
Measuring Coupling in Microservices Using COSMIC Measurement Method

Roberto Pedraza-Coello

Research Institute in Applied Mathematics and Systems

National Autonomous University of Mexico

CDMX, Mexico City, Mexico

Email: rpedrazacoello@gmail.com

Francisco Valdés-Souto

Science Faculty

National Autonomous University of Mexico

CDMX, Mexico City, Mexico

Email: fvaldes@ciencias.unam.mx

ORCID: 0000-0001-6736-0666

Abstract—The Microservices Architectural Style is one of the

latest trends in software development companies. Having

highly coupled microservices can lead to latency and network

traffic, high interdependency between development teams,

among other problems. Being able to measure the coupling

between microservices in early phases of the software

development life cycle could help the software architects make

better decisions when designing. This paper proposes a way of

measuring coupling between microservices. This metric is

based on the COSMIC measurement method (ISO/IEC 19761).

The paper also shows a practical implementation of this

metric.

Keywords-microservices; coupling; measurement; COSMIC;

ISO/IEC - 19761.

I. INTRODUCTION

The Microservices Architectural Style (MAS) is one of
the latest trends in software development companies. Its
main idea is to develop an application as a set of small
services. Each one of these services is called a microservice.
It is an approach to software and systems architecture that
builds on the concept of modularization but emphasizes
technical boundaries [13].

Each microservice is implemented and operated as a
small and independent system. It offers access to its internal
functionality and data through a well-defined network
interface. MAS increases the software development process
agility because each microservices is an independent unit of
development, deployment, operations, versioning, and
scaling [13].

The MAS benefits caused companies, including
worldwide companies, to migrate their software to this
architecture style. However, MAS is not a silver bullet, and it
has several challenges in the software development lifecycle
phases.

The microservices of an application are interconnected
between them to perform the functionality. This
intercommunication could imply some coupling between the
microservices. Coupling is referred to as the interdependency
that exists between different objects. If the microservices
depend a lot on each other, then the coupling is high. If the
microservices depend little or none on each other, the
coupling is low.

One of the MAS problems found in literature is the
increment of consumption of network resources. This

problem is partially caused because of the coupling that
exists between microservices when achieving a particular
functionality. Low-level coupling between microservices
makes sense to reduce the consumption of network
resources. Soldani [15] mentions that, since the
microservices in an application intercommunicate through
remote API invocations, applications generate higher
network traffic with respect to monoliths (where modules
interact through memory calls) or service-based applications
(composed by a lower number of services, hence reducing
the number of remote API Invocations).

Measuring the coupling between microservices in the
early stages of the software development cycle could help to
quantify the interdependency that exists between different
microservices, improving the software architect’s decision
making in terms of avoiding high interdependency between
teams, or high network-traffic areas. Coupling metrics have
been proposed over the years. For example, Chidamber and
Kemerer [7] have proposed a metric called Coupling
Between Object classes (CBO). The CBO of a class is the
aggregation of the number of other classes to which it is
coupled. It is mentioned that inter-class coupling occurs
when methods of one class use methods or instance variables
of another class. However, it is never mentioned how to
count the usage of methods or instances of another class. It
could be counted once by every occurrence in each method,
once by every class-type object in each method, etc. The
measurement procedure is not clear. Additionally, the use of
scales it is not defined. Then, according to the metrology
concept “Measurement Foundation” presented by Abran [2],
it is not possible to evaluate the validity of this metric.

Other metric called Weighted Methods Per Class is
proposed in [7]. The idea is to do an aggregation of the
complexity of the methods of a class. in [7] the author
mentions that “Complexity” is not defined more specifically
to allow for the most general application of this metric. The
lack of an explicit definition of complexity can result in a
same class having very different result measurement values.
It can be affirmed that the measurements obtained with this
metric are not comparable, which is not good from a
metrology point of view, as mentioned by Abran [2].

