
Relational Databases Ingestion into a NoSQL Data Warehouse

Fatma Abdelhedi
CBI² research laboratory, Trimane,

Paris, France.

E-mail : fatma.abdelhedi@trimane.fr

Rym Jemmali
Toulouse Institute of Computer Science

Research (IRIT), CBI²- Trimane,

Paris, France

E-mail : rym.jemmali@trimane.fr

Gilles Zurfluh
IRIT, Capitole University,

Toulouse,France

E-mail : gilles.zurfluh@ut-capitole.fr

Abstract— The digital transformation of companies has led to

the evolution of databases towards Big Data. Our work is part

of this context and concerns more particularly the mechanisms

to extract datasets stored in a Data Lake and to store the data in

a Data Warehouse. The latter will allow, in a second time,

decisional analysis. In this paper, we present the extraction

mechanism limited to relational databases. To automate this

process, we used the Model Driven Architecture (MDA), which

offers a formalized environment for schema transformation.

From the physical schemas describing a Data Lake, we propose

transformation rules that allow the creation of a Data

Warehouse stored on a document-oriented NoSQL system. An

experimentation of the transformation process has been

performed on a medical application.

Keyword-Data Lake; Data Warehouse; NoSQL; Big Data;

Relational Database; MDA; QVT.

I. INTRODUCTION

Due to the considerable increase of data amount generated

by human activities, Data Lakes have been created within

organizations, often spontaneously, by the physical grouping

of datasets related to the same activity. A Data Lake [1] is a

massive grouping of data consisting of structured or

unstructured datasets. These datasets generally have the

following characteristics: (1) they can be stored on

heterogeneous systems, (2) each of them is exploited

independently of the others, (3) some of them can contain raw

data, i.e., data stored in their original form and without being

organized according to the use that will be made of them, (4)

the types and formats of the data can vary. In practice, a Data

Lake can group together different datasets [2] such as

relational databases, object databases, Comma Separated

Values (CSV) files, texts, spreadsheet folders, etc. The

massive data contained in a Data Lake represents an essential

reservoir of knowledge for business decision makers. This

data can be organized according to a multidimensional data

model in order to support certain types of decision processing

[3]. For example, in the French health sector, a Data Lake has

been created by the French public health insurance company

under the name of “Espace Numérique de Santé” (ENS); it

includes the electronic health records of insured persons,

health questionnaires, and care planners. However, the

heterogeneity of storage systems

combined with the diversity of content in the Data Lake is a

major obstacle to the use of data for decision-making. To

manipulate a Data Lake, a solution consists in ingesting the

data into a Data Warehouse and then transforming it

(grouping, calculations, etc.). Ingestion is a process that

consists in extracting data from various sources and then

transferring them to a repository where they can be

transformed and analyzed. For example, in [4] massive data

from various sources are ingested into a Data Warehouse and

exploited in the context of information retrieval on the Web.

Other works have introduced the concept of polystore, which

preserves the initial data sources (no ingestion) and allows

querying them by creating "data islands", each of which

contains several systems sharing a common query language.

For example, all relational databases are connected to the

"relational island", which is queried using standard SQL. This

solution, developed in particular in the BiGDAWG [5] and

ESTOCADA [6] projects, keeps the data in their native

formats.

Our work aims at performing decisional processing on a

Data Lake. This problem is part of a medical application in

which, massive data are stored in a Data Lake that will be used

by medical decision makers. We have chosen to ingest the

data from the Data Lake into a Data Warehouse that will later

be reorganized for Big Data Analytics. This paper is limited

to the ingestion of relational databases and excludes for the

moment other forms of datasets present in the Data Lake.

Our paper is organized as follows: in the following Section 2,

we present the medical application that justifies our work's

purpose. Section 3 describes the context of our study as well

as our research problem which aims at facilitating the

querying of data contained in a Data Lake by decision makers.

Section 4 describes the databases metamodels used in our

application. Section 5 presents our contribution which

consists in formalizing with the Model Driven Architecture

(MDA), the process of transforming the Data Lake databases

into a unique NoSQL Data Warehouse. Section 6 describes an

experimentation of the proposed process based on our medical

application. Section 7 contrasts our proposal with related

works. Finally, Section 8 concludes this paper and highlights

possible directions for exploring the continuity of the work.

II. CONTEXT OF WORK

In this section, we present the case study that motivated

our work, as well as the problem addressed in this paper.

A. Case Study

Our work is motivated by a project developed in the health

field for a group of private health insurance companies. These

128Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

insurance companies, stemming from the social and solidarity

economy, propose to their customers a coverage of the

medical expenses, which comes in complement of those

refunded by a public institution: the public health insurance

fund.

