but the time to transform/aggregate
the values of a chunk is slightly lower than3t and let Ai

be the phase of aggregation of chunkCi. Then, the start
of Ai is phase-shifted byt with regard toCi, i.e., A1 is
started simultaneously withC2, etc. As a consequence,Ai

completes beforeC(i+4) is started. Hence, in this example
there are three instances of the aggregation algorithm running
in parallel. Possibly, information between the aggregation
instances running in parallel need to be exchanged.

In order to keep the presentation simple, it is assumed within
this paper, that the chunks are of the same size and the time
to retrieve them does not change. Of course, this assumption
in not necessary in real-world systems.

2) Exemplification using Standard Deviation (SD):Next,
the complexity of our approach is illustrated by exemplifying
the technology on thestandard deviation of the sample. The
standard deviation shows how much variation (dispersion,
spread) from the mean exists. It is easy to present without
being trivial.

Let {x1, x2, . . . , xN} be the observed values of the sample

items, let x̄ := 1/N
N∑

i=1

xi be the mean value of these

observations. The common representation of the (uncorrected

157Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Starting daily collection & aggregation

00:00:00 Start collecting
data; current day.

23:59:59 Stop collecting
data; current day

00:x:00 Start
transformation of the data
collected the day before.

00:y:00 Start aggregation
for the transformed data.

The next day

Figure 1: Simplified flow diagram exemplifying the batch job strat-
egy(x is the time gap due to collection delay; y is the time gap due
merely to transformation).

Starting daily collection & aggregation

00:00:00 Starting data
collection; current day.

Collecting data of
chunkC1; current day.

00:00:00 Starting transf.
& aggreg.; current day.
Waiting for chunk data

Collecting data of
chunkC2; current day

Collecting ...

Collecting data of
chunkCn; current day

Start transf. &
aggreg. chunkC1.

23:59:59 Ending data
collection; current day.

Start transf. &
aggreg. chunkC2.

Start transf.
& aggreg. ...

Start transf. &
aggreg. chunkCn.

23:59:59 Ending
almost all transf. &
aggreg.; current day

The next day:

Remaining transf.
& aggreg. of data

collected the day before;

Post-aggregation of data
collected the day before;

Figure 2: Simplified flow diagram exemplifying the continuous
aggregation strategy. The arrow with three heads signifies that the
aggregation phase waits till the respective chunk data has been
collected.

sample) standard deviation is:

SDN :=

√√
√
√ 1

N

N∑

i=1

(xi − x̄)2. (1)

At first glimpse, the above representation of the standard de-
viation cannot be applied to continuous computing techniques.
The impediment is the term̄x. In order to be able to apply
the formula (1), all the data involved has to be first collected.
Chan et al. [23], [24] call the above representationtwo-pass
algorithm, since it requires passing through the data twice;
once to computēx and again to computeSDN . This may be
unwanted if the sample is too large to be stored in memory, or
when the standard deviation should be computed dynamically
as the data is collected.

Regrouping the terms in the formula above, the well known
representation is obtained:

SDN =
1
N

√√
√
√
∣
∣
∣
∣
∣
N

N∑

i=1

x2
i −

(N∑

i=1

xi

)2
∣
∣
∣
∣
∣
. (2)

Let 1 ≤ n ≤ N . Let Sn = n

n∑

i=1

x2
i −
(n∑

i=1

xi

)2

, let An :=

n∑

i=1

x2
i , let Bn :=

n∑

i=1

xi. The alternative representation (2)

of the standard deviation is suitable to be used within the
continuous computation approach.

During the data collection phase, the functionsAn andBn

are updated, either after each itemxn, as soon as it in known
to the system, or considering small batches. Thus, at each
point in time, during the data collection phase, the values of
A(n+1) and B(n+1) can be easily calculated by adding up
the corresponding value of the new item. HenceA(n+1) =
An + x2

(n+1). Similar results hold forB(n+1). Accordingly,
at each point in time, the standard deviation can be easily
calculated, if needed, as a function ofSn, An, Bn. It follows:

S(n+1) = Sn + An + n ∙ x2
(n+1) − 2x(n+1) ∙ Bn.

Hence, intermediary results and trend analysis are possible
during data collection.

For example, almost allKey Performance Indicators(KPIs)
used in the semiconductor industry can be adapted to be
applied within CIPM [25]–[28]. The same is true in other areas
of the industry or business.

3) Reason for choosing SD:The considerations above were
drafted merely to illustrate the continuous computation tech-
nology, in real-world systems the representation (2) without
using absolute values in the square root function can lead
to negative values. WhenAN and BN are calculated in the
straightforward way, especially whenN is large and all of x-
values are roughly of the same order of magnitude, rounding
or truncation errors may occur [29]. Please note that the
representation (2) using absolute values, has been adapted in
order to avoid negative values under the square root. Using
double precision arithmetic can possibly avoid the occurrence
of anomalies as above.

158Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

4) Counterexample:Unfortunately, there are also some
simple and well known functions, such as theAverage Ab-
solute Deviation (AAD), which generally speaking cannot be
used with continuous computing techniques; AAD is calcu-
lated as the mean of the sum of the absolute differences
between a value and the central point of the group:

AADN =
1
N

N∑

i=1

|xi − M |.

The central pointM can be a mean, median, mode, etc. For
some distributions, including the normal distribution, AAD can
be related to or approximated with the corresponding standard
deviation [30]–[32].

IV. T HE FORMAL MODEL

The description of our methodology is formalised, we
introduce a mathematical model in order to use the advantages
of the rigour of a formal approach over the inaccuracies and
the incompleteness of natural languages. It is assumed that
the streams arefinite, i.e., there are two points in time,ts, the
initiating and te, the termination point, such that within this
time interval, the data is collected and aggregated.

