
Software Functional Sizing Automation from Requirements Written as Triplets

Bruel Gérançon, Sylvie Trudel, Roger Kkambou, Serge Robert
Department of Computer Science

Université du Québec à Montréal (UQAM)
Montréal, Canada

e-mail: gerancon.bruel@uqam.ca, trudel.s@uqam.ca, nkambou.roger@uqam.ca, robert.serge@uqam.ca

Abstract—The domain of software functional size measurement
automation, from software specification documents, has been a
research topic over the last years. The literature consulted
shows that attempts to automate the process of measuring the
software functional size has obtained little success at the
industry level. Several tools for automating the measurement of
software functional size have been developed according to the
Common Software Measurement International Consortium
(COSMIC) method (ISO 19761) website and that of
International Function Point User Group (IFPUG). However,
these tools encountered many flaws, constraints, and
limitations. Moreover, the methods, techniques and tools for
writing software specification documents used in the industry
are far from allowing easily the automation of the measurement
of software functional size. In industry, software requirements
are often written in natural language, and no technical details
are specified. Thus, software requirements are usually
incomplete, inconsistent, and prone to ambiguities, and
therefore, the analysts can easily make errors of interpretation.
Therefore, automating the software functional size
measurement is not an easy task. This article introduces a new
technique for writing software requirements that could help to
automate the functional size measurement process. More
precisely, we propose a “triplet approach” for writing software
specifications. Furthermore, this procedure is proven, tested,
and validated by the development of a new tool for automating
the measurement of software functional size, as defined by the
COSMIC method. This tool allows to generate triplets (subject,
predicate, object) from use cases written in natural language
and determines this way the software functional size. Our tool
integrates a set of techniques to create a complex artificial
intelligence which helps to measure COSMIC function points.

Keywords-COSMIC; Automation; Functional size; Triplet;
Artificial intelligence.

I. INTRODUCTION
The measure of software functional size plays an

important role in software engineering, in dealing with new
information and in communication technologies (NICT). It is
a key factor that allows estimating the effort and the cost of
developing software products. Up to now, several estimation
methods and approaches have been proposed. As an example,
Boehm [5] proposed the COnstructive COst 1 MOdel
(COCOMO) method to estimate the cost and duration of
software projects. COCOMO is based on the estimation of the

number of lines of code to be written for a software. Thus, the
number of lines of code corresponds to the physical size of the
software. Albrecht [6] proposed a method based on the
number of function points, the principle being to identify and
quantify user functionalities, thus giving rise to the notion of
functional size. Several software measurement methods, such
as COSMIC, IFPUG, NESMA, Mark II and FISMA have
been proposed and approved by the International Organization
for Standardization (ISO). Among the various existing
methods and tools, COSMIC is a recent measurement method,
developed with the aim of overcoming some limitations of the
other methods. A particularity of the COSMIC method is that
it can be applied early in the software life cycle and on a set
of software components2.

Although several software measurement methods have
been proposed in the literature, the measure of the software
functional size is still little used in the industry. The
application of software measurement methods remains until
now a difficult task [7]. Therefore, the software engineering
industry needs tools to automate the functional size
measurement process of software [8]. According to the
literature consulted, one of the main avenues or research
approaches for automating the process of measurement of the
functional size of software starts from specifications [1]. In
such an approach, the functional size of software is measured
from specification documents. However, we can ask: do
software requirement writing techniques facilitate the
automation of software functional size measurement?

In this article, we will review in section 2 the main
techniques and methods for writing software requirements. In
section 3, we will describe the limitations of these techniques.
Subsequently, we will introduce in section 4, the COSMIC
method for sizing software. In section 5, we will introduce our
new approach and technique for writing software
requirements that could help automate the software functional
size measurement process from these specifications, as well
as our tool newly developed for supporting the process.
Lastly, we will present, in section 6, the results of our research
and the future work to be done.

