
Software Quality Evaluation via Static Analysis and Static Measurement: an Industrial

Experience

Luigi Lavazza

Dipartimento di Scienze Teoriche e Applicate
Università degli Studi dell’Insubria

Varese, Italy
Email: luigi.lavazza@uninsubria.it

Abstract—Business organizations that outsource software devel-
opment need to evaluate the quality of the code delivered by
suppliers. In this paper, we illustrate an experience in setting
up and using a toolset for evaluating code quality for a company
that outsources software development. The selected tools perform
static code analysis and static measurement, and provide evidence
of possible quality issues. To verify whether the issues reported by
tools are associated to real problems, code inspections were car-
ried out. The combination of automated analysis and inspections
proved effective, in that several types of defects were identified.
Based on our findings, the business company was able to learn
what are the most frequent and dangerous types of defects that
affect the acquired code: currently, this knowledge is being used
to perform focused verification activities.

Keywords–Software quality; Static analysis; Software measure-
ment; Code clones; Code measures.

I. INTRODUCTION

Today, software is necessary for running practically any
kind of business. However, poor quality software is generally
expensive, because poor quality code can cause expensive
failures, increased maintenance cost and security breaches.
Hence, organizations that rely on software for running their
business need to keep the quality of their software under
control.

Many companies do not have the possibility or the will of
developing the software they need. Hence, they outsource soft-
ware development. In this case, an organization has no direct
visibility and control of the development process; instead, they
can only check the quality of the delivered product.

In this paper, we report about an experience in setting up
the toolset needed for evaluating the quality of the code pro-
vided by a supplier to an organization. The software involved
in the reported activities is used by the organization to run two
Business-to-Consumer (B2C) portals.

The organization needed to evaluate the quality of the
supplied code; specifically, they wanted to check that the code
was correctly structured, cleanly organized, well programmed,
and free from defects that could cause failures or could be
exploited by attackers. The organization had already in place
a testing environment to evaluate the quality of the code from
the point of view of behavioral correctness. They wanted to
complement test-based verification with checks on the internal
qualities that could affect maintainability, fault-proneness and
vulnerability.

To accomplish this goal, we selected a set of tools that
provide useful indications based on static analysis and mea-
surement of code. The toolset was intended to be used to
evaluate two releases of the portal, and then to be set up at
the company’s premises, and used to evaluate the following
releases.

The contributions of the paper are twofold. We provide
methodological guidance on the selection and usage of a small
set of tools that can provide quite useful insights on code
quality. We also provide some results, which can give the
reader a measure of the results that can be achieved via the
proposed approach.

Because of confidentiality constraints, in this paper we
shall not give the names of the involved parties, and we shall
omit some non-essential details.

The paper is structured as follows. In Section II, we provide
some details concerning the evaluated software and the tools
used for the static analysis and measurement. Section III
illustrates the methodological approach. In Section IV, the
results of the evaluation are described. Section V provides
some suggestions about the organization of a software devel-
opment process that takes advantage of a static analysis and
measurement toolset. Section VI illustrates the related work,
while Section VII draws some conclusions and outlines future
work.

II. THE CONTEXT

In this section, we describe the problem and the tools that
were available to be employed in the problem context.

A. The Software to be Evaluated and the Aim of the Study
The evaluation addressed two B2C portals, coded almost

entirely in Java. The analyses concentrated exclusively on
the Java code. Table I provides a few descriptive statistics
concerning the two portals (LLOC is the number of logical
lines of code, i.e., the lines that contain executable code).

TABLE I. CHARACTERISTICS OF THE ANALYZED PORTALS.

Portal 1 Portal 2
Number of files 1507 280
LLOC 100375 37467
LOC 202249 55934
Number of Classes 1158 247
Number of Methods 13351 5370

55Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

The aim of the study consisted in evaluating the quality
of the products, highlighting weaknesses and improvement
opportunities. In this sense, it was important to spot the types
of the most frequently recurring issues, rather than finding all
the actual defects and issues.

It was also required that the toolset could be transferred to
the company’s premises. To this end, open-source (or free to
use) software was to be preferred.

Accordingly, we looked for tools that can
– Detect bad programming practices, based on the iden-

tification of specific code patterns.
– Detect bad programming practices, based on code

measures (e.g., methods too long, classes excessively
coupled, etc.).