If the aggregation occurs after the entire raw data have been
previously collected, involving technologies that process all of
the collected data at once, then the process is termedbatch
aggregation modeor large scale aggregation. On the contrary,
if the collected data[ts, te] can be split intok ≥ 2 smaller
(equal) units of lengthl, such that

U1 := [ts, ts+l], U2 := [ts+l+1, ts+2l], . . . ,

Uk := [ts+(k−1)∙l+1, te]

also termed chunks andpartial aggregationis performed on
these units, such that the final aggregation values are calculated
out of the corresponding partial values of the chunks, then the
process is termedsmall scale aggregation.

Some authors specify the terms large scale or small scale
aggregation regarding their ability to perform the computation
in memory. Within this paper, a more algorithmical than a
technical approach is followed.

A. Notation

1) General notations:Let lX ∈ N be the number of streams
and let

X := {X(1), X(2), . . . , X(lX)}

be the set of streams. In order to keep our model simple, it is
supposed that each stream delivers data at the same point in
time, let {1, 2, . . . , T } be the points in time when the data is
collected and known by the system.

Let 1 ≤ t ≤ T . The value of the streamX(l) collected
at time t is denoted byx(l)

t . The streamed values can be
represented as a matrix

(xtl)1≤t≤T ;1≤l≤lX .

2) Grouping: Let lF be the number of the aggregation
functions. In order to perform the computation of the streams
– the aggregation functions are in general functions of several
variables – a grouping

G := {G(1), G(2), . . . , G(lG)}

is defined on the space of the streams, such that

G(l) := {X(l1), X(l2), . . . , X(ll)}.

and lF = lG. Accordingly:

g
(l)
t := x

(l1)
t × x

(l2)
t × ∙ ∙ ∙ × x

(ll)
t

is the value of the groupingG(l) at time t. This way, new
compound streams are created. In order to keep our model
as simple as possible, it is supposed – without limiting the
generality – that the number of groupings is equal to the
number of aggregation functions.

3) Aggregation functions:Let

F := {F (1), F (2), . . . , F (lF)}

be the set of the aggregation functions, such that

F (l) : G(l) → R

for 1 ≤ l ≤ lF .
In order to keep the model as general as possible, small scale

aggregation is considered as the overall approach. This means
especially, that data is collected and computed/aggregated in
small batches. In order to be able to continuously compute
– i.e., retrieve/collect, transform, aggregate – the time to
aggregate the small batch should not exceed the collection
time of the same batch. Obviously, if this is not the case, the
aggregation cannot be performed during the data collection
phase. During the transformation phase, the data is verified
for accuracy, consolidated/aligned (i.e., data from multiple
sources is harmonised), grouped and adapted such that it is
best finalised for aggregation. During the transformation phase
data is not altered and has the level of granularity of the
original raw data.

4) Standard deviation as exemplification:Let 1 ≤ l ≤ lF .
Let us suppose thatF (l) : G(l) → R is the standard deviation,
see representation (2) and letx ∈ G(l) a particular stream. Let
1 ≤ t ≤ T and let:

f
(l,1)
t (x) :=

t∑

i=1

x2
i ,

f
(l,2)
t (x) :=

t∑

i=1

xi,

f
(l,3)
t (x) := t

t∑

i=1

x2
i −

(t∑

i=1

xi

)2

= t ∙ f (l,1)
t (x) − (f (l,2)

t (x))2. (3)

Let F
(l)
t (x) be the value of the functionF (l) applied on the

values subscripted by{1, 2, . . . , t}.

159Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Then F
(l)
t (x) can be calculated out of the values of

f
(l,1)
t (x), f (l,2)

t (x), i.e., by consideringf (l,3)
t (x), namely:

F
(l)
t (x) =

1
t

√∣
∣
∣f

(l,3)
t (x)

∣
∣
∣. (4)

B. Information processing

1) Chunk-wise processing:Let j, q ≥ 1 and let us suppose
that the streams are retrieved in small chunks:

Cj := {C(1)
j , C

(2)
j , . . . , C

(lX)
j }

of q items, i.e., the chunkC(l)
j consists of partial streams

C
(l)
j := {x(l)

((j−1)q+1), x
(l)
((j−1)q+2), . . . , x

(l)
(jq)}.

The information is processed chunk-wise, firstC1 is retrieved.
As long as the next chunkC2 is retrieved, aggregations is
performed onC1 simultaneously, then chunkC3 is retrieved
by simultaneously aggregating chunkC2, and so on and so
forth. As already mentioned, in order to assure continuous
computation, the time to perform the aggregation on the
chunks should not exceed the retrieval time of a chunk, else the
aggregation cannot be performed during the retrieval period.
The values off (l,1)

(j+1)q andf
(l,2)
(j+1)q can be easily calculated out

of f
(l,1)
jq andf

(l,2)
jq , for example:

f
(l,1)
(j+1)q(x) = f

(l,1)
jq (x) +

q∑

i=1

x2
jq+i.

The valueF (l)
jq can be calculated at each step, or alternatively,

after having reached the end of the collection phase. This
phase is termedpost aggregation phase,since calculations
are not done during the small scale aggregation phase (i.e.,
chunk aggregation), but after all chunks have been retrieved
and aggregated. Since the small scale aggregation should be
as fast and effective as possible, the functionsf

(l,3)
jq , F

(l)
jq must

not be necessary calculated for each chunk, – if there is no
requirement in this direction – they can also be calculated on
a case by case basis by the tool that visualises intermediary
results.

2) Truncation errors:A discussion regarding the truncation
errors is beyond the scope of this paper. As already mentioned,
whenN is large and all of x-values are roughly of the same
order of magnitude, rounding or truncation errors may occur
when f

(l,1)
t and/orf (l,2)

t for 1 ≤ t ≤ T are evaluated in the
straightforward way [29]. A greater accuracy can be achieved
by simply shifting some of the calculation to double precision,
see [23], [24] for a discussion on rounding errors and the
stability of presented algorithms. Barlow presents anone-pass-
throughalgorithm [33], which is numerically stable and which
is also suitable for parallel computing.