II. TECHNIQUES AND METHODS FOR WRITING SOFTWARE
REQUIREMENTS

The automation of the measuring process of software
functional size depends necessarily on the mechanism for

23Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

III. LIMITATIONS OF APPROACHES, METHODS, AND
TECHNIQUES FOR WRITING REQUIREMENTS

We present, in this section, the definition of software
requirement and the limitations of approaches, methods, and
techniques for writing requirements.

A. Software Requirements
Requirements engineering is an important phase of the

software development life cycle. By definition, a software
requirement is a condition that a software or system must be
able to meet. In other words, a software requirement is a
capability that a system must exhibit to satisfy a contract
between a customer and a supplier. In software engineering,
the process of requirements engineering, more specifically the
activities of elicitating, analyzing, specifying, verifying, and
validating requirements are all important for software
engineers. Wiegers [3] defines the elicitation of requirements
as a process of exploration, discovery, and invention. It helps
to uncover the requirements of a software system by
communicating with customers, users, and other stakeholders
having an interest in the development of the system [3]. The
requirements, once discovered, will be analyzed and described
in a software requirements specification document. This
document will constitute, after the client's verification and
validation, the contractual basis between the software
engineers and the client. Requirements engineering is an
interdisciplinary activity that acts as an intermediary between
the supplier and the customer in order to be able to specify and
manage the requirements that must be satisfied by the system.
It therefore consists in identifying the goals and the scope of

the software and in specifying the context in which the
software will be used. As for Boehm [5], the requirements
engineering process is the upstream part of the software
development process. It allows, among other things, the
passage of informal needs expressed by stakeholders into
abstract requirements until a software requirements
specification is obtained [5]. The upstream requirements, once
produced, will be described in a specification. This document
(the specifications) is the entry point for the software
development phases between the customer and the
developers.

B. Limitations of Software Requirements Writing
Techniques
The techniques used in industry to write software

requirements have several limitations. According to Ambler
[13], these techniques increase the risk of failure of software
development projects, since they describe a large percentage
of software specifications that are never implemented.
Additionally, the classical approach to requirements writing
fails to solve the problem of requirements semantics, since
natural language is inherently ambiguous [4]. Indeed, one of
the main limitations of the classic or traditional approach to
writing software requirements comes from the fact that the
techniques, in particular Use Cases and Use Stories used to
specify and describe software requirements, are in natural
language, with unnecessary details. So, they do not facilitate
the automation of the software functional size measurement
process. It is necessary to propose a new technique for writing
software requirements that could overcome these difficulties.

IV. THE COSMIC METHOD FOR SIZING SOFTWARE
Functional size is based on software functionality. The

idea is to quantify the amount of functionality provided to a
user for a given software product. This implies that the
functional size represents the size of the derived software by
quantifying the required user functionality (ISO 14143-1).
There are different methods for measuring functional size.
Within our research, we adopted the COSMIC method. It
involves applying a set of principles, rules, and processes to
measure the user’s functional requirements of a given
software. The result is a numerical value as defined by ISO
19761 and which represents the functional size of the
software. With COSMIC, we measure the data movements
applicable to data groups manipulated by each functional
process. A data movement can be of different types (Entry,
Exit, Read, or Write). Figure 1 summarizes the measurement
process of the COSMIC method.

Figure 1. The measurement process of the COSMIC method.

writing the software requirements, in other words, it depends
on the tools, techniques, and methods used to write the
specifications. Several techniques and methods for writing
requirements have been proposed in the literature, and these
techniques are used in industry. For example, Jacobson et al.
[9] propose the technique of “Use Cases” to write
software requirements. Beck and West [10], on their part,
propose “User Stories” as a technique for writing
software requirements. These techniques are texts
widely used to identify and record the software functional
requirements. By definition, Use Cases are textual
descr ip t ions used for document sof tware
specifications. They influence all the components related to
the software development process, including analysis, design,
implementation, and testing. Use Cases describe textually
how an actor or user will interact with a software system in
order to achieve a goal. The purpose of Use Cases is to
identify, describe and document the software functionality,
specifying how the system can be used to enable different
stakeholders and users to achieve their goals. Note that Use
Cases are expressed in natural or technically neutral language,
without specifying any technical terminology. User Stories
consist in a few lines of text that describe a functionality that
the software must offer to allow a given actor or user to
achieve a specific goal. User Stories are generally written in
natural language and do not include technical terms. One of
the major advantages of this approach is that it is centered on
the system user.

24Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

V. SPECIFICATION OF SOFTWARE REQUIREMENTS USING OUR
TRIPLETS STRUCTURE

We describe, in this section, the software requirements
writing technique proposed, and the role of its three (3)
components.

A. Triplets Structure
The software requirements writing technique that we

propose to facilitate the process of automating the functional
sizing of software is a “triplet approach”. In other words, each
triplet is a single sentence (subject, predicate, object). The
subject represents the actor (i.e., the functional user) who
interacts with the system. a composite predicate represents the
Use case scenario; an atomic predicate represents the
methods, transactions or events triggered by the actor
(functional, other system, hardware device). Lastly, the object
represents a software entity. The goal of the triplet approach
is to allow analysts to write or express customers’ needs in a
simple and effective way with little information. This means
that the triplet structure provides an atomic and succinct
description of software requirements, expressing the user need
with little or no superfluous details. It indeed emphasizes the
clarity and brevity of the software requirements. Therefore,
the triplet approach could make it easier to perform automatic
processing of software requirements, which could automate
the software functional size measurement process.
Correspondingly, the triplet structure is a requirement writing
technique that could complement Use Cases and User Stories.
In this case, we developed a tool that automatically extracts
triplets from Use Cases, User Stories, or any text written in
natural language, and which detects the unnecessary details in
the software requirements specification document.

B. Mapping between the Concepts of the Triplet and
COSMIC

The triplet structure is a trio of concepts where the subject
corresponds to the functional user; the composite predicates
correspond to the functional process and the atomic
predicates correspond to the data movements. And the objects
correspond to the data group manipulated by the functional
process. Lastly, the triplet represents a part of the functional
process of the software to be measured.

C. Model of Triplet (Triple Store) for Writing Software
Requirements
The proposed triplet model is a model that allows to

represent the software functional requirements as a triplet, to
facilitate the software functional sizing automation. It contains
the concepts and knowledge about the COSMIC measurement
method, as well as the functional processes of the software to
be measured as a triplet. Subsequently, we developed a tool
that automatically generates triplets from functional
requirements written in the form of a Use Case or a User
Story. The structure targeted by the tool is represented as
[subject, predicate, object]. The goal is to represent the
software requirements as a triplet, consisting of a subject, a

Figure 2. Triplet Model.

Here is a Use Case example written as a triplet:

Description:
Title: Register a new product
The sales manager asks to add a new product. The system
displays the product form. The sales manager enters the
new product information. The system checks the data. The
system records the new product. The system confirms the
recording of the new product.

In this example, we described the Use Case using a triplet

form (subject, predicate, object). The proposed triplet
structure to describe the software functional requirements is
simple and effective. It facilitates the process of automating
the functional size of the software.

D. Tool for Generating Triplets and Calculating the
Functional Size
We have also developed a tool for generating triplets,

which contains two modules. The first module is used to
automatically generate triplets from Use Cases, User Stories
or functional requirements written in natural language. It
targets the structure (subject, predicate, object). We assumed
that the writing of software requirements is done with dyadic
predicates, that is, predicates with two arguments f (x, y). The
predicate is expressed by a verb, which is an action to do, and
which corresponds to a data movement. The “x” variable is
the subject of the action, while the “y” variable is the object
of the action. We supposed that in a rule-based system, the
rules are based on the idea that writing software requirements

Functional process

User StoryUse Case

Subject Object

Atomic
predicate

Composite
predicate

Subect Object

Data movements

Functional size

Entry (E) Exit (X) Write (W)Read (R)

predicate and an object. The subject is the functional user of
the software; the predicates represent the data movements. As
for the object, it corresponds to the data group that is
manipulated by the functional process. In addition, the triplet
represents a portion of the functional process of the software
to be measured. Here is the proposed triplet model
for writing software requirements.

25Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

is the construction of dyadic functions. In such a perspective,
we associate the function “f” with the “x” and “y” variables.
We used a descriptive logic to represent the sentences to be
splitted into first order predicate formulas. We were inspired
by the natural language analyzer offered by Stanford NLP
Software Group to generate triplets from functional
requirements written in natural language. This language
analyzer is a set of libraries in the artificial intelligence
domain, more specifically in the field of automatic natural
language processing (NLP), which makes possible to
determine the syntactic and semantic structure of sentences.
Indeed, this language analyzer contains a class called
“TagWord”, which semantically identifies the words of a text
written in natural language as being made of: subjects, verbs,
and objects. Inspired by this software program, we
constructed and applied our own rules and algorithms that
allow to associate the subject, the predicate, and the object,
and to generate the triplets from the Use Cases or User Stories
written in natural language.

The second module of the tool is used to obtain the
functional sizing of the software to be measured. In fact, the
generated triplets are seen as processing rules that allow to
infer the functional size. This module quantifies the number
of atomic predicates (verbs) of each triplet. Subsequently, a
set of rules is applied to make each predicate correspond to a
type of data movement (Entry, Exit, Read, or Write).
Furthermore, we used the repository framework for
automation tools for measuring the software functional sizing,
proposed by Abran and Paton [15] to ensure that an
automation tool could interact with our technique of software
requirements writing. This framework describes a set of
desirable characteristics for software functional size
measurement automation tools. The main characteristics of
the reference framework recommended by Abran and Paton
[15] can be summarized as follows:

• Automation tools must be associated with recognized
standards.

• The tools must offer, for example, the possibility of
interacting with the tools for writing software
requirements.

• The tools must provide a presentation of the
measurement results to facilitate analyzes.

E. Solving Missing Words with Grammatical Ellipse
The ellipse is a rhetorical figure of speech intended to omit

one or more elements in order to make a sentence shorter,
while promoting comprehension. In the context of the
grammatical ellipse, we tend to omit, for example, a verb or
an object. Indeed, in the requirements writing domain,
analysts, in order to avoid repetition, omit a predicate (verb)
or a noun (object). Let’s illustrate with an example a Use Case
where there is such an omission of an object: the system
checks and saves the data. In this Use Case, the system is
checking or verifying the data. Subsequently, it will proceed
to their recording (to save the data). We suppose that the
writing of software requirements is done with dyadic
predicates (f (x, y)). The description in formal logic by could
be: ∃ object, ∃ subject, such as predicate (object, subject).

Subject:
{x} = The system

Object:
{y} = data

Predicates:
{f1} =checks
{f2} =saves

We obtained the following logical formula:

 ∃ x [f1(x, y1) ∧ f2 (x, y2) (1)

This Use Case is splitted in two (2) triplets that are
respectively:

• The system, checks, the data
• The system, saves, the data

F. Generation of Triplets by Multiple Splittings
In the description of Use Cases, there are sentences

containing several objects (complements) and which are
connected by logical connectives (AND, OR…), by
coordinating conjunctions or by punctuation signs (,). In the
automatic text generation literature, there are methods that
allow to aggregate structural sentences (subject, predicate,
object) using logical connectives. As part of our tool, we were
inspired by these methods to proceed by disaggregation. Let’s
illustrate the following Use Case as an example: “The system
verifies the information, saves the data, or returns an error
message”. We transform each of these actions into a series of
predicates of the form: ∃ object, ∃ subject such as predicate
(object, subject). We describe use cases in formal logic by
variables to represent subjects, predicates, and objects as
follows:

Subject:

{x} = The system
Objects:

{y1} = information
{y2} = data
{y3} = error message

Predicates:
{f1} =verifies
{f2} =saves
{f3} =returns

We then obtain the following logical formula:

 ∃ x [f1(x, y1) ∧ f2 (x, y2) ∧ f3 (x, y3)] (2)

We give, in the next section, an example of Use Case
presenting the manual functional size, as well as the list of
triplets generated by the tool and the automatic functional size
obtained from the tool.

G. Description of a Use Case and its Manually Measured
Functional Size
TABLE I. I illustrates a functional process, for which the

data groups are identified, as well as the data movements
(EXRW).

26Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

The sales manager asks to add a new product. The system
verifies the sales manager credentials and displays the new
product form or displays a credential error message. The sales
manager enters the new product information and asks the
system to save the new product. The system verifies the data,
records the product, and returns a confirmation message for
the addition of the new product or an error message if the
product already exists.

TABLE I. EXAMPLE OF MANUALLY MEASURED FUNCTIONAL SIZE

Functional Process
Elements

Data Groups E X R W Sum
of

CFP
Asks to add a new
product

Credentials 1 1

Verifies the sales
manager credentials

Credentials 1 1

Displays a credential
error message

Error message 1 1

Displays the new product
form

[New product
form]

 -

Enters the new product
information

New Product 1 1

Verifies the data Data 1 1
Records the product Product 1 1
Returns a confirmation
message

Confirmation
message

 1 1

Returns an error message Error message -
Total: 2 2 2 1 7

H. Description of a Use Case and its Automatically
Measured Functional Size
Figure 3. illustrates the same functional process from the

previous example, divided by the tool into several triplets. It
determines the functional size and identifies the data
movement types (Entry, eXit, Read or Write). It is important
to mention that the tool obtains the same functional size result
as the manual functional size established by the human expert.

Figure 3. Example of Automaticaly Measured Functional Size.

VI. THE AUTOMATED MEASUREMENT RESULTS OF THE
TOOL

We present, in this section, the automated measurement
results of our tool developed. The results presented by the
tool are compared with those of human experts certified with
the COSMIC method.

A. Rules for Identifying Data Movements Types
We adjusted the NLP module by applying a set of rules

that allow to construct and extract triplets from Use Case or
User Stories written in natural language. Our tool integrates a
set of techniques to create a complex artificial intelligence
which helps to measure COSMIC function points. Then, we
implemented a set of rules to identify the types of data
movement (Entry, eXit, Read, Write). These rules are applied
once the functional sizing (data movements) has been
determined. The size of a functional process is equal to the
number of its data movements. Each data movement
corresponds to an atomic predicate of each triplet and has a
size of 1 COSMIC function point (CFP). Table II provides a
list of the mapping rules that were implemented for
identifying the data movement types of each triplet generated
by the tool.

TABLE II. DATA MOVEMENT MAPPING RULES

ID Definition of Mapping Rules (MR)
MR01 Any data movement from the functional user

(human, other software, hardware devices) is
considered as an Entry (E).

MR02 A data request to the functionality is treated as an
Entry(E)

MR03 Any data movement from a functional process to
the functional user is considered as an eXit (X).

MR04 All formatting and data presentation
manipulations required to send the data attributes
to the functional user is treated as an eXit (X).

MR05 Searching of a data group to persistent storage is
considered as a Read (R).

MR06 The logical processing and / or mathematical
calculation necessary to read the data are
considered as a Read (R).

MR07 Any read request functionality is considered as a
Read (R).

MR08 Moving a unique data group to persistent storage
is considered as a Write (W).

MR09 The logical processing and / or mathematical
calculation necessary to create data to be saved
are considered as a Write (W).