– Detect duplicated code.
– Identify vulnerabilities.
After some search and evaluation, we selected the tools

mentioned in Table II. These tools are described in some detail
in the following sections.

TABLE II. TOOLS USED AND THEIR PURPOSE.

Purpose Tool Main features
Identify defects SpotBugs Static analysis is used to identify code

patterns that are likely associated to defects.
Collect static SourceMeter Static measurement is applied at different
measures granularity levels (class, method, etc.) to

provide a variety of measures.
Detect code clones SourceMeter Structurally similar code blocks

are identified.
Identify security FindSecBugs A plug-in for FindBugs, specifically
issues oriented to identifying vulnerable code.

B. Tools Used
1) Static Analysis for Identifying Defects: SpotBugs (for-

merly known as FindBugs) is a program which uses static
analysis to look for bugs in Java code [1][2]. SpotBugs looks
for code patterns that are most likely associated to defects. For
instance, SpotBugs is able to identify the usage of a reference
that is possibly null.

SpotBugs was chosen because it is open-source and one
among the best known tools of its kind. Besides, SpotBugs
proved to be quite efficient: on a reasonably powerful laptop,
it took less than a minute to analyze Portal 1.

SpotBugs provides “confidence” and “rank” for each of the
issued warnings. Confidence indicates how much SpotBugs
is confident that the issued warning is associated to a real
problem; confidence is expressed in a three-level ordinal scale
(high, medium, low). The rank indicates how serious the prob-
lem is believed to be. The rank ranges from 1 (highest) to 20
(lowest); SpotBugs also indicates levels: “scariest”(1 ≤rank≤
4), “scary” (5 ≤rank≤ 9), “worrying” (10 ≤rank≤ 14), “of
concern” (15 ≤rank≤ 20).

2) Static Analysis for Identifying Vulnerabilities: Having
selected SpotBugs as a static analyzer, it was fairly natural to
equip it with FindSecBugs [3], a plug-in for SpotBugs that
addresses security problems.

FindSecBugs works like FindBugs and SpotBugs, looking
for code patterns that can be associated to security issues, with
reference to problems reported by the Open Web Application
Security Project (OWASP) [4] an the weaknesses listed in the
Common Weaknesses Enumeration (CWE) [5].

3) Static Measures of Code: Several tools are available to
measure the most relevant characteristics of code, including
size, complexity, coupling, cohesion, etc.

SourceMeter [6] was chosen because it is free to use,
efficient and provides many measures, including all the most
popular and relevant.

4) Code Clone Detection: Noticeably, SourceMeter is also
able to detect code clones. Specifically, SourceMeter is capable
of identifying the so-called Type-2 clones, i.e. code fragments
that are structurally identical, but may differ in variable names,
literals, identifiers, etc.

III. THE METHOD

Since the most interesting properties of code are undecid-
able, tools that perform static analysis often issue warnings
concerning problems that are likely—but not certain—to occur.
In practice, the issues reported by static analysis tools can be
false positives. Therefore, we always inspected manually the
code that had been flagged as possibly incorrect by the tools.

Similar considerations apply to static measures. For in-
stance, consider a method that has unusually high McCabe
complexity: only via manual inspection we can check whether
the program was badly structured or the coded algorithm is
intrinsically complex.

Problem detection was performed as described in Figure 1.
The real problems identified via the process described in
Figure 1 were classified according to their type, so that
the company that asked for the code quality analysis could
focus improvement efforts on the most frequent and serious
problems.

IV. RESULTS

Here, we describe the code quality problems that were
identified.

A. Warnings issued by SpotBugs
Tables III and IV illustrate the number of warnings that

SpotBugs issued for the analyzed code, respectively by confi-
dence level and by rank. In Table III, the density indicates the
number of warnings per line of code.

TABLE III. SPOTBUGS WARNINGS BY CONFIDENCE.

Portal 1 Portal 2
Metric Warnings Density Warnings Density
High Confidence 68 0.07% 50 0.13%
Medium Confidence 774 0.77% 502 1.34%
Low Confidence 824 0.82% 420 1.12%
Total 1666 1.66% 972 2.59%

SpotBugs also classifies warning by type (for additional
information on warning types, see [7]). Table V illustrates the
warnings we obtained, by type. It can be noticed that most
warnings concerned security (types “Security” and “Malicious
code vulnerability”).

