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Abstract—This paper deals with various ways of design and
implementing Distributed Control Systems (DCS). The authors
are familiar with the Unified Modeling Language (UML), the
Discrete Event System Specification (DEVS) formalism, the IEC
61499 standard, and different tools, such as 4diac, Node-RED, or
PowerDEVS. The paper presents the basics of methodology for
the design and implementation of control software, which will
allow the use of any of these approaches following a conceptual
model based on UML. The main reason is to describe the
whole development process, from the standard UML models to
their implementation, and enable the developers to use modeling
or design techniques they are familiar with. The promising
way is to apply the model-continuity principle in conjunction
with the DEVS formalism, which can be used as a unifying
platform for design, and in some cases, as the most appropriate
path to implementation. Using DEVS, we get the possibility of
directly applying the simulation during the design, thus a more
straightforward validation of the proposed system. The DEVS
model can also be transformed into alternative implementation
models. The considered principles is demonstrated on a case
study of a simple system, Central heating with zone valves.

Keywords—Control systems; IoT; UML; DEVS; IEC 61499;
simulation; model continuity.

I. INTRODUCTION

The paper presents the basics of methodology for the design
and implementation of control systems. We consider the tree-
level structure of such a system: sensors/actuators, distributed
controllers, and a Supervisory Control And Data Acquisition
(SCADA) system. The standard IEC 61499 addressing func-
tion blocks for industrial processes and control systems was
established in 2005. It defines a generic model for distributed
control systems. Various environments and tools follow IEC
61499 principles, e.g., 4diac with the corresponding runtime
environment FORTE [1]. Different approach to the imple-
mentation of control systems or their parts is represented
by, e.g., Node-RED [2]. Nevertheless, a uniform procedure
including a problem analysis or requirements specification
is not defined. The motivation for this work is to describe
the whole development process, from the conceptual models
to their implementation following the Model-Driven Devel-
opment (MDD) and model-continuity principles, and allow
any of the commonly available approaches. Our goal is to
define and use a unified approach independently of the target
implementation environment.

MDD is a development methodology that supports the use of
models as significant artifacts [3]. The development process is

a series of constant refinement and transformation of models.
Ideally, more specific models are generated and, in the last
step, the code for a particular platform. Unified Modeling
Language (UML) is a standard language for modeling various
aspects of software systems, both in academia and in industrial
development, thanks to a sophisticated graphical representa-
tion. However, the ability to simulate and investigate models
in real conditions limits the use of UML [4]. It is, therefore,
appropriate to look for proper formalisms or approaches that
can build on UML models and simplify the simulation and
transition from models to implementation.

A typical example of a combination of formal modeling
and simulation is the Discrete Event System Specification
(DEVS) [5]. DEVS is a modular and hierarchical formalism
for modeling and simulation of discrete event systems, systems
of differential equations (continuous systems), and hybrid
systems. DEVS models can be interconnected through in-
put/output ports to create modular and hierarchical topologies
of blocks. In the context of modeling and development of
control systems, the Model Continuity for DEVS has been
introduced [6][7]. The main idea of model continuity is
that a DEVS simulation model for a controller can evolve
during the development process from a pure simulation (in
a simulated environment) until its final deployment in the
target environment without re-implementation. The DEVS
simulation engine becomes a run-time execution environment
for the target system. This approach leads to the fact that no
errors are introduced into the target implementation during the
development.

For our work, we chose DEVS because it is well-defined,
intuitive, understandable, and universal. DEVS-based real-time
simulation engine (in our case PowerDEVS [8]) can be used
in the role of runtime execution environment. In addition, we
also consider the possibility of using other environments for
implementation. These environments interpret DEVS similar
models such as Node-RED flows or IEC 61499 applications
(in our case, we use the open-source development environment
4diac with the runtime environment FORTE).

The paper is structured as follows. We discuss related work
in Section II. Section III addresses the conceptual modeling of
control systems, introducing a case study. In Section IV, we
describe the possibilities of creating the Platform Independent
Model (PIM) using UML and DEVS. Subsequently, in Section
V, we will show the ways of creating the Platform Specific
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Model (PSM) from DEVS PIM. Finally, in Section VI, we will
show the possibility of extending to a distributed environment.