The scope of the presentation above is merely to illustrate
the technology. Of course, if a function does not allow an
one-pass algorithm, it cannot be used directly for continuous
computation. A classical example in this direction is the
average absolute deviation, as mentioned before, in some
cases there are approximative one-pass implementation of the
algorithms.

3) General case:Now, let us consider the general case.

Let 1 ≤ l ≤ lF , let j, q ≥ 1, such thatj is the index and

q is the length of the chunks. Let

F (l) : G(l) → R such that:

a) there existslf real valued functions

f (l,1), f (l,2), . . . , f (l,lf) defined onG(l)

such that for each chunkC(l)
j , the values of

f
(l,i)
(j+1)q (1 ≤ i ≤ lf)

can be calculated out of the values off
(l,i)
jq ,

b) F (l) is a function off (l,i) for all 1 ≤ i ≤ lf .

Then, intermediary results, such as the value ofF
(l)
(j+1)q can

be calculated out off (l,i)
(j+1)q.

Let jf be the index of the final chunk to be processed.
Obviously, the algorithms should ensure that the valueF

(l)
jf ∙q

does not depend on the size of the chunks.
4) Reprocessing:In practical systems, in general, there

should be a technology in place that allows recalculation.
This is necessary, if for what reason whatsoever, some stream
values are erroneous. Sometimes, it takes time to correct them,
since not all wrong values can be detected and corrected
automatically. Regarding the standard deviation, two new
functionsdf

(l,1)
t , df

(l,2)
t can be introduced, such that

df
(l,1)
jq (x) :=

(j+1)∙q∑

i=j∙q

x2
i

and

df
(l,2)
jq (x) :=

(j+1)∙q∑

i=j∙q

xi.

Then, correct and updated computed values can be achieved,
for example by adding tof (l,3)

T the new value ofdf (l,1)
jq

and subtracting the corresponding old valuedf
(l,1)
jq , similar

considerations fordf (l,2)
jq . This means especially, that the cor-

responding values for the initial chunk and the corrected chunk
have to be (re)calculated. In the end, the valueF

(l)
jf ∙q has to be

recalculated. As already mentioned, the above considerations
are included in order to illustrate the methodology. In practice,
better suited algorithms can or should be used instead.

C. Pseudo-code algorithm exemplification

A simplified algorithm to exemplify our continuous aggre-
gation strategy is sketched. It is based on disassembling the
standard deviationF (l)

t using f
(l,1)
t , f

(l,2)
t , f

(l,3)
t , see equa-

tion (3) and (4). In order to keep the representation of the
algorithm simple, it is supposed that the chunks have the
same length equal tolchunk. The corresponding algorithm
is presented in Figure (3). In real-world systems, the data
collection may involve also time limitstMax, such that the
combination of bothtMax and lchunk, restrict the length of
the chunks.

160Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

1 / *
2 * Sample code to exemplify the continuous aggregation

strategy
3 * /

4 double precision f(l,1)= 0; //component function
5 double precision f(l,2)= 0; //component function
6 double precision F (l) = 0; //intermediary value of the

standard deviation corresponding to the state of
collection

7 int lchunk = 10, 000; //number of the items of a chunk
8 float [lchunk] c; //contains the retrieved values of the chunk
9 float [lchunk] cprev ; //contains the data of previous chunk

10 int Lcol = 0; //length of the collection
11 //--
12 / *
13 * data corresponding to the length of a chunk is collected
14 * /
15 procedure data_collection(){
16 int lcur = 0; //number of the collected items
17 repeat
18 collect data into c;
19 lcur + +;
20 until (lcur = lchunk)
21 for (int i; i < lchunk; i++){
22 cprev [i] = c[i]; //copy the values of c into cprev

23 }
24 };
25 //--
26 / *
27 * data of the previous chunk is aggregated
28 * /
29 procedure data aggregation(){
30 float[lchunk] x; // contains data of the previous chunk
31 for (int i; i < lchunk; i++){
32 x[i] = cprev [i]; //copy the values of cprev into x
33 }
34 // calculation of the functions composing the standard

deviation

35 f
(l,1)

:= f
(l,1)

+

lchunk∑

i=1

(x[i])
2;

36 f
(l,2)

:= f
(l,2)

+

lchunk∑

i=1

x[i];

37 Lcol := Lcol + lchunk ; //number of items already collected
38 //

39 F
(l)

:=
1

Lcol

√∣
∣Lcol ∙ f(l,1) − (f(l,2))2

∣
∣; // only if required

40 };
41 //--
42 / *
43 * final calculation of the standard deviation
44 * /
45 procedure data_post_aggregation(){
46

47 F
(l)

:=
1

Lcol

√∣
∣Lcol ∙ f(l,1) − (f(l,2))2

∣
∣;

48

49 };
50 //--
51 / *
52 * start aggregation in parallel to data collection
53 * /
54 void main(){
55 data_collection();
56 repeat
57 start: in parallel
58 thread: data_collection();
59 thread: data aggregation();
60 wait until both threads finished;
61 until collection_phase_has_ended;
62 data aggregation();
63 data_post_aggregation();
64 }

Figure 3: Pseudo-code based algorithm using standard deviation
exemplifying the continuous aggregation strategy.

D. Benefits in the software development process

1) Transparent software development:One of the outstand-
ing advantages of the continuous aggregation strategy is the
possibility to simplify and align/harmonise the set-up process
of aggregation, thus leading to faster, modularised and more
effective and transparent software development. This involves
improved maintenance possibilities due to its conceptual unity.
Moreover, people can be trained much easier on maintenance,
since the software developed is not the outcome of individual
abilities and unique skills, but of very well specified method-
ologies.