To ensure the management of their clients, these private

health insurance companies are facing a significant increase

in the volume of data processed. Indeed, some of these

companies carry out all the computer processing related to a

record. A digital health platform (ENS) has been developed

by the the public authority to store the medical data of each

insured person. Private health insurance companies can

extract data from the ENS to process the files of their clients

and, more broadly, carry out analyses of any kind (in

compliance with confidentiality rules). For each insured

person, the ENS contains administrative data, medical files

(civil status, medical imaging archives, reports, therapeutic

follow-ups, etc.), the history of refunds and questionnaires.

When the ENS is fully deployed at the national level, its

volume will be considerable since it concerns 67 million

insured persons.

In the context of this project, the ENS constitutes a real

Data Lake because of (1) the diversity of data types and

formats (2) the volumes stored which can reach several

terabytes and (3) the raw nature of the data. The objective of

the project is to study the mechanisms for extracting data from

the ENS and organizing it to facilitate analysis (Big Data

Analytics).

B. Problematic

Our work aims to develop a system allowing private health

insurance companies to create a Data Warehouse from a Data

Lake. This paper deals more specifically with the mechanisms

of extraction and unification from commonly used databases,

we limit the framework of our study as follows:

-The ENS Data Lake is the source of the data; in this paper,

we voluntarily reduce its content to relational databases.

Indeed, this category of datasets represents an important part

of the ENS data:

- The generated Data Warehouse is managed by a

document-oriented NoSQL system. This type of system offers

(1) a great flexibility to reorganize objects for analysis and (2)

good access performances to large volumes of data (use of

MapReduce).

To achieve our goal, each database in the Data Lake is

extracted and converted into another model to allow its

storage in the Data Warehouse. We do not address here the

problems related to the selective extraction of data and their

aggregative transformation.

To test our proposals, we have developed a Data Lake with

several relational databases managed by MySQL[7] and

PostgreSQL[8] systems. These databases contain respectively

data describing the follow-up of the insured and the

processing of the files in a medical center. The available

metadata are limited to those accessible on the storage systems

(absence of ontologies for example). The Data Warehouse,

which is supported by an OrientDB [9] platform, must allow

the analysis of the care pathways of insured persons with

chronic pathologies. We chose the OrientDB system to store

the Data Warehouse. Indeed, this document-oriented NoSQL

system allows to consider several types of semantic links such

as association, composition and inheritance links; it is thus

well adapted to our case study where the richness of the links

between objects constitutes an essential element for decisional

processes.

III. OVERVIEW OF OUR SOLUTION

Although a Data Lake can contain files of any format, we

focus in this paper on the extraction of relational databases and

the feeding of a NoSQL Data Warehouse. Several works have

dealt with the transfer of a relational database to a NoSQL

database. Thus, some works have proposed algorithms for

converting relational data to document-oriented systems, such

as MongoDB [10]; however, these works transform relational

links into embedded documents or DBRef links. However,

these NoSQL linkage solutions are not satisfactory with

respect to object systems[11]. Moreover, to our knowledge,

no study has been conducted to convert several relational

databases contained in a Data Lake into a NoSQL Data

Warehouse.

In our ingestion process, we have defined three modules:

the first module named CreateDW, the second ConvertLinks

and the last one MergeClasses.We used a Data Lake as a

source database for our process, which we limited in this paper

to Relational databases and as a target database,we used a

NoSQL Data Warehouse that will contain the final processed

data. We named our process RDBToNoSDW. Our proposal is

based on Model Driven Architecture (MDA) which allows to

describe separately the functional specifications and the

implementation of an application on a platform. Among the

three models present in MDA (CIM, PIM and PSM), we are

located at the PSM level where the logical schemas are

described. We also use the declarative language Query View

Transformation (QVT) [12] specified by the Object

Management Group (OMG) [13], which allows us to describe

the ingestion of data by model transformations.

To use the MDA transformation mechanism, we proposed

two metamodels describing respectively the source and target

databases. From these metamodels, we specified the

transformation rules in QVT language to ensure data

ingestion.

IV. METAMODELING

We present successively our metamodels proposal of a

source Relational database and a target document-oriented

NoSQL database.

A. Relational Metamodel

The Data Lake, source of our process, can contain several

relational databases. A relational database contains a set of

tables made of a schema and an extension. The schema of a

table contains a sequence of attributes. The extension is

129Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

composed of a set of rows grouping attribute values. Among

the attributes of a table, we distinguish the primary key whose

values identify the rows and the foreign keys, which

materialize the links. Figure 1 represents the Ecore[14]

metamodel of a relational database.