II. RELATED WORK

Similar works are dealing with control system design using
UML and the IEC 61499 standard. Many of them, e.g., [9]–
[11], propose generating IEC 61499 from UML, or System
Modeling Language (SysML), typically from a class diagram.
Other works, such as [12], deal with the behavior of atomic
components and propose a transformation of activity diagrams
to the IEC 61499 execution control charts (ECC). Unlike these
works, which interconnect UML and IEC 61499, we propose
a step from UML to DEVS during the development process.

Other approaches, e.g. [13], [14] deal with the behavioral
model of atomic components. In contrast, we focus only on
the structure of components and sub-components in this paper.
We assume the availability of a library of well-defined atomic
components in the target environment.

There are also approaches that attempt to transform con-
ceptual models, such as those described by SysML, into
simulation models [15]. In contrast, we do not consider the
simulation model a goal but a potential option in the develop-
ment. Our main goal is a unified methodology leading to the
implementation of a control system in different environments.
The novelty of our approach is that we use DEVS as a basis
for various ways of implementation. DEVS, IEC 61499, and
Node-RED execution environments are presented as examples.

III. CONCEPTUAL MODEL OF CONTROL SYSTEM

In this part, we will present the basic approach to creating
conceptual models using the UML language and then a simple
example (case study), on which we will demonstrate our
approach to the design of control systems.

A. UML in Control Systems Design

UML is an acknowledged and used language for conceptual
design of software systems, including control systems. Their
advantage is that they can offer different views of the same sys-
tem to get a complete overview of the complex system. Now,
we briefly recall the basic way of designing software systems
using the UML language. Although UML itself does not define
the methodology and assumes that different approaches will
use it, it is possible to identify basic processes, activities, and
models applied to most design methodologies.

• Requirements specification. In the context of software
design, we could also use the term system usage model,
as a use case diagram is often used.

• Structure specification. To capture the structural elements
of the system, which then contribute to the solution
of individual use cases. Class, component and package
diagrams are commonly used.

• Behavior specification. Diagrams capturing the behavior
of classes (objects), use cases, or components. The most
commonly used ones are activity diagrams (for use cases),
state-charts, and interaction diagrams.

Figure 1. Use case model of the Case study.

The models designed in this way can be subjected to a more
thorough analysis. Nevertheless, UML, including the object-
oriented approach, retains features that are advantageous in the
design of control systems — complexity, the ability to capture
and formalize control system requirements, or the availability
of tools. So, the full use of the object-oriented approach in the
practical design and implementation of control systems was
too demanding and expensive. From these reasons, standards
for implementing control systems in the automation domain,
e.g., IEC 61499, have gradually emerged. However, even
in these approaches, UML models can be used to specify
requirements and domain concepts (conceptual modeling),
which can either be further developed by other paradigms,
used as part of a simulation, or transformed into a language
or environment that better suits the needs of the control system
[16].

B. Case Study

We will use a simple example (case study) of Central
heating with zone valves to demonstrate our approach. Each
zone contains a temperature sensor, valve actuator allowing
On/Off control, and Human-Machine Interface (HMI) capable
of displaying all relevant data points and setpoint adjusting.
The zone controller compares sensor data and setpoint and
decides whether to open or close the radiator valve. In our ex-
ample, we consider two zones. Zone controllers are connected
to the central controller. The central controller sets the boiler
On/Off according to the state of zone valves; if and only if at
least one of the valves is open, the boiler is instructed to heat.
It also contains interface to central HMI/SCADA.

C. UML Conceptual Model of the Case Study

The first step in creating conceptual models is defining
the system’s requirements. As already mentioned, a use case
diagram from UML is usually used. The initial overview is in
Figure 1. We have identified four actors who interact with
the system and are always involved in specific use cases.
The actor can be a person (User), but also other systems
or hardware components. We have identified three types of
these components in our example—temperature sensor, valve
actuator, and boiler actuator. The primary use cases are
then the temperature setting by the user and the change of
the valve setting (open/closed) based on the change of the
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sensor temperature. This case can cause a change in the boiler
settings, which is modeled by the extension case.