An additional metric is proposed by Chidamber [7]. It is
called Lack of Cohesion in Methods (LCOM). It is the sum of
the number of method pairs in a class whose similarity is
zero (not similar) minus the count of method whose

16Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

similarity is not zero (exists some similarity). This means,
the lower the measure value the greater the cohesion. The
lowest possible LCOM value is zero. The paper mentions
that even when LCOM is equal to zero this does not imply
maximal cohesiveness, since within the set of classes with
LCOM = 0, some may be more cohesive than others or, in
other words, some may lack of more cohesion than others.
This is a problem, even though multiple classes can have
LCOM = 0 some of these classes lack more cohesion than
others, therefore we can affirm that this metric is not
comparable.

Currently, the only type of software measurement with
international standards adopted by the ISO is the
measurement of functional size. It is also the only type of
software measurement that has a method that complies with
the metrology requirements [2]. Up to now, there are five
standards of software Functional Size Measurement Methods
(FSMM). Of those five standards, the ISO/IEC 19761
COSMIC method is the only standard belonging to the
second generation, including several use domains, like
Management Information Systems (MIS), real-time
infrastructure, Etc. It also solves most of the problems with
the FSMM of the 1st generation [16].

This paper presents an approach to measuring coupling
between microservices. The coupling metric is based
completely on the standard ISO/IEC 197611, the COSMIC
method. This approach is proposed to define an objective
metric that can improve the knowledge about the coupling
between microservices in order to provide to software
architects quantitative elements, based in an international
standard, to take decisions.

The paper is organized as follows: Section 2 explains the
background about microservices and the context about
COSMIC. Section 3 presents related work on coupling
measurement methods. Section 4 describe the proposed
coupling measurement method based on the COSMIC
standard, including an example of its application. Section 5
presents the conclusions of the paper and future work.

II. BACKGROUND

This section presents the background of microservices
and the COSMIC measurement method.

A. Microservices

The Netflix company, like other companies, had a
problem a few years ago. They had a monolithic web system
that was modified by multiple people every day. The
software, with its updates, was deployed once or twice a
week. If one of the changes caused a problem, it was hard
and time-consuming to diagnose a cause. When a company
is trying to compete in the agile environment where the
updates must be delivered to the consumer as quick as
possible this situation can cause many internal and
commercial troubles. Because of these troubles and a few
more, Netflix decides to migrate its business software to
MAS.

The most repeated MAS definition in literature is from
Fowler's and Lewi's blog, where they define that “The
microservice architectural style is an approach to developing

a single application as a suite of small services, each running
in its own process and communicating with lightweight
mechanisms, often an HTTP resource API. These services
are built around business capabilities and independently
deployable by fully automated deployment machinery. There
is a bare minimum of centralized management of these
services, which may be written in different programming
languages and use different data storage technologies [10].”

To better understand this architectural style, it is useful to
compare it with the monolithic style. For example, a
software that follows a client-server architecture usually
consists of three parts: A client-side application, a database,
and a server-side application. This server-side application is
a monolith, which means a single executable unit. Every
change to the server-side app implies building and deploying
a new version of the app. However, with MAS, each
microservice is implemented and operated as a small and
independent system. The microservice offers access to its
internal functionality and data via a network interface. This
improves the agility of the development process, because
every microservices becomes an independent unit of
development, deployment, operation, versioning and scaling
[10].

The MAS general idea is to develop an application as a
set of interconnected services. This interconnection generates
a certain coupling between the microservices. It is
recognized that if the coupling is high, then technological
and management problems can arise.

In most of programming paradigms the software quality
characteristics defined as low coupling and high cohesion are
ideal. For example, in the Object-Oriented Paradigm a
software with low coupling is achieved when each object
depends on little or nothing of other objects. The same idea
of low coupling applies to MAS. High coupling between
microservices could cause latency and network traffic, high
interdependency between development teams, among other
problems [9][17].

Currently the evaluation of coupling is made with
subjective methods, and then there is a need to measure
coupling between microservices in a formal and standardized
way. With good measures, several problems can be
identified and characterized, and decisions can be taken.