B. Software Projects Measured
We presented the functional size results of three (3)

measured projects, which requirement documents written in
natural language are publicly available on the COSMIC
website as case studies. First, COSMIC experts manually
measured the functional size of each project according to the
measurement manual definitions and rules. Subsequently, we

27Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

use our developed tool to automatically determine the
functional sizing of these projects from their requirements.
We compared the results generated by the tool against those
published by experts. Then, we described the observed
differences.

C. Automatic Functional Sizing Results from the Tool
We summarized in the Table III the automatic functional

sizing results of the three (3) projects of software requirements
specification documents obtained from the tool. The tool
generates the triplets from Use Cases or User Stories
described in natural language. Then, it determines the
functional size.

TABLE III. AUTOMATIC AND MANUAL FUNCTIONAL SIZE
COMPARISONS

Project Manual
Functional

Sizing

Automatic
Functional

Sizing

Accuracy

Resto Sys 119 117 98.32%

ACME Car
Hire System

33 32 96.97%

Rice Cooker 24 24 100.00%
Total 176 173 98.30%

E. Threats to Validity
Requirements are generally written with active verbs and

not with passive verbs. Nevertheless, it is likely to meet cases
where some Use Case scenarios are described in the passive
form, i.e., subject and object are swapped. One limitation is
that the tool could not generate triplets for sentences written
in the passive form. However, the tool detects sentences
written with a passive voice and raises the issue as a potential
error. Also, the proposed tool is not able to detect format
elements of the requirements document, such as headers,
footers, titles, etc. Requirements text has to be uploaded from
a Word or PDF file into our tool, where this file should contain
only requirements text without any format element. Because

of manual manipulations to create that file, there is a
possibility of human errors, such as some requirement text not
copied or copied twice.

VII. CONCLUSION AND FUTURE WORK
We proposed in this article a new method for writing

software requirements that could help to automate the
functional size measurement process. This technique is a
triplet approach. It is proven, tested, and validated by the
development of a new tool for automating the measurement of
the functional size of software, as defined by the COSMIC
method. This tool allows generating triplets from Use Cases
or User Stories written in natural language, more specifically
in English or in French (Use Cases or User Stories written in
English or in French). In addition, it determines the functional
sizing of software, in adding the sum of predicates and
identifying the types of data movements. The tool
approximates the human experts at about 98.30%.

In the future, our perspective will try to integrate a new
module which would ensure that the tool could generate
triplets for sentences written in the passive form and that
would detect the format of the requirements documents.
Furthermore, we will work on a machine learning module
which would allow that the tool could improve gradually
during its implementation. The goal will be to allow the tool
to learn to solve problems by itself, without necessarily
needing the intervention of human experts.

REFERENCES
[1] V. Bévo, “Analyse et formalisation ontologique des procédures

de mesure associées aux méthodes de mesure de la taille
fonctionnelle des logiciels: De nouvelles perspectives pour la
mesure” (Ontological analysis and formalization of
measurement procedures associated with software functional
size measurement methods: New perspectives for
measurement), Ph.D. thesis, Montreal, Université du Québec à
Montréal, 314p, 2005. [Online]. Available from:
https://dic.uqam.ca/upload/files/theses/bevo_these.pdf,
[Retrieved: April, 2021].

[2] S. Azzouz and A. Abran, “A proposed measurement role in the
Rational Unified Process: Automated Measurement of
COSMIC-FFP for Rational Rose Real Time”, In Information
and Software Technology, vol. 47, no. 3, pp. 151-166, 2004.

[3] K. Wiegers, “More About Software Requirements. New York:
O'Reilly Media”, Inc, 2009.

[4] S. Trudel, “The COSMIC ISO 19761 functional size
measurement method as a software requirements improvement
mechanism”, Ph.D. thesis, École de Technologie Supérieure
(ETS), 2012.

[5] B. Boehm, “Software cost estimation with COCOMO II”,
Upper Saddle River, N.J; London: Prentice Hall International,
2000.