Figure 1. Metamodel of a relational database

B. Document-Oriented NoSQL Metamodel

The target of our process corresponds to the Data

Warehouse represented by a NoSQL database. A document-

oriented NoSQL database contains a set of classes. Each class

gathers objects that are identified (by a reference) and

composed of couples (attribute, value); a value is defined by a

type, it can be either multivalued or structured. We distinguish

a particular type, the reference, whose values make it possible

to link the objects. These concepts are represented in Figure 2

according to the Ecore formalism.

Figure 2. Metamodel of a document-oriented NoSQL database

V. DATA MANAGEMENT

This involves transferring relational databases from the

Data Lake to a NoSQL database corresponding to the Data

Warehouse. To carry out this ingestion process, we have

defined three modules that will successively ensure (1) the

transformation of relational data into NoSQL data (CreateDW

module), (2) the conversion of relational links (foreign keys)

into references (ConvertLinks module) and (3) the merging of

tables containing objects of the same semantics

(MergeClasses module).

A. CreateDW Module

This module transforms each relational database of the

Data Lake into a unique NoSQL database according to the

MDA approach. The NoSQL warehouse being unique, it will

contain the data coming from the different relational databases

of the Data Lake. The application of a set of transformation

rules defined on the metamodels of Section 4, generates a set

of classes in a NoSQL database. We informally present the

rules that have been expressed in the QVT language.

Rule 1: Each table in a relational database is transformed

into a class in the NoSQL database. To avoid synonymy, the

name of the class will be prefixed by the name of the original

database.

Rule 2: Each row of a table, associated with its schema, is

transformed into a record in the corresponding target class; the

record then contains a set of couples (attribute, value). The

primary key is stored as any attribute. At this stage, the foreign

keys are also stored with their relational values; they will be

converted into references by the ConvertLinks module. These

two rules, that we formalized in QVT language, are applied

for each relational database of the Data Lake and feed the

NoSQL DB; we will present their syntax in Figure 4 of the

experimentation section. In parallel with the application of

these transformation rules, an algorithmic processing allows

to record metadata; these metadata match each relational

primary key with the Record Identifier (RID) of the

corresponding record in the NoSQL database.

B. ConvertLinks Module

In the standard object-oriented systems[15], links are

materialized by references. Since this principle is used in

NoSQL systems, it is necessary to convert relational foreign

keys that have been transferred to the Data Warehouse into

references.
The mechanism we have developed in ConvertLinks is not

based on the expression of MDA rules but corresponds to an

algorithmic process. In the NoSQL database, all records of a

class are systematically marked with identifiers (RID for

Record ID). During the transfer of data into the records, the

relational primary and foreign keys were transferred in the

form of pairs (attribute, value). Thus, thanks to the metadata

recorded by the previous CreateDW module, the values of the

foreign keys are converted into RID.

130Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

C. MergeClasses Module

The ingestion of data from the Data Lake has been done

by transferring the data from the different relational databases

into the NoSQL database. However, it is common for tables

with the same semantics to be transferred from different

relational databases; these tables are said to be "equivalent",

for example the DB1-Insured table and the DB2-Patients table

containing data on the insured. It is therefore useful to group

the data contained in "equivalent" tables within a single class

of the NoSQL database. To achieve this grouping, we relied

on an ontology establishing the correspondences between the

terms of the relational databases contained in the Data Lake.

This ontology is provided by relational data administrators

bringing their business expertise. These administrators, after

consultation, have associated the tables considered as

semantically equivalent.
Using this ontology, the MergeClasses module creates

new classes in the NoSQL database; each of these classes

groups the data from the various equivalent tables. This

process is not limited to a union operation between records.

In fact, distinct records concerning the same entity can

have complementary attributes that will be combined in a

single record.

VI. IMPLEMENTATION AND TECHNICAL ENVIRONMENT

In this section, we describe the techniques used to

implement the RDBToNoSDW process. We used the Eclipse

Modeling Framework (EMF) technical environment that is

suitable for modeling, metamodeling, and transforming

models. EMF has the Ecore metamodeling language to create

and manipulate metamodels. Ecore is based on XMI to

instantiate models and QVT to transform metamodels.

Algorithmic processing was coded in Java because of its

compatibility with Eclipe which is the development

environment used.

The CreateDW module of our process generates a unique

NoSQL database from the Data Lake databses. It uses a

relational metamodel and a NoSQL metamodel as represented

with Ecore in Figures 2 and 3. The instantiation of the two

relational databases is done with the XMI language. Figure 3

shows the XMI instantiation of a source relational database.