B. COSMIC

Several ISO/IEC standards have been developed oriented
to measure the software functionality in the software
engineering field. The ISO/IEC 14143 standard [12] includes
a set of rules regarding size measurement in functionality
units. For this type of measurement, the standard proposes
the following definitions:

“Functional size is defined as the size of the software
derived by quantifying the Functional User Requirements”
[12]

“Functional User Requirements (FUR) stands for a sub-
set of the User Requirements describing what the software
does, in terms of tasks and services” [12]

“Functional Size Measurement (FSM) is the process of
measuring functional size” [12]

17Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

The COSMIC measurement method has been
acknowledged by the ISO/IEC as conforming to the rules
laid down in the ISO/IEC 14143 and has taken the form of
the standard ISO/IEC 19761. There are others FSM that have
taken the form of ISO/IEC standards. However, COSMIC is
the only one that belongs to the “Second Generation” of
FSM methods. The other FSMs belong to the First
Generation [3].

COSMIC introduces its own homologated and
standardized measure unit called Cosmic Function Point
(CFP). 1 CFP represents the size of one data movement
(Entry, eXit, Read or Write). Therefore, functional size can
be measured by counting the number of data movements.
More information about COSMIC and different guidelines to
apply COSMIC can be found on the COSMIC website [1].

III. RELATED WORK

Allen and Khoshgoftaar [5] present a way of measuring
Coupling and Cohesion in a module-based software. The
coupling measurement method starts with a measurement
protocol that results in a graph-abstraction representing some
aspect of software design. For example, class inheritance,
class type, method invocation, class-attribute references.
Different abstractions, for a same software, can result in
different measures. The metric is based in the software
abstracted as a graph and separating the graph into modules.
An issue observed for this method is that it is based on a
software abstraction generated by humans. Humans have
different points of view when abstracting software, and there
are no right or wrong abstractions. So, one same software
can have multiple abstractions, and each abstraction can have
a different coupling measurement, what is not considered
correct.

Arisholm et al. [6] propose three different approaches to
measure the strength of a coupling relation: number of
messages, number of distinct method invocations, and
distinct classes. The number of messages refers to the
number of different messages that are exchanged between
two entities. The other two represent the number of methods
called, and classes used by a method in an object. An issue
observed in this paper is that there are no standard metric
units for messages, method invocations and classes. Also, as
the measurement is done at runtime, the measurement can
vary a lot depending on when the measurement is being
done. So, comparing the coupling of two software becomes
problematic. They should be compared at equal conditions
for the comparison to be valid. It is not defined how to
achieve equal conditions. From a metrology point of view,
the measurements should be comparable.

These same situations are observed in Lavazza et al [14].
They propose a theoretical framework based on Axiomatic
Approaches for the definition of dynamic software measures.
This paper also presents measures based on this framework.
These are defined for dynamically quantifying coupling. The
coupling measurements are based on counting, at runtime:
the number of distinct methods invoked by each method in
each object, the count of the total number of distinct
messages sent from one object class to other objects, and the

count of the distinct number of classes that a method uses.
Once again, the measurement obtained for one software is
not comparable with the measurement obtained for another
software. For instance, the messages send from one object o
other object could consider distinct entities, or domain object
information, in the same message.

Hassoun et al. [11] propose a relation called DCM
(Dynamic Coupling Metric) to formalize the idea of dynamic
coupling. That metric works at the object level. It is
mentioned that measuring object coupling gives an insight
into the system structure and allows the comparison of
architectural aspects of a different system relative to reuse
and maintenance. This paper uses a complexity measure in
its' formulas. However, it is not mentioned how to calculate
the complexity nor what complexity means for the context of
the paper.

IV. COUPLING METRIC BASED IN COSMIC

One of the main differences between some of the metrics
that are usually used to measure software and the COSMIC
method is that the COSMIC method complies with the 3
metrology concepts, mentioned by Abran [2] for a “good”
design of a software measurement method: Measurement
foundation, Quantities and units, and Measurement
Standards-Etalons. In one or more of these concepts is where
popular software metrics like Function Points, Use Case
points, Cyclomatic Complexity, Quality Models, among
others fail.

The proposal is to use the concepts of the COSMIC
measurement method to measure the coupling between
microservices to ensure that, when the coupling between two
microservices is measured, the measurement is consistent,
repeatable, and comparable. A good measurement method is
independent of the person measuring and the measurement
environment.