2) Paradigm shift: Lewis [34], [35] stated thatsoftware
construction is an intrinsically creative and subjective activity
and as such has inherent risks. Lewis added:the software
industry should value human experience, intuition, and wisdom
rather than claiming false objectivity and promoting entirely
impersonal “processes”.

Our contribution is a step in setting up objective criteria
regarding software developing processes, such that itcan
be a science, not just an art, paraphrasing Roetzheim’s
statement [36] regarding software estimate. This way, our
approach facilitates theparadigm shift from a subjective
software construction activity, towards objectively verifiable
straightforward strategies. Our approach does not claim that
the overall effort of the transition from large scale aggregation
to small scale aggregation is diminishing, the complexity
of converting multi-pass algorithms to one-pass algorithms
should not be underestimated. It does requireintrinsically
creative and subjective activityas formulated by J.P. Lewis,
but merely on the algorithmic side.

E. Real-time capabilities

1) Real-time systems:The term continuous information
processinginvolves incessant data collection and steady aggre-
gation, such that preliminary aggregated results corresponding
to the current status of the collected data are available for
evaluation purposes. Continuous processing of large amounts
of data is primarily an algorithmics problem [37].

Real-time systems are subject to time constrains, i.e., their
actions must be fulfilled within fixed bounds. The perception
of the industry of real-time is first of all fast computation [38].
Moreover, TimeSys [39] requires the following features for a
real-time system:

a) predictably fast response to urgent events,
b) high degree of schedulability: the timing requirements of

the system must be satisfied at high degrees of resource
usage,

c) stability under transient overload: when the system is
over-loaded by events and it is impossible to meet all the
deadlines, the deadlines of selected critical tasks must still
be guaranteed.

The characterisation above exemplifies the different require-
ments in some fields of the industry. A real-time system
requires real-time capability of the underlying components,
including the operating system, etc. These considerations show

161Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

the immanent difficulties of the industry to cope with the
complexity of real-time requirements of opaque and incom-
prehensible systems.

2) Real-time capability of CIPM:In order to point out the
real-time capabilities of a continuous information processing
system, its behaviour is analysed and it is shown that it satisfies
the given time limits. In real-world systems, it is supposed that
the maximum extent of the streams, i.e., themaximum size of
the streaming dataand thestreaming speedare known and
these thresholds are not exceeded.

With the aim to keep the argumentation simple and straight-
forward, it is assumed that the streaming speed is constant,
i.e., the same amount and type of data is collected within
equal time intervals. Hence, it is appropriate to setup chunks
of data of the same size collected within equal time spans,
such that the aggregation time of different chunks is equal.
The aggregation timetagg of a particular chunk should not
exceed its retrieval timetret, i.e., tagg ≤ tret, else data to be
aggregated will accumulate.

The strategy to achieve real-time behaviour based on contin-
uous stream computing is straightforward. LettC be the time
constraint such that within the time interval specified accord-
ingly, aggregated data should be available. In order to have
real-time capabilities, the conditiontret + tagg ≤ tC should
be satisfied. Obviously, to achieve this goal, some fine tuning
should be performed by choosing the appropriate size for the
chunks. Hence, continuous computation including small scale
aggregation, pave the way for real-time capabilities.

In conclusion, within this Section a formal model has been
introduced in order to best describe the concepts of the contin-
uous information processing strategy. The focus is on the terms
of one-pass algorithm, small scale aggregation, continuous
computing, and real-time capability. One-pass algorithms en-
able small scale aggregation, which can pave the way for real-
time capabilities, on the condition that the timely constrains
can be satisfied by the underlying computing environment.
Actually, the one-pass requirement of the algorithms is not
necessary, it suffices that the partial results of the computation
of the chunks can be merged such that the expected aggregated
values can be calculated.

V. OUTLINE OF THE RESULTS; DISCUSSIONS

Our objective has been to work towards developing practical
solution to overcome the difficulties related to batch jobs,
identified by Cisco in a white paper [8] as Pain Points. The
pros and cons of the newly developed continuous information
processing strategy versus the traditional batch jobs approach
are outlined in this Section and additional weak points of each
technique are identified.

A. Cisco’s Pain Points

1) Toughest challenge:The main challenge – which led to
the outcome of this paper – was to investigate whether it is
possible to give satisfactory answers to the Pain Points raised
by Cisco [8] concerning batch aggregation on data streams.
Except Pain Point No. 3 regarding ad hoc reporting, to all other

Pain Points, such as batch window time constraints, painful
recovery, service-level agreements, etc., methods of resolution
have been established. In order to be able to properly present
our methodology, a formal model is set up and it is shown
that under some circumstances (for example if the aggregation
functions can be processed efficiently in one-step) the data
collection and data aggregation can be performed continuously
and thus comprise real-time capabilities.

2) Sticking point – additional implementation effort:The
one-pass implementation (alternatively using small scale tech-
nology) of aggregation functions can be meticulous and may
require additional effort. Most of the aggregation functions
also termedmeasuresused in the industry permit such imple-
mentations; one of the well-known counterexample is the av-
erage absolute deviation. Since the computation is continuous
and final results are available soon after the data collection has
been completed, the Pain Point No. 1 regarding the question
of batch window time constraints is obsolete.

3) Energy efficiency due to simplified recovery and to load
distribution: Painful recovery (Paint Point No. 2) is less
painful if there is a well thought-through recovery algorithm
in place, such that only the erroneous parts are recalculated.
Since there is a much better control of the computational/ag-
gregational flow, a better service-level and resource conflict
management can be achieved by using continuous aggregation.
It is true, that usually, batch jobs are performed during
nighttime hours, when the workload on the computer is lower
than during working hours. Unfortunately, due to computation
errors or erroneous raw data, the batch aggregation has to
be recomputed also during normal working hours. Hence, the
computer capacity should support the extended load due to
recomputing the batch jobs during working hours. On the con-
trary, by using continuous computation, the load is distributed
uniformly over the whole duration of the data collection and
as a result, peak loads remain manageable. Moreover, due to
our aggregation strategy – such that calculation is performed
during the collection phase as early as possible, best when
the data is still in memory – reloading the persisted data into
memory is reduced to a minimum. Besides, the small scale
aggregation can be optimised by identifying the optimal size
of the chunks, such that the time constraints are met with
minimal computational effort. This way, smaller computers
can be used, especially since the energy efficiency of the
batch aggregation is in general significantly worse than the
correspondent computation due to small scale aggregation.