1) Results deriving from the inspection of SpotBugs warn-
ings: The effort allocated to the project did not allow analyzing
all the warnings issued by SpotBugs. Therefore, we inspected
the code where SpotBugs had identified issues ranked “scary”
and “scariest.” Specifically, we analyzed the warnings de-
scribed in Table VI.

56Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Figure 1. The evaluation process: problem detection phase.

TABLE IV. SPOTBUGS WARNINGS BY RANK

Rank 1 6 7 8 9 10 11 12 14 15 16 17 18 19 20
Portal 1 24 9 1 42 12 39 21 2 604 17 129 562 82 122
Portal 2 10 6 1 7 8 27 18 191 10 59 401 66 168

TABLE V. SPOTBUGS WARNINGS BY TYPE.

Portal 1 Portal 2
Warning Type Number Percentage Number Percentage
Bad practice 73 4.38% 81 8.33%
Correctness 91 5.46% 30 3.09%
Experimental 0 0.00% 1 0.10%
Internationalization 16 0.96% 39 4.01%
Malicious code vulnerability 496 29.77% 316 32.51%
Multithreaded correctness 28 1.68% 1 0.10%
Performance 74 4.44% 143 14.71%
Security 631 37.88% 215 22.12%
Dodgy code 257 15.43% 146 15.02%
Total 1666 100% 972 100%

TABLE VI. SPOTBUGS WARNINGS THAT WERE VERIFIED
MANUALLY.

Occurrences
Rank Type Portal 1 Portal 2

1 Suspicious reference comparison 10 9
1 Call to equals() comparing different types 14 1
6 Possible null pointer dereference 8 –
8 Possible null pointer dereference – 2
8 Method ignores return value – 4
9 Comparison of String objects using == or != – 1

Our inspections revealed several code quality problems:

– The existence of problems matching the types of
warning issued by SpotBugs was confirmed.

– Some language constructs were not used properly. For
instance, class Boolean was incorrectly used instead
of boolean; objects of type String were used
instead of boolean values; etc.

– We found redundant code, i.e., some pieces of code
were unnecessarily repeated, even where avoiding
code duplication—e.g., via inheritance or even simply
by creating methods that could be used in different
places—would have been easy and definitely conve-
nient.

– We found some pieces of code that were conceptually
incorrect. The types of defect were not of any type that
a static analyzer could find, but were quite apparent
when inspecting the code.

Concerning the correctness of warnings issued by Spot-
Bugs, we found just one false positive: the “comparison of
String objects using == or !=” was not an error, in the ex-
amined case. We also found that the four instances of “Method
ignores return value” were of little practical consequences.
In summary, the great majority of warnings indicated real
problems, which could cause possibly serious consequences.
The remaining warning indicated situations where a better
coding discipline could make the code less error prone, if
applied systematically.

2) Results deriving from the inspection of FindSecBugs
warnings: The great majority of the security warnings (types
“Security” and “Malicious code vulnerability”) were ranked by
FindSecBugs as not very worrying. Specifically, no “scariest”)
warning was issued, and only one “scary” warning was issued.
Therefore, we inspected the only “scary” warning (rank 7, see
Table VII), and all the warnings at the highest rank of the level
“troubling” (rank 10, see Table VII).

We found that all the warnings pointed to code that had
security problems. In many cases, SpotBugs documentation
provided quite straightforward ways for correcting the code.

TABLE VII. FINDSECBUGS WARNINGS THAT WERE VERIFIED
MANUALLY.

Occurrences
Rank Type Portal 1 Portal 2

7 HTTP response splitting vulnerability 1 –
10 Cipher with no data integrity 4 2
10 ECB mode is insecure 4 2
10 URL Connection Server-Side Request 1 –

Forgery and File Disclosure – –
10 Unvalidated Redirect 2 –
10 Request Dispatcher File Disclosure – 1

57Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Figure 2. Boxplots illustrating the distributions of McCabe complexity in the
two portals (blue diamonds indicate mean values). The scale is logarithmic.

B. Inspection of code elements having measures beyond
threshold

Static measures concerning size, complexity, cohesion,
coupling, among others, are expected to provide indications on
the quality of code. In fact, one expects that code characterized
by large size, high complexity, low cohesion, strong coupling
and similar “bad” characteristics is error-prone. Accordingly,
we inspected code elements having measures definitely out or
the usually considered safe ranges. Specifically, we considered
McCabe complexity [8], Logical Lines of Code and Response
for Class (RFC) [9] as possibly correlated with problems.
In fact, we also looked at Coupling Between Objects, Lack
of Cohesion in Methods and Weighted Method Count, but
these measures turned out to provide no additional information
with respect to the aforementioned three measures, i.e., they
pointed to the same classes or methods identified as possibly
problematic by the aforementioned measures.

We found that several methods featured McCabe com-
plexity well over the threshold that is generally considered
safe. Figure 2 shows the distributions of McCabe complexity
of methods (excluding setters and getters) together with two
thresholds representing values that should and must not be
exceeded, according to common knowledge [8][10][11][12].
Specifically, we found methods with McCabe complexity close
to 200.

When considering size, we found several classes featuring
over 1000 LLOC; the largest class contained slightly less
then 6000 LLOC. When considering RFC, we found 12
classes having RFC greater than 200. Interestingly, the class
with the highest RFC (709) was also the one containing the
method with the greatest McCabe complexity. The biggest
class contained the second most complex method. These results
were not surprising, since it is known that several measures are
correlated to size.

Inspections revealed that the classes and methods featuring
excessively high values of LLOC, RFC and McCabe complex-
ity were all affected by the same problem. The considered code
had to deal with several types of services, which where very
similar under several respects, although each one had its own
specificity. The analyzed code ignored the similarities among
the services to be managed, so that the code dealing with

similar service aspects was duplicated in multiple methods.
The code could have been organized differently using basic
object-oriented features: a generic class could collect the
features that are common to similar services, and a specialized
class for every service type could take care of the specificity
of different service types.

In conclusion, by inspecting code featuring unusual static
measures, we found design problems, namely inheritance and
late binding were not used where it was possible and conve-
nient.

C. Inspection of duplicated code
SourceMeter was also used to find duplicated code. Specif-

ically, structurally similar blocks of 10 or more lines of code
where looked for. Many duplicated blocks were found. For
instance, in Portal 1, 434 duplicated blocks were found. In
many cases, blocks included more than one hundred lines. The
largest duplicated blocks contained 205 lines. A small minority
of detections concerned false positives.

We found three types of duplications:
a) Duplicates within the same file. That is, the same

code was found in different parts of the same file (or
the same class, often).

b) Duplicates in different files. That is, the same code
fragment was found in different files (of the same
portal).

c) Duplicates in different portals. That is, the same code
fragment was found in files belonging to different
portal.

Duplicates of type c) highlighted the existence of version-
ing problems: different versions of the same class were used
in the two portals.

Duplicates of types a) and b) pointed to the same type
of problem already identified, i.e., not using inheritance to
factor code that can be shared among classes dealing with
similar services. Concerning this issue, it is worth noting that
static measures revealed a general problem with the design
of code, but were not able to indicate precisely which parts
of the code could be factorized. On the contrary, duplicated
code detection was quite effective in identifying all the cases
where code could be factorized, with little need of inspecting
the code. In this sense, code clone detection added some value
to inspections aiming at understanding the reasons for ‘out of
range’ measures.

V. SUGGESTIONS FOR IMPROVING THE DEVELOPMENT
PROCESS

Given the results described in Section IV, it seems conve-
nient that the capabilities of static analysis and measurement
tools are exploited on a regular basis. To this end, we can
observe that two not exclusive approaches are possible.

1) Evaluation of code: The toolset can be used to evaluate
the released code as described in Section III. However, it
would be advisable that developers verify their own code via
SpotBugs and SourceMeter even before releasing it: in such a
way, a not negligible number of bugs would be removed even
before testing and other Verification&Validation activities, thus
saving time and effort. With respect to the evaluation described
in Section III, where just a sample of the issues reported by
the tools were inspected, in the actual development process all
issues should be inspected.

58Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Figure 3. Suggested Development Process.

2) Prevention: The practice of issue identification and veri-
fication leads to identifying the most frequently recurring types
of problems. It is therefore possible to compile a catalogue
of the most frequent and dangerous problems. Accordingly,
programmers could be instructed to carefully avoid such issues.
This could imply teaching programmers specific techniques
and good programming practices.