Another important model is the domain model. It captures
the system’s conceptual elements (classes) that are needed
to solve individual use cases. The primary domain model
is shown in Figure 2. The model is divided into two parts.
The first part models the zone (ZoneController), and the
second is the central unit (CentralController). In each part,
we have identified the basic concepts of the system – sensors,
actuators, the user interface (HMI) representation, and the
basic controller. These parts communicate with each other,
as indicated by the association between the CentralCore and
ZoneCore classes.

Figure 2. Basic domain model of the Case study.

Of course, conceptual classes are not sufficient for a more
detailed description of the structure and behavior of the
system; they serve primarily for the initial identification of
concepts in the system design. In a further development, more
detailed design models are created based on these concepts and
use cases. It will be taken into account in Section IV.

IV. PLATFORM INDEPENDENT MODEL

The Platform Independent Model (PIM) is used to design
a detailed system structure and behavior regardless of the
specific platform on which the system will run. For the
creation of PIM, modelling techniques should be used that
allow simple automated transformation into PSM. We will
continue with UML models. To use them as a starting point
for further generation, we will mainly use the component
diagram, because components are close to the concept of
control software design. We will show that a similar effect can
be achieved with the DEVS formalism, which can be directly
simulated with a suitable tool and considered an actual control
system model and its implementation.

A. UML Component Model of the Case Study

The UML component is a specialization of a structured class
and as such forms a hierarchical model. It can be understood
as an entity encapsulating a more complex structure of classes
(and thus other components) and interchangeable with another
component that meets the required interface.

Figure 3 shows the component corresponding to the
ZoneController sets of conceptual classes. The component
works with representations (classes or interfaces) for the
temperature sensor, valve actuator and user interface (HMI),
and contains the ZoneCore class implementing the decision
algorithm. The component has one input and one output

Figure 3. Component model of the ZoneController conceptual class.

port, each associated with an interface. The component offers
the interface (provided interface, in the UML terminology)
ZoneInterface, through which it receives external events, and
requests the interface (required interface, in the UML termi-
nology) CentralInterface from the connected components.

Figure 4. Component model of the CentralController conceptual
class.

Figure 4 shows the component corresponding to the Cen-
tralController sets of conceptual classes. The component is
structured similarly to the ZoneController. The component
has the provided interface CentralInterface and the required
interface ZoneInterface. Each event corresponds to the method
of the respective interface. We assume that only simple data
(temperature, on/off, etc.) is passed between the system ele-
ments, which can be annotated—the method attributes model
annotations. In the example, only the identification of individ-
ual zones is used.

B. From UML Component Model to the DEVS

From the control systems design point of view, it is better,
especially for clarity, that each event is associated with an
individual port of the component. This is achieved by deriving
specific interfaces from the original interface in the component
diagram, following the principle of interface separation, where
each such interface contains only one method corresponding to
the event. The modified component model is shown in Figure
5.

It is possible to create a composite component that consists
of other interconnected components. Figure 6 shows such
the composite component for a simple system consisting of
one zone controller. Simple, so-called atomic components,
which are no longer further divided into internal parts, can be
described by some of the behavior models, or another suitable
formalism can be attached to them.

Finally, we can create the same component diagram using
the DEVS formalism. Compared to the UML component

116Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances



Figure 5. Part of the ZoneController component model having
individual ports for each event.

model, which captures the system’s static structure, the DEVS
(component) model represents specific elements (objects) of
the system. Thus, it represents both the model and the im-
plementation of a specific system. In Figure 7, we see a
DEVS model for a system with one central control and two
zones. These components can be imagined as instances of the
corresponding components in Figure 6, but they also define
the structure.

Figure 6. System component model.

It is then possible to derive systematically implementation
for a specific platform, like PowerDEVS Node-RED, and
4diac/FORTE. In our approach, we understand this as a
straightforward implementation of the Model-continuity prin-
ciple [6]. It follows that in the case of DEVS, the PIM and
PSM models merge–they differ mainly in the implementation
of atomic components. Therefore, the DEVS models of the
case study will be further discussed in Section V.

V. PLATFORM SPECIFIC MODEL

In this section, we will present various ways of control sys-
tem implementation, which are based on DEVS PIM models.

A. PowerDEVS implementation

The transformation of the DEVS model for a specific
version of the DEVS platform is straightforward (various
implementations differ only in detail). We use PowerDEVS
[8] because it enables real-time simulation and can serve as
runtime environment for DEVS models deployment.