B. Continuous aggregation versus batch jobs

1) Our fundamental computational strategy in a nutshell:
According to the long time experience of the first author,
the best performance in the field of Business Intelligence/-
Data Warehouse is obtained if the data is processed/trans-
formed/precalculated as soon as possible; best,as soon as
the data is known to the system. This includes also mul-
tiple storage strategies of the same raw/transformed data.
Sometimes, it is advantageous to pursuit adual strategy.
On the one hand try to follow the continuous computation

162Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

strategy as long as possible i.e., as long as the implementation
of the corresponding aggregation functions is possible with
reasonable effort and run-time performance, and on the other
hand, precalculate as much as possible by maintaining the
batch jobs strategy.

2) Executions plans as the weak point of the batch jobs
strategy: The main challenge of the batch jobs strategy, when
using general purpose database management systems, is a tech-
nical one and it relates to the optimization throughexecution
plans. In highly simplified terms, the execution plans attempt
to establish the most efficient execution of statements (queries)
out of a summary of pre-calculated statistics. Unfortunately,
the execution plans do not always generate the optimal (fastest,
most efficient) query; performance can also degrade if the
execution plans are updated. Hence, if the streams are not
steady, performance degradation of the batch jobs may occur.
There are methods to overcome the automatic generation of
the execution plans, but the problem in principle remains.

On the contrary, by using small scale aggregation, the size
of data sets on which computation is performed is more
or less constant and data is in memory, hence less prone
to fluctuations due to the executions plans. It is therefore
reasonable to assume some upper bounds, enabling real-time
capabilities of the system.

C. Enhanced system modeling

One of the most important side benefits of the continuous
information processing strategy is the straightforward system
modeling. In this way, the design of the architecture, data
flow, aggregation strategy, database schema design, etc., is
given by the structure of the streaming data, the aggregation
functions and the algorithms of their implementation. Thus, the
more individualistic design, heavily based on the experience
of the application developer is converted into a predefined set
of well founded modeling strategies, sustaining a paradigm
switch from more or less subjectively individualistic concep-
tions in software design and development towards objectively
established optimal solutions. Quantitative estimations show
that many Data Warehouse projects fail at a concerning rate,
wasting all the time, money, and effort spent on them [40].

D. Performance advantages

1) Hardware upgrade vs. performance improvement:Next,
two technical issues are addressed, which are decisive from
technical point of view:

1) absence of Data Warehouse design methodology,
2) performance problems due to the high complexity, re-

quirements on expandability and the low scalability of
complex solutions.

According to the experience of the first author at Qimonda
in the Business Intelligence and Data Warehouse environ-
ment, increasing the processing capabilities of the computers
does not always lead to improved performance of the Data
Warehouse application. By doubling the computing capacity,
roughly 20% in performance improvement has been achieved.
Using high performance racks produced the best results. In the

end, when the effort for performance improvement is greater
than the effort to redesign the Data Warehouse, appropriate
measures should be taken. Furthermore, due to our modu-
lar straightforward design strategy, the flow of data can be
much closely monitored, hence superiordata qualitycan be
achieved.

2) Broadening the tasks of the classical reporting strat-
egy: The essence of the continuous information processing
strategy is that it enables the calculation of the aggregation
functions during the collection phase. For example, for re-
porting purposes, the data for a full day is collected. The
classical batch jobs strategy envisaged the generation of the
data pool for reporting only after the data has been fully
collected. Hence, calculated/aggregated values for reporting
were available on the next day, depending on the execution
time of the batch jobs. Thus, the scope of classical reporting
strategy was to capture, survey and review the production
status of the previous day. On the contrary, based on the data
already collected, the continuous aggregation strategy enables
the calculation/generation of preliminary reports at various
points in time. This way, for example, soon after 12:00, the
daily reports show the production figures corresponding to
the time frame [0:00, 12:00]. Therefore, if these figures are
not optimal, corresponding measures to boost production can
be taken. Thus, modern reporting based on our technology
enablesproduction control.

In some cases, optimisation can be substantial, saving time
and costs. For example, in the semiconductor manufacturing,
there are optional production steps, where the material is
measured. The number of measurements can be in the range
of hundreds and the measurement time can last for several
hours. The common aggregation technology assumes that all
measurement data is collected before starting the computation.
By adopting our continuous computation technology, prelimi-
nary measurement results can be calculated. This way, faulty
processed material can be identified earlier and the ramp-up
time of a new product can be substantially reduced, thus giving
the company decisive advantage over his competitors.

In conclusion, the price for achieving continuous aggrega-
tion may be high, the build in functions like standard deviation
cannot be used any more, and as the case may be, new one-
pass or similar algorithms for the aggregation functions have
to be set up, hence algorithmic and programming effort may
increase. The benefits are obvious, a straightforward design
strategy, up-to-date aggregated values during data collection,
a uniform computational effort over the data collection period
and an efficient recalculation strategy, which lead in the end
to a much efficient utilisation of computational resources.
Improving the performance of batch jobs is tedious, if the
redesign strategy is not an option, sophisticated data base
technologies or costly rack high performance can help.

VI. CONCLUSION AND FUTURE WORK

In the following, the advantages of the CIPM are summa-
rized and the future work, we are concerned with, is sketched.

163Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

A. Conclusion

Satisfactory solutions to the problems caused by the nightly
batch aggregation as pointed out by Cisco [8] are given, except
for Pain Point No. 3. To ensure an accurate presentation of
our methodology, a formal model has been set up and it has
been shown that for a specific type of aggregation functions –
including those that supports efficient one-pass implementation
– the data aggregation can be performed continuously and thus
allows real-time capabilities.

1) Advantages CIPM - Résumé:Continuous aggregation
strategy supports:

1) real-time capabilities; if time constraints can be met,
2) aggregated values corresponding to the captured data;

i.e., reporting capabilities at any point in time during data
collection,

3) enhanced production controldue to up-to-date aggregated
data at any point in time during data collection,

4) straightforward design strategiesdue to clear, easy un-
derstandable architectural and implementation principles,

5) easy maintenancedue to transparent and straightforward
software development process,

6) higher quality of aggregated datadue to the simplified
architectural and implementation principles,

7) uniform load of the underlying database systemdue to
the continuous aggregation principles,

8) efficient recalculation of aggregated values; in case erro-
neous data is collected, and last but not least:

9) energy efficiency; smaller computers can be used due to
the fact that aggregation is performed during the whole
data collection period.

We have not experienced major difficulties in implementing
the CIPM approach in database application, implementation
from the scratch is pretty straightforward, porting to CIPM an
existing legacy database application using batch jobs, can be
quite cumbersome. For sophisticated legacy applications, the
most efficient method is to try to improve performance as long
as possible by applying database technologies, by using high
performance racks, etc.

2) Final considerations:The price of the advantages as
above depends on the structure of the aggregation function.
Most of the key performance indicators used in the industry
permit an incremental representation, i.e., as functions of
different representation of sum(), avg(), count(), similar to the
the standard deviation, as presented in this article. The effort in
this cases is manageable. Generally speaking, the aggregation
function should permit efficient one-pass calculation, or in the
case of holistic functions, an algorithm, such that the time
constraints can be satisfied.

B. Future Work

The Pain Point No. 3 of Cisco’s white paper [8]: “ad
hoc reporting; managing unplanned reports in a plan-based
environment”, remains still unhandled and it is subject of
future research. The question arise, as to what extent such
unplanned reports can be meaningfully foreseen and set up.

Furthermore, one asks oneself, what is the optimal strategy
regarding volatile versus persistent aggregation, i.e., aggre-
gation within a query set up by a visualisation tool versus
aggregation persisted in a data storage. From an algorithmic
perspective, persistent aggregation offers more advantages if
the query is often invoked. Moreover, the results can be much
better validated if the data is persisted. On the other hand,
sporadic queries should remain volatile, i.e., the result of the
queries should not be persisted for further reuse.

ACKNOWLEDGMENT

We acknowledge the assistance and helpful comments of
the anonymous referees.

REFERENCES

[1] A. De Mauro, M. Greco, and M. Grimaldi, “A formal
definition of big data based on its essential features,”Library
Review, 2016, Retrieved: September 2021. [Online]. Avail-
able: https://www.researchgate.net/publication/299379163_A_formal_
definition_of_Big_Data_based_on_its_essential_features

[2] H. U. Buhl, M. Röglinger, F. Moser, and J. Heidemann, “Big
Data,” Business & Information Systems Engineering, vol. 5, no. 2,
pp. 65–69, 2013, Retrieved: September 2021. [Online]. Available:
https://doi.org/10.1007/s12599-013-0249-5

[3] Statista, “Volume of data/information created, captured, copied, and
consumed worldwide from 2010 to 2025,” 2021, Retrieved: September
2021. [Online]. Available: https://www.statista.com/statistics/871513/
worldwide-data-created/

[4] R. Sousa, R. Miranda, A. Moreira, C. Alves, N. Lori, and J. Machado,
“Software tools for conducting real-time information processing and
visualization in industry: An up-to-date review,”Applied Sciences,
vol. 11, no. 11, p. 4800, 2021, Retrieved: September 2021. [Online].
Available: https://www.mdpi.com/2076-3417/11/11/4800

[5] K. Yasumoto, H. Yamaguchi, and H. Shigeno, “Survey of real-time
processing technologies of iot data streams,”Journal of Information
Processing, vol. 24, no. 2, pp. 195–202, 2016, Retrieved: September
2021. [Online]. Available:https://doi.org/10.2197/ipsjjip.24.195

[6] I. Sommerville, “Software engineering 9th edition,”ISBN-10, vol.
137035152, p. 18, 2011.

[7] Zinner et al., “Real-time information systems and methodology
based on continuous homomorphic processing in linear
information spaces,” 2015, Retrieved: September 2021. [On-
line]. Available: https://patentimages.storage.googleapis.com/ed/fa/37/
6069417bdcc3eb/US20170032016A1.pdf

[8] Cisco, “BI and ETL Process Management Pain Points,”White Paper,
pp. 1–9, 2010, Retrieved: September 2021. [Online]. Available:
https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-
management/tidal-enterprise-scheduler/whitepaper_c11-633329.pdf

[9] N. Schweikardt, “One-pass algorithm.” 2009, Retrieved: September
2021. [Online]. Available:http://www.tks.informatik.uni-frankfurt.de/
schweika/downloads/EncycDBS_OnePassAlgos.pdf

[10] P. E. O’Neil, “The sb-tree an index-sequential structure for
high-performance sequential access,”Acta Informatica, vol. 29,
no. 3, pp. 241–265, 1992, Retrieved: September 2021.
[Online]. Available:https://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.55.9482&rep=rep1&type=pdf

[11] J. Zhang, “Spatio-temporal aggregation over streaming geospatial
data,” in Proceedings of the 10th International Conference on
Extending Database Technology Ph. D. Workshop. Citeseer, 2006,
Retrieved: September 2021. [Online]. Available:https://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.84.8746&rep=rep1&type=pdf

[12] J. Yang and J. Widom, “Incremental computation and maintenance
of temporal aggregates,”The VLDB Journal, vol. 12, no. 3, pp.
262–283, 2003, Retrieved: September 2021. [Online]. Available:
http://ilpubs.stanford.edu:8090/482/1/2000-6.pdf

[13] TU-Berlin-DIMA, “Scotty: Efficient window aggregation for
out-of-order stream processing,”Generated by GitHub Pages,
2021, Retrieved: September 2021. [Online]. Available:https:
21:3103.09.202121:3103.09.202121:3103.09.202121:3103.09.202121:
3103.09.2021//tu-berlin-dima.github.io/scotty-window-processor/

164Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

http://ilpubs.stanford.edu:8090/482/1/2000-6.pdf
http://www.tks.informatik.uni-frankfurt.de/schweika/downloads/EncycDBS_OnePassAlgos.pdf
http://www.tks.informatik.uni-frankfurt.de/schweika/downloads/EncycDBS_OnePassAlgos.pdf

[14] J. Traub, P. M. Grulich, A. R. Cuellar, S. Breß, A. Katsifodimos,
T. Rabl, and V. Markl, “Scotty: Efficient window aggregation for out-of-
order stream processing,” in2018 IEEE 34th International Conference
on Data Engineering (ICDE). IEEE, 2018, pp. 1300–1303, Retrieved:
September 2021. [Online]. Available:https://hpi.de/fileadmin/user_
upload/fachgebiete/rabl/publications/2018/ScottyICDE2018.pdf

[15] J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß,
A. Katsifodimos, T. Rabl, and V. Markl, “Scotty: General and
efficient open-source window aggregation for stream processing
systems,” ACM Transactions on Database Systems (TODS),
vol. 46, no. 1, pp. 1–46, 2021, Retrieved: September 2021.
[Online]. Available:https://www.redaktion.tu-berlin.de/fileadmin/fg131/
Publikation/Papers/Traub_TODS-21-Scotty_preprint.pdf

[16] K. Tangwongsan, M. Hirzel, and S. Schneider, “Sliding-window
aggregation algorithms.” 2019, Retrieved: September 2021. [Online].
Available: http://hirzels.com/martin/papers/encyc18-sliding-window.pdf

[17] ——, “Optimal and general out-of-order sliding-window aggregation,”
Proceedings of the VLDB Endowment, vol. 12, no. 10, pp.
1167–1180, 2019, Retrieved: September 2021. [Online]. Available:
https://www.scott-a-s.com/files/vldb2019_fiba.pdf

[18] Z. Chen and A. Zhang, “A survey of approximate quantile
computation on large-scale data,”IEEE Access, vol. 8, pp. 34 585–
34 597, 2020, Retrieved: September 2021. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9001104

[19] P. P. Pebay, T. Terriberry, H. Kolla, and J. C. Bennett, “Formulas
for robust, parallel computation of arbitrary-order, arbitrary-variate,
statistical moments with arbitrary weights and compounding.” Sandia
National Lab.(SNL-CA), Livermore, CA (United States); The Xiph.
Org , Tech. Rep., 2015, Retrieved: September 2021. [Online]. Available:
https://www.osti.gov/servlets/purl/1504207

[20] P. Pébay, T. B. Terriberry, H. Kolla, and J. Bennett, “Numerically stable,
scalable formulas for parallel and online computation of higher-order
multivariate central moments with arbitrary weights,”Computational
Statistics, vol. 31, no. 4, pp. 1305–1325, 2016, Retrieved: September
2021. [Online]. Available:https://www.osti.gov/servlets/purl/1426900

[21] C. Labreuche, “A formal justification of a simple aggregation function
based on criteria and rank weights,” inProc. DA2PL2018, From
Multiple Criteria Decis. Aid Preference Learn., 2018, pp. 1–1,
Retrieved: September 2021. [Online]. Available:http://da2pl.cs.put.
poznan.pl/programme/detailed-programme/da2pl2018-abstract-14.pdf

[22] R. Eccles and G. Serafeim, “Corporate and integrated reporting: A
functional perspective,[w:] corporate stewardship: Achieving sustainable
effectiveness, red,”E. Lawler, S. Mohrman, J. OToole, Greenleaf, Posted:
2 Feb 2014 Last revised: 24 May 2018, Retrieved: September 2021.
[Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_
id=2388716

[23] T. F. Chan, G. H. Golub, and R. J. LeVeque, “Algorithms for
computing the sample variance: Analysis and recommendations,”
The American Statistician, vol. 37, no. 3, pp. 242–247, 1983,
Retrieved: September 2021. [Online]. Available:http://www.cs.yale.
edu/publications/techreports/tr222.pdf

[24] ——, “Updating formulae and a pairwise algorithm for computing
sample variances,” inCOMPSTAT 1982 5th Symposium held at
Toulouse 1982, 1982, pp. 30–41, Retrieved: September 2021. [Online].
Available: https://apps.dtic.mil/sti/pdfs/ADA083170.pdfP

[25] W. Hopp and M. Spearman,Factory Physics: Third Edition. Waveland
Press, 2011.

[26] W. Hansch and T. Kubot, “Factory Dynamics Chapter 7 Lectures
at the Universitaet der Bundeswehr Muenich,” p. 68, Retrieved:
September 2021. [Online]. Available:https://fac.ksu.edu.sa/sites/default/
files/Factory%20Dynamics.pdf

[27] C.-F. Lindberg, S. Tan, J. Yan, and F. Starfelt, “Key performance
indicators improve industrial performance,”Energy procedia, vol. 75,
pp. 1785–1790, 2015, Retrieved: September 2021. [Online]. Available:
https://doi.org/10.1016/j.egypro.2015.07.474

[28] M. Zinner et al., “Techniques and methodologies for measuring and
increasing the quality of services: a case study based on data centers,”
International Journal On Advances in Intelligent Systems, volume 13,
numbers 1 and 2, 2020, vol. 13, no. 1 & 2, pp. 19–35, 2020.
[Online]. Available: http://www.thinkmind.org/articles/intsys_v13_n12_
2020_2.pdf

[29] W. Kahan, “Pracniques: further remarks on reducing truncation errors,”
Communications of the ACM, vol. 8, no. 1, p. 40, 1965.