The transformation rules have been translated with the QVT

language (Figure 4) and apply to all relational databases,

independently of the RDBMS used.

Figure 3. XMI instantiation of a source relational database

Figure 4. QVT transformation rules from relational to NoSQL databases

Figure 5. Result XMI file of a target NoSQL database (after QVT rules

execution)

The result of applying the QVT transformation rules

(Figure 4) is shown in Figure 5.

At the end of the execution of the CreateDW module, we

obtain a NoSQL Data Warehouse containing a set of classes

as shown in Figure 6. Each of them corresponds to a relational

table without any filtering having been carried out (possible

presence of "equivalent" tables stored in different databases

from the source).

Figure 6. Extract from the list of the Data Warehouse classes stored in

OrientDB

The ConvertLinks module converts relational foreign keys

into RID. For example, we consider a table “Patient”

containing a patient information’s with a field "Doctor"

representing a foreign key. This field will, therefore, be

converted to a reference (RID). Figure 7 shows a record of

the "Patient" class after running the ConvertLinks module.

131Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Figure 7. Extract from the “Patient” class after limks convertion

Finally, the MergeClasses module groups the records of

the classes considered as "equivalent" based on the ontology

provided by the experts. Figures 8 and 9 represent respectively

two records from two classes "ServiceProvision_Insured" and

"Analysis_Patients". The two records, having in common

several semantically equivalent attributes, will be merged into

a single record stored in the same class "Insured_DW" as

shown in Figure 10.

Figure 8. Record fron the « ServiceProvision_Insured » class

Figure 9. Record fron the « Analysis_Patients » class

Figure 10. Record fron the new created « Insured_DW » class

Figure 11. Extract from the "Insured_DW" class

Figure 11 represents an extract of the new class

"Insured_DW" containing a record resulting from merging

records belonging to the two classes

"ServiceProvision_Insured" and "Analysis_Patients".

VII. RELATED WORKS

In this section, we present research work on extracting data

from a Data Lake and more specifically data from several

relational databases and creating a NoSQL Data Warehouse.

The advent of Big Data has created several challenges for the

management of massive data; among these we find the

creation of architectures to ingest massive data sources as well

as the integration and transformation of these massive data

(Big Data) allowing their subsequent query. In this sense,

some works have focused on the proposal of architectures

(physical and logical) allowing the use and the management

of Data Lakes. The work in [16] proposes an approach to

structure the data of a Data Lake by linking the data sources

in the form of a graph composed of keywords. Other works

propose to extract the data of a Data Lake from the

metamodels of the sources. The authors in [17] have proposed

a metamodel unifying NoSQL and relational databases. There

are several formalisms [18] to express model transformations

such as the QVT standard, the ATL language [19], which is a

non-standardized model transformation language more or less

inspired by the QVT standard of the Object Management

Group, etc.

Other works have studied only the transformation of a

relational database into a NoSQL database. Thus in [20, 21]

the authors developed a method to transfer data from

relational databases to MongoDB. This approach translates

the links between tables only by nesting documents. In [22],

the authors present MigDB, an application that converts a

relational database (MySQL) to a NoSQL one (MongoDB.

This conversion is done over several steps: transforming

tables into JSON files, then transmitting each JSON file to a

neural network. This network allows to process the links at the

JSON file level, either by nesting or by referencing. This work

considers association links only. The same is true in [23],

where the authors propose a method for transferring relational

databases to MongoDB by converting the tables into CSV

files that are then imported into MongoDB. However, the

proposed method simply converts tables into MongoDB

collections without supporting the various links between

tables.

Our solution is based on the metamodeling of the sources of a

Data Lake, the transformation of these metamodels thanks to

the QVT standard and then the creation of a NoSQL Data

Warehouse stored under OrientDB allowing to query the data

of the Data Lake.

VIII. CONCLUSION

We have proposed a process to ingest data from a Data

Lake into a Data Warehouse. The Data Lake contains several

databases. This paper focuses on a specific problem, we have

limited the content of the Data Lake to relational databases.

132Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Three modules ensure the ingestion of the data. The

CreateDW module transforms each relational database into a

unique NoSQL database by applying MDA rules. This

mechanism will be extended to transform other types of

databases stored in the Data Lake. The ConvertLinks module

translates relational links (keys) into references in accordance

with the principles of object databases supported by the

OrientDB system. Finally, the MergeClasses module merges

semantically equivalent classes from different Data Lake

databases; this merge is based on an ontology provided by

business experts.
Currently, we are continuing our work on the ingestion of

data from a Data Lake by extending it to other types of data

sources, ingesting and processing data coming from CSV

files, NoSQL databases (document and column-oriented

databases) and text files. Indeed, these types of files are

present in the Data Lake of our medical case study.