For this paper, microservices coupling refers to the
dependency that exists from one microservice MS1 to
another microservice MS2. Whenever MS1 makes an HTTP
request (or through another protocol) to MS2, it is because
MS1 needs to send messages (eXit) or receive messages
(Entry) from MS2. In this sense, it is understood that there is
a unilateral or a bilateral coupling. By using the COSMIC
concepts [8] it can be said that a relationship between two
microservices is defined by a correspondence rule that can be
hierarchical (exclusively one service uses the services of
another), or bidirectional (both services use services of the
other service).

For the proposed metric, when said that MS1 is coupled
to MS2, it is meant that MS1 depends on MS2 to complete a
certain portion of its own functionality. However, it does not
necessarily mean the same in inverse mode.

It can be said that MS1 is coupled to MS2 when MS1
starts a request/response communication with MS2. A good
analogy is to imagine a client-server architecture where MS1
is the client and MS2 is the server, the client depends on the
server, not the other way around.

Keeping the last example, to measure how coupled is
MS1 to MS2 we need to count, for each MS1 functional
process, the number of data movements that are exchanged

18Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

between MS1 and MS2 for all the cases where MS1 starts
the communication with MS2.

The proposed metric is based on determining the degree
of coupling of a particular microservice based on COSMIC
method concepts, considering the defined scope of the
measurement.

The coupling concept is approached this way because,
usually, the microservices offer their services via an HTTP
API [10]. These APIs allow the microservices to offer their
services to multiple clients. Following the previous example,
MS1 is a client of MS2. However, MS2 could have 1000
more clients. It is considered that it does not make sense to
think that MS2 is coupled to 1000 clients just because the
1000 clients use MS2's services. It makes even less sense if,
from an MS2 perspective, it does not matter what client is
using the services.

The COSMIC measurement manual [8] explains how to
measure software by counting the data movements in each of
the functional processes. There are certain rules of when a
certain data movement is considered for the measurement
and when not. The coupling metric proposed in this article is
based on using the same rules that COSMIC uses and
applying them to the metric's context. The coupling
measurement between a microservice MS1 and a
microservice MS2 can be calculated by counting the Entry
and eXit data movements done in each of the functional
processes of MS1 when those data movements move data
from/to MS2. Also, MS1 must start the communication with
MS2 during the functional process that it is being measured.

Figure 1. Simple example of MS1 coupled to MS2

For example, Figure 1 shows that functional process 1

(PF1) needs one eXit data movement and one Entry data
movement from MS2 to complete its functionality. This
means a total of 2 data movements in PF1 from MS1 to
MS2. It also can be observed that functional process 2 (PF2)
needs to send (eXit) one data group to MS2 to complete its
functionality. By adding up the data movements from their
two functional processes, the measurement's result is that the
coupling level from MS1 to MS2 is 3.

Measuring the coupling between microservices allows
one to obtain an objective value of the dependency from one
microservice to another microservice. If the dependency is
low, then the coupling between microservices is also low,
independently how many instances of MS1 or MS2 are

generated, the coupling level is measure of dependency
between services, not about instances at execution.

V. APPLYING THE METRIC

This section shows an example on how to apply the
proposed metric. The example is based on a case study called
C-Reg [4]. The case study can be found in the COSMIC web
application [1]. The case study shows the whole process of
measuring functional size.

To the best of our knowledge, this case study was not
thought as MAS software. However, there is communication
between the measured software and other pieces of software.
This paper assumes that three software pieces mentioned in
the case study were built as microservices. This premise does
not affect the COSMIC measurement nor the Coupling
measurement.

As shown in Figure 2, the C-Reg application has multiple
functional users. Some of these functional users are humans
and other functional users are software. For this paper, we
can ignore human functional users and focus on software
functional users.

The C-Reg app [4] counts with 19 functional processes,
from which 11 do at least one data movement between C-
Reg and one or more software functional users. The rest of
the functional processes only communicate with human
functional users, so they fall out of the context of this paper.
Table I shows the names of the 19 functional processes,) the
ones with at least one data movement between C-Reg and
external software are marked in green, the external software
is considered a functional user (Billing System, Course
Catalog System). See Figure 2.