[30] T. Pham-Gia and T. Hung, “The mean and median absolute
deviations,”Mathematical and Computer Modelling, vol. 34, no. 7-8,
pp. 921–936, 2001, Retrieved: September 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0895717701001091

[31] R. C. Geary, “The ratio of the mean deviation to the standard deviation
as a test of normality,”Biometrika, vol. 27, no. 3/4, pp. 310–332, 1935.

[32] J. K. Patel and C. B. Read,Handbook of the normal distribution. CRC
Press, 1996, vol. 150.

[33] J. L. Barlow, “Error analysis of a pairwise summation algorithm to
compute the sample variance,”Numerische Mathematik, vol. 58, no. 1,
pp. 583–590, 1990, Retrieved: September 2021. [Online]. Available:
https://de.booksc.eu/book/6543977/98912d

[34] J. Lewis and T. Disney, “Large limits to software estimation,”ACM
Software Engineering Notes, vol. 26, no. 4, pp. 54–59, 2001, Retrieved:
September 2021. [Online]. Available:http://scribblethink.org/Work/
Softestim/kcsest.pdf

[35] J. Lewis, “Mathematical limits to software estimation: Supplementary
material,” Stanford University, 2001, Retrieved: September 2021.
[Online]. Available: http://scribblethink.org/Work/Softestim/softestim.
html

[36] W. H. Roetzheim and R. A. Beasley,Software project cost schedule
estimating: best practices. Prentice-Hall, Inc., 1998.

[37] B. Evgeniy, “Supercomputer beg with artificial intelligence of
optimal resource use and management by continuous processing
of large programs,” Glob Acad J Econ Buss, vol. 1, pp. 21–
26, 2019, Retrieved: September 2021. [Online]. Available:https:
//gajrc.com/media/articles/GAJEB_11_21-26_zOIbTWD.pdf

[38] E. A. Lee, “What is real time computing? a personal view.”IEEE
Des. Test, vol. 35, no. 2, pp. 64–72, 2018, Retrieved: September
2021. [Online]. Available:https://ptolemy.berkeley.edu/projects/chess/
pubs/1192/Lee_WhatIsRealTime_Accepted.pdf

[39] TimeSys Corporation, “The concise handbook of real-time systems,”
TimeSys Corporation Pittsburgh, PA, Version 1.3, pp. 1–65, 2002,
Retrieved: September 2021. [Online]. Available:https://course.ece.cmu.
edu/~ece749/docs/RTSHandbook.pdf

[40] D. Asrani, R. Jain, and U. Saxena, “Data Warehouse Development
Standardization Framework (DWDSF): A Way to Handle Data
Warehouse Failure,”IOSR Journal of Computer Engineering (IOSR-
JCE), vol. 19, pp. 29–38, 2017, Retrieved: September 2021.
[Online]. Available: http://www.iosrjournals.org/iosr-jce/papers/Vol19-
issue1/Version-2/E1901022938.pdf

165Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

http://www.iosrjournals.org/iosr-jce/papers/Vol19-issue1/Version-2/E1901022938.pdf
http://www.iosrjournals.org/iosr-jce/papers/Vol19-issue1/Version-2/E1901022938.pdf
http://scribblethink.org/Work/Softestim/softestim.html
http://scribblethink.org/Work/Softestim/softestim.html
http://scribblethink.org/Work/Softestim/kcsest.pdf
http://scribblethink.org/Work/Softestim/kcsest.pdf
http://www.thinkmind.org/articles/intsys_v13_n12_2020_2.pdf
http://www.thinkmind.org/articles/intsys_v13_n12_2020_2.pdf
http://www.cs.yale.edu/publications/techreports/tr222.pdf
http://www.cs.yale.edu/publications/techreports/tr222.pdf
http://da2pl.cs.put.poznan.pl/programme/detailed-programme/da2pl2018-abstract-14.pdf
http://da2pl.cs.put.poznan.pl/programme/detailed-programme/da2pl2018-abstract-14.pdf
http://hirzels.com/martin/papers/encyc18-sliding-window.pdf

	Introduction
	Motivation
	Rapidly increasing data amount
	Real-time requirements

	Aim
	Outline

	Related work
	SB-trees
	Scotty
	Holistic functions
	Quantile

	Problem Description
	Overview of the CIPM
	Standard Deviation (SD)
	Reason for choosing SD
	Counterexample

	The Formal Model
	Notation
	General notations
	Grouping
	Aggregation functions
	Standard deviation as exemplification

	Information processing
	Chunk-wise processing
	Truncation errors
	General case
	Reprocessing

	Pseudo-code algorithm exemplification
	Benefits in the software development process
	Transparent software development
	Paradigm shift

	Real-time capabilities
	Real-time systems
	Real-time capability of CIPM

	Outline of the results; Discussions
	Cisco's Pain Points
	Toughest challenge
	Sticking point … additional implementation effort
	Energy efficiency due to simplified recovery and to load distribution

	Continuous aggregation versus batch jobs
	Our fundamental computational strategy in a nutshell
	Executions plans as the weak point of the batch jobs strategy

	Enhanced system modeling
	Performance advantages
	Hardware upgrade vs. performance improvement
	Broadening the advantages of the classical reporting strategy

	Conclusion and Future Work
	Conclusion
	Advantages CIPM - Résumé
	Final considerations

	Future Work

	Acknowledgment
	References