REFERENCES

[1] F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu, and P. C.

Arocena, « Data lake management: challenges and

opportunities », Proc. VLDB Endow., vol. 12, no 12, p.

1986‑1989, August 2019.

[2] P. P. Khine and Z. S. Wang, « Data lake: a new ideology in

big data era », ITM Web Conf., vol. 17, 2018.

[3] M. El Malki, A. Kopliku, E. Sabir, and O. Teste,

« Benchmarking Big Data OLAP NoSQL Databases », in

Ubiquitous Networking, vol. 11277, Ed. Cham: Springer

International Publishing, 2018, p. 82‑94.

[4] Meehan, J., Aslantas, C., Zdonik, S., Tatbul, N., & Du, J.

(2017). Data Ingestion for the Connected World. CIDR.

[5] J. Duggan, J. Kepner, A. J. Elmore, and S. Madden, « The

BigDAWG Polystore System », SIGMOD Rec., vol. 44, no

2, p. 6, 2015.

[6] R. Alotaibi, B. Cautis, A. Deutsch, M. Latrache, I.

Manolescu, and Y. Yang, « ESTOCADA: towards scalable

polystore systems », Proc. VLDB Endow., vol. 13, no 12, p.

2949‑2952, August 2020.

[7] https://www.mysql.com (Accessed: 19 March 2021)

[8] https://www.postgresql.org (Accessed: 19 March 2021)

[9] https://orientdb.com/docs/3.0.x/ (Accessed: 01 March 2021)

[10] A. A. Mahmood, « Automated Algorithm for Data Migration

from Relational to NoSQL Databases », Al-Nahrain J. Eng.

Sci., vol. 21, no 1, p. 60, feb. 2018.

[11] http://www.odbms.org/odmg-standard/reading-room/odmg-

2-0-a-standard-for-object-storage/ (Accessed: 30 June 2021)

[12] https://www.omg.org/spec/QVT/1.2/PDF (Accessed: 12 May

2021)

[13] https://www.omg.org (Accessed: 12 May 2021)

[14] https://download.eclipse.org/modeling/emf/emf/javadoc/

 2.9.0/org/eclipse/emf/ecore/package-summary.html

(Accessed: 22 June 2021)

[15] http://www.odbms.org/wp-content/uploads/2013/11/001.04-

Ullman-CS145-ODL-OQL-Fall-2004.pdf (Accessed: 30

June 2021)

[16] C. Diamantini, P. Lo Giudice, L. Musarella, D. Potena, E.

Storti, and D. Ursino, « A New Metadata Model to

Uniformly Handle Heterogeneous Data Lake Sources:

ADBIS 2018 Budapest, Hungary, September 2-5, 2018,

Proceedings », 2018, p. 165‑177.

[17] C. J. F. Candel, D. S. Ruiz, and J. J. García-Molina, « A

Unified Metamodel for NoSQL and Relational Databases »,

ArXiv210506494 Cs, May 2021.

[18] J. Bruel and al., « Comparing and classifying model

transformation reuse approaches across metamodels »,

Softw. Syst. Model., 2019.

[19] A. Erraissi and M. Banane, « Managing Big Data using

Model Driven Engineering: From Big Data Meta-model to

Cloudera PSM meta-model », International Conference on

Decision Aid Sciences and Application (DASA), Nov. 2020,

p. 1235‑1239.

[20] Hanine, M., Bendarag, A., Boutkhoum, O. (2015) « Data

Migration Methodology from Relational to NoSQL

Databases ». International Journal of Computer and

Information Engineering, 9(12), 2559 - 2563.

[21] L. Stanescu, M. Brezovan, and D. D. Burdescu, « Automatic

Mapping of MySQL Databases to NoSQL MongoDB »,

Proceedings of the Federated Conference on Computer

Science and Information Systems, Oct. 2016, p. 837‑840.

[22] G. Liyanaarachchi, L. Kasun, M. Nimesha, K. Lahiru, and A.

Karunasena, « MigDB - relational to NoSQL mapper », in

2016 IEEE International Conference on Information and

Automation for Sustainability (ICIAfS), Dec. 2016, p. 1‑6.

[23] S. Chickerur, A. Goudar, and A. Kinnerkar, « Comparison of

Relational Database with Document-Oriented Database

(MongoDB) for Big Data Applications », in 2015 8th

International Conference on Advanced Software

Engineering Its Applications (ASEA), Nov. 2015, p. 41‑47.

133Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