As a result of the considerations illustrated above, software
development activities could be organized as described in Fig-
ure 3. If development is outsourced, as in the cases described
in this paper, the catalogue of recurrent problems could be
used as part of the contract annex that specifies the required
code quality level.

Finally, it is worth noting that the proposed approach can
be applied in practically any type of lifecycle. For instance,
in an agile development environment, the proposed evaluation
practices could be applied at the end of every sprint.

VI. RELATED WORK

The effectiveness of using automated static analysis tools
for detecting and removing bugs was documented by Zheng
et al. [13]. Among other facts, they found that the cost per
detected fault is of the same order of magnitude for static
analysis tools and inspections, and the defect removal yield of
static analysis tools is not significantly different from that of
inspections.

Thung et al. performed an empirical study to evaluate to
what extent could field defects be detected by FindBugs and
similar tools [14]. To this end, FindBugs was applied to three
open-source programs (Lucene, Rhino and AspectJ). The study
by Thung et al. takes into consideration only known bugs,
and is performed on open-source programs. On the contrary,
we analyzed programs developed in an industrial context, and
relied on manual inspection to identify actual bugs.

Habib and Pradel performed a study to determine how
many of all real-world bugs do static bug detectors find [15].
They used three static bug detectors, including SpotBugs, to
analyze a version of the Defects4J dataset that consisted of 15
Java projects with 594 known bugs. They found that static bug
detectors find a small but non-negligible amount of all bugs.

Vetrò et al. [16] evaluated the accuracy of FindBugs. The
code base used for the evaluation consisted of Java projects
developed by students in the context of an object-oriented
programming course. The code is equipped with acceptance
tests written by teachers of the course in such a way that all
functionalities are checked. To determine true positives, they
used temporal and spatial coincidence: an issue was considered
related to a bug when an issues disappeared at the same time
as a bug get fixed (according to tests). In a later paper [17]
Vetrò et al. repeated the analysis, with a larger code set and
performing inspections concerning four types of issues found
by FindBugs, namely the types of findings that are considered
more reliable.

Tomassi [18] considered 320 Java bugs from the
BugSwarm dataset, and determine which of these bugs can
potentially be found by SpotBugs and another analyzer—
namely, ErrorProne (https://github.com/google/error-prone)—
and how many are indeed detected. He found that 40.3% of
the bugs were of types that SpotBugs should detect, but only
one of such bugs was actually detected by SpotBugs.

In general, the papers mentioned above have goals and use
methods that are somewhat similar to ours, but are nonetheless
different in important respects. A work that shares context,
goals and methods with ours was reported by Steidl et al. [19].
They observed that companies often use static analyses tools,
but they do not learn from results, so that they fail to im-
prove code quality. Steidl et al. propose a continuous quality
control process that combines measures, manual action, and a
close cooperation between quality engineers, developers, and
managers. Although there are evident differences between the
work by Steidl et al. and the work reported in this paper
(for instance, the situation addressed by Steidl et al. does
not involve outsourcing), the suggestions for improving the
development process given in Section V are conceptually
coherent with the proposal by Steidl et al.

Similarly, Wagner et al. [20] performed an evaluation of the
effectiveness of static analysis tools in combination with other
techniques (including testing and reviews). They observed that
a combination of the usage of bug finding tools together with
reviews and tests is advisable if the number of false positives is
low, as in fact is in the cases we analyzed (many false positives
would imply that a relevant effort is wasted).

An alternative to static analyzers like SpotBugs is given by
tools that detect the presence of “code smells” [21] in code. A
comparison of these types of tools was performed by applying
SpotBugs and JDeodorant [22][23] to a set of set of open-
source applications [24]. The study showed that the considered
tools can help software practitioners detect and remove defects
in an effective way, to limit the amount of resources that would
otherwise be spent in more cost-intensive activities, such as
software inspections. Specifically, SpotBugs appeared to detect
defects with good Precision, hence manual inspection of the
code flagged defective by SpotBugs becomes cost-effective.

Another empirical study evaluated the persistence of Spot-
Bugs issues in open-source software evolution [25]. This study
showed that around half the issues discovered by SpotBugs
are actually removed from code. This fact is interpreted as
a confirmation that SpotBugs identifies situations that are
considered worth correcting by developers.

59Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

VII. CONCLUSIONS

Evaluating the quality of software is important in gen-
eral, and especially for business organization that outsource
development, and do not have visibility and control of the
development process. Software