Figure 2. C-Reg Application Context Diagram. Obtained

from [4]

Table II and Table III show the detail of 2 of the

functional processes to explain how the coupling metric can
be applied practically. First, the functional process called
“Delete a professor” is presented in Table II. It can be
observed that there are 2 data movements between C-Reg
and Course Catalog. These 2 data movements are considered
with the rest of the data movements between C-Reg and
Course Catalog to measure how coupled is C-Reg to the
course catalog.

The following functional process that is presented is
called “Close Registration”. The details of this functional
process can be observed in Table III. The table shows that

19Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

there are 3 data movements between C-Reg and Course
Catalog. It also shows that there is one data movement
between C-Reg and Billing System. These two results will
be considered when calculating how coupled C-Reg is to
Course Catalog, and how coupled C-Reg is to Billing
System.

By analyzing the tables of each of the functional
processes in [4] and applying the proposed coupling metric,
we obtain the results presented in Table IV. It can be
observed that C-Reg has a level of coupling of 21 CFP with
Course Catalog, including 21 data movements between C-
Reg and Course Catalog. It also can be observed that C-Reg
has a coupling level of 1 CFP with Billing System.

It is easy to observe that the coupling from C-Reg with
Billing System is 1 CFP, and with Course catalog System the
coupling is 21 CFP, so there is 21 times more coupling with
Course catalog Systema than Billing System.

TABLE I. C-REG'S FUNCTIONAL PROCESSES

TABLE II. FUNCTIONAL PROCESS "DELETE PROFESSOR"

DETAILS. MARKED IN GREEN THE SUBPROCESSES OF

COMMUNICATION BETWEEN C-REG AND COURSE CATALOG.
ADAPTED FROM [4]

TABLE III. FUNCTIONAL PROCESS "CLOSE REGISTRATION"

DETAILS. MARKED IN GREEN THE SUBPROCESSES OF

COMMUNICATION BETWEEN C-REG AND COURSE CATALOG.
MARKED IN RED THE SUBPROCESSES OF COMMUNICATION

BETWEN C-REG AND BILLING SYSTEM. ADAPTED FROM [4]

TABLE IV. COUPLING MEASUREMENT VALUES FOR C-REG

CASE STUDY

20Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

VI. COUPLING METRICS ANALYSIS

It can be observed in Table V the main differences
between the related work and the prosed metric based on
COSMIC. Five columns are presented:

• International Standard: Is it based on an
International Standard?

• Metrology Requirements: Does it comply with
the metrology concepts mentioned by Abran
[2]?

• Comparable: Is it valid to compare the
measurement results of different software?

• Proved on MAS: Is there a case study where the
metric (or an adaptation of it) was used to
measure coupling between microservices?

Following with Table V, possible answers to these
questions are:

• Yes

• No

• SP: Yes, if and only if the same procedure was
used to measure the software

• EC: Yes, if and only if, somehow, equal
conditions between the software is achieved.

• NF: No references found

TABLE V. COUPLING METRICS ANALYSIS

VII. CONCLUSION

Many companies are developing software based on MAS
because of the multiple benefits that come with it. However,
MAS is not a silver bullet. Developers face multiple
challenges when developing software based on MAS. Some
problems could be generated because of the coupling that
exists between microservices when achieving a particular
functionality, then low-level coupling between microservices
could avoid high interdependency between teams, or high
network-traffic areas reducing the consumption of network
resources, for instance.

When two microservices communicate a lot with each
other, it can be said that these two are highly coupled.
Finding highly coupled microservices in the design phase of
the software development life cycle could lead a software
architect to make better decisions about the software design.

In this paper, we propose a way of measuring coupling
between microservices. This metric is based on the COSMIC
measurement standard to ensure that the measurement
obtained is consistent, repeatable, and comparable when the
coupling between microservices is measured. The paper also

shows a practical example of how to measure coupling
between microservices with the proposed metric.

It is observed from the results (Table IV) that the results
make sense with the reality that represent the C-Reg system.
The C-Reg software is coupled to two external functional
users software: Billing System and Course Catalog System.
The coupling measurement of C-Reg to: the Billing System
is 1 CFP, and for the Course Catalog System the coupling is
21 CFP. There is 21 times more coupling with Course
catalog System than with Billing System.

In comparison with the other coupling metrics presented
in this paper, the proposed metric complies better with the
metrology concepts of a good measurement method. The
main advantage of this metric is that it is based on an
International Standard.