The control model is in Figure 7. It contains two compo-
nents, modeling zone controllers and one component, mod-
eling the central controller. The interconnected component
models the transfer of data between components (in DEVS
terminology, these are events).

The model of the central controller is in Figure 8. The or
component is responsible of deciding to keep the boiler on
if and only if at least one of the zone controllers requires to

Figure 7. PowerDEVS model of the system.

heat. In addition to the basic functionality it also includes an
interface on central HMI/SCADA.

By comparing with the domain model (see Figure 2)
and the component model (see Figure 4), we find that the
Boiler Actuator component models the BoilerActuator con-
cept, the HDMI SCADA Pub Sub component represents the
CentralUI user interface, and other components and their
interconnections model the decision-making algorithm (Cen-
tralCore). The interface is then made up of ports and data
transfer instead of interfaces and method calls.

Figure 8. PowerDEVS model of central controller.

The zone controller model is shown in Figure 9. It contains
an interface to a temperature sensor (in our case, it is a
client of MQTT broker, which subscribed messages from the
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Figure 9. PowerDEVS model of zone controller.

required temperature sensor), comparison with the setpoint
available from the HMI (connected via MQTT pub-sub client
too) is performed by the hysteresis component. The output
is connected to the actuator interface (again via MQTT pub-
sub component). The inputs and outputs of the zone controller
enable the connection and transfer of data from/to the central
controller. These data are used to operate the potentially
distributed control and for presentation to the user via the HMI.
Setpoints, i.e., required temperature values in zones, can also
be set via local HMIs or the central HMI.

B. Node-RED implementation

Node-RED [2] is a popular tool for coordinating and
automating the IoT systems. It is a platform for modeling
and interpreting so-called flows, which is a concept similar
to DEVS. DEVS is thus easily transformable into Node-RED.

Figure 10. Node-RED model of the system.

The difference between Node-RED and DEVS is that it is
not intended for simulations nor hard real-time applications.
However, for implementation of soft real-time applications
(typically IoT or home automation), it can be successfully
used. It provides the concept of interconnecting function
blocks (in Node-RED terminology, these are nodes) into
flows, which corresponds to composites in DEVS. These can
be organized hierarchically. When transforming DEVS into
Node-RED, it is practically only necessary to overcome a
small problem. The Node-RED node has only 0 or 1 input.
Nevertheless, the specific meaning of the input data can be dis-
tinguished by the topic specification in the incoming message

Figure 11. Node-RED model of central controller.

structure (the message object always contains the topic and
payload slots). For the systematic transformation of DEVS into
Node-RED, it is necessary to express the existence of input
ports of the component by a corresponding modification of
the message topic. In our case we solve this by nodes of type
change (in Figures 10, 11, and 12 they are colored yellow).
Such a node sets msg.topic to the corresponding DEVS port
name. In a case when DEVS does not define port names
explicitly (in our case, the or component in Figure 8), generic
names like x1, x2 are used (see Figure 11).

Figure 12. Node-RED model of zone controller.

According to this information, the next node then knows
the port name and can handle the message adequately. Node-
RED flows in Figures 10, 11, 12 correspond to DEVS models
in Figures 7, 8, 9.

C. IEC 61499 implementation

Transformation into IEC 61499 also requires overcoming a
slight difference compared to DEVS. IEC 61499 distinguishes
between data and events due to the optimal implementation of
complex real-time control applications. If data appears on the
input port, it does not mean that it should be processed imme-
diately. For the input data to be processed, the corresponding
input event has first to be accepted. Which data is processed
in which input event is specified by the interface. Figure 13
shows the interface of the Central Heating block type. The
jumpers between event and data inputs specify which data
is processed at which events. For the purpose of systematic
transition from DEVS to IEC 61499, it makes sense for each
data input or output to specify its own event.
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Figure 13. Interface of Central controller. To be DEVS-compatible,
each data input and output has its associated event.

Another difference of IEC 61499 from DEVS is that data
from multiple sources cannot be sent to single data input.
However, this can be solved by including a special component
that forwards any of its inputs to a single output. In our
example, we do not have such a situation, but in general, it is
necessary to count with it.