[6] A. Albrecht, and A.J. Gaffney, “Software Function, Source
Lines of Code, and Development Effort Prediction: A Software
Science Validation”, IEEE Transactions on Software
Engineering, vol. 9, no. 6, pp. 639-648, 2000.

[7] A. Abran, “Software Metrics and Software Metrology.
Hoboken”, N.J.: Wiley Los Alamitos, Calif.: IEEE Computer
Society, 328 p, 2010.

[8] S. Black and D. Wigg, “X-Ray: A Multi-Language, Industrial
Strength Tool”, IWSM’99, Lac Supérieur, Canada, vol. 8, no.
10, pp. 39-50, 1999.

D. Evaluation and Validation of Results by COSMIC
 Experts
 Within the framework of this article, we tested the tool
with three (3) projects and the results presented were
compared with those of human experts certified with the
COSMIC method. The manually measured results of these
projects are published and available on the COSMIC website.
First, our tool generates the triplets from requirements written
in natural language, from Use Cases or User Stories written in
English or in French. Then, it determines the functional sizing
by quantifying the number of atomic predicates (verbs) of
each triplet. The research results showed that the generation
of triplets from Uses Cases or User Stories can be exploited
by measurement automation tools. In fact, our proposed tool
presents automated results that are consistent with the manual
results validated and published by experts, with an average
accuracy of 98.30%, as shown in TABLE III, where the
accuracy varies between 96.97% and 100%.

28Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

[9] I. Jacobson, “The unified Software Development Process”, The
Journal of Object Technology, vol. 2, no. 4, pp.1-22, 2003.

[10] K. Beck and D. West, “User Stories in Agile Development”, In
Scenarios, Stories, Use Cases: Through the Systems
Developments Life-Cycle, 2004.

[11] A. Cockburn, “Writing effective use cases”, Addison-Wesley
Longman, 2001.

[12] “IEEE Standard Glossary of Software Engineering
Terminology”, in IEEE Std 610.12-1990, vol., no., pp.1-84, 31
Dec. 1990, doi: 10.1109/IEEESTD.1990.101064.

[13] S.W. Ambler, “Examining the Big Requirements Up Front
(BRUF) Approach”, Ambysoft inc., [Online]. Available from:
http://agilemodeling.com/essays/examiningBRUF.htm,
[Retrieved: April, 2021].

[14] B. Nuseibeh and S. Easterbrook, “Requirements Engineering:
A Roadmap”, In Proceedings of the Conference on The Future
of Software Engineering, New York (USA), pp. 35-46, 2000.

[15] A. Abran and K. Paton, “Automation of Function Points
Counting: Feasibility and Accuracy”, Université du Québec à
Montréal, pp. 1-21, 1997.

[16] A. Abran et al., “The COSMIC Functional Size Measurement
Method Version 5.0”, [Online]. Available from: www.cosmic-
sizing.org, [Retrieved: April, 2021].

[17] K. Manoj, “What is TDD, BDD & ATDD ?”, Assert Selenium,
Nov. 5th, 2012, [Online]. Available from:
http://www.assertselenium.com/atdd/difference-between-tdd-
bdd-atdd/, [Retrieved: April, 2021].

[18] M. Downing, M. Eagles, P. Hope, and Ph. James, “ACME Car
Hire Case Study v1.0.1”, August 2018. [Online]. Available
from: https://cosmic-sizing.org/publications/acme-car-hire-
case-study-v1-0-1/, [Retrieved: April, 2021].

[19] A. Sellami, M. Haoues, and H. Ben-Abdallah, “Sizing Natural
Language/User Stories/UML Use Cases for Web and Mobile
Applications using COSMIC FSM”, May 2019. [Online].
Available from: https://cosmic-
sizing.org/publications/restosys-case-v1-2/, [Retrieved: April,
2021].

29Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