A. Future Work

There can be situations where low-coupled microservices
are generating a lot of network traffic, and high-coupled
microservices are generating little network traffic. For
example, MS1 and MS2, two low-coupled microservices,
could generate a lot of network traffic if they include high-
usage functionality. Other example is MS3 and MS4, two
highly-coupled microservices, that could generate little
network traffic if they include low-usage functionality. It
could be interesting to look at the correlation that exists
between the coupling measurement and network traffic in
different kinds of MAS software systems.

Low coupling is a software quality characteristic in all
software, not only on microservices, and it could be
interesting to find a way to adapt this proposed metric to
measure coupling in all kinds of software, not only the ones
based on MAS.

It could be interesting to do a comparison of how reliable
other coupling metrics against the metric are proposed in this
paper. Considering that a good measurement method is
independent of the person measuring and the measurement
environment. The measurement results must be consistent,
repeatable, and comparable

REFERENCES

[1] COSMIC Sizing - The open standard for software size
measurement.

[2] A. Abran.Software Metrics and Software Metrology. 2010.

[3] A. Abran and C. Woodward. Guideline on how to convert
‘FirstGeneration’ Function Point sizes to COSMIC sizes.
(November):0–53,2016.

[4] A. Lesterius, A. Abran, C. Symmons. Course Registration (‘C
- REG ’) System Case Study. (December):1–43, 2015.

[5] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen. Measuring
couplingand cohesion of software modules: An information-
theory approach.International Software Metrics Symposium,
Proceedings, pages 124–134, 2001.

[6] E. Arisholm, L, C Briand, and A. Føyen. Dynamic coupling
measurement for object-oriented software. IEEE Transactions
on Soft-ware Engineering, 30(8):491–506, 2004.

[7] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software
Engineering,20(6):476–493, 1994.

21Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

[8] Common Software Measurement International Consortium
(COSMIC).Measurementt Manual v4.0.2. (December):1–115,
2017.

[9] S. S. de Toledo, A. Martini, and Dag I.K. Sjøberg. Identifying
architectural technical debt, principal, and interest in
microservices: A multiple-case study. Journal of Systems and
Software, 177:110968,2021.

[10] M. Fowler and J. Lewis. Microservices - A definition of this
new architectural term, 2014.

[11] Y. Hassoun, R. Johnson, and S. Counsell. A dynamic runtime
coupling metric for meta-level architectures. Proceedings of
the European Conference on Software Maintenance and
Reengineering,CSMR, 8:339–346, 2004.

[12] ISO; IEC. Information technology — Software measurement
— Functional size measurement — Part 6: Guide for use of
ISO/IEC 14143series and related International Standards
(ISO/IEC 14143-6:2006(E)),2006.

[13] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S.
Tilkov. Microservices: The journey so far and challenges
ahead. IEEE Software, 35(3):24–35, 2018.

[14] L. Lavazza, S. Morasca, D. Taibi, and D. Tosi. On the
definition of dynamic software measures. International
Symposium on Empirical Software Engineering and
Measurement, pages 39–48, 2012.

[15] J. Soldani, D. A. Tamburri, and W. J. Van DenHeuvel. The
pains and gains of microservices: A Systematic grey literature
review.Journal of Systems and Software, 146:215–232, 2018.

[16] F. Valdés-Souto, R. Pedraza-Coello, and F. C. Olguín-Barrón.
COSMIC sizing of RPA software: A case study froma proof
of concept implementation in a banking organization.
CEURWorkshop Proceedings, 2725:1–15, 2020.

[17] R. Subramanyam and M. S. Krishnan. Empirical analysis of
CK metrics for object-oriented design complexity:
Implications for software defects. IEEE Transactions on
Software Engineering, 29(4):297–310,2003.

22Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

	I. INTRODUCTION
	II. BACKGROUND
	A. Microservices
	B. COSMIC

	III. RELATED WORK
	IV. COUPLING METRIC BASED IN COSMIC
	V. APPLYING THE METRIC
	VI. COUPLING METRICS ANALYSIS
	VII. CONCLUSION
	A. Future Work

	REFERENCES