Figure 14. IEC 61499 model of the system.

Figure 14 shows the system model according to IEC 61499
(modeled in 4diac development environment), corresponding
to the DEVS model in Figure 7. The other models would be
derived from DEVS analogously.

VI. PLATFORM SPECIFIC MODEL – DISTRIBUTED VERSION

The entire control application, comprising two zone con-
trollers and one central, can be easily deployed to a sin-
gle computer or Programmable Logical Controller (PLC),
equipped with a runtime environment for PowerDEVS, Node-
RED, or IEC 61499. Now let’s look at the distributed im-
plementation of the control application. IEC 61499 supports
distributed deployment natively. In DEVS and Node-RED, we
can do it analogously. We will demonstrate the principle using
the IEC 61499 approach.

The first step is a model of a distributed computing envi-
ronment, see Figure 15. In our case, there are two networked
Raspberry Pi computers. The second step is to map the
components of the control application to the compute nodes. In
Figure 16, it is visualized by different colors of the components

Figure 15. IEC 61499 distributed system model. One RPi hosts
Central controller and Zone 1 controller, The second one hosts

Zone 2 controller.

Figure 16. IEC 61499 model of the system - distributed version.
Different component colors mean that they are mapped to different

nodes of the distributed system. Dotted lines model network
connections between parts of the system.

(the colors correspond to the colors of the computational nodes
in Figure 15). The third step is to ensure communication
between the distributed components using a suitable network
protocol. These are the dashed links between the components
in Figure 16. The application running on the first or second
node must be equipped with communication components for
each link that leads out of the node, respectively inside the
node, see Figures 17 and 18. In addition, it is also necessary
to ensure the initialization of components at the start of the
platform (see the component E START). The selection of

Figure 17. Central controller and Zone 1 controller with an
interface to the Zone 2 controller is deployed on Rasberry Pi 1
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Figure 18. Zone 2 controller with and interface to central controller
is deployed on Raspberry Pi 2.

communication components and the way of initialization of
components can be standardized for the considered application
domain. In our case, we use only the MQTT protocol, message
topics are unambiguously derived from component and port
names, and all components can be initialized concurrently.

VII. CONCLUSION

This paper has shown by example the transition from
a conceptual model through a platform-independent model
to platform-specific models in several environments usable
for control applications. The initial modeling tool was the
UML language, which is followed by the DEVS formalism.
We understand DEVS as an essential tool and concept for
modeling and implementing control systems in our approach.
We demonstrated the transition from DEVS to three imple-
mentation environments. Each of them has specifics regarding
distribution, real-time responses of runtime availability for
given hardware (e.g., PLC, soft PLC, or PC), and semantics of
block diagrams, flows, etc. Specifically, PowerDEVS is suited
for time critical regulatory control, but it is also applicable in
another way (like in our example). On the other hand, Node-
RED is designed to typically run on an IoT gateway or in
the cloud, not on a PLC. Finally, IEC 61499 is applicable for
PLC as well as for higher levels of control. In addition, it has
the means for distributed application deployment. Besides the
implementation environments we dealt with, there is possible
to consider any other modeling and programming means based
on hierarchically organized and interconnected function blocks
with semantics similar to DEVS.

An interesting feature of our methodology is the continuity
of the DEVS model in all considered implementation envi-
ronments. The transformation of the DEVS model into the
target environment is based on relatively simple rules, and the
original structured DEVS model is retained. Because DEVS
is at a higher level of abstraction than, for example, IEC
61499, where data and event ports are distinguished, modeling
is easier. This more direct modeling is then at the cost of
slightly less efficient implementation (the component in DEVS
always reacts to any change in any input port). However, it
is still usable for hard real-time in the same way as, e.g.,
PowerDEVS. At the same time, it allows transformation to
Node-RED (unless hard real-time behavior is required).

Unlike other related works, we do not deal with the
level of atomic blocks. We do not generate them from their
specification, but we expect a standard library (concerning
the application domain) of atomic function blocks in all
considered environments. However, to provide the necessary
function block libraries in target environments, their automatic
generation from behavioral specifications can be considered
using activity diagrams, statecharts, etc., similar to some of
the related work mentioned in Section II.
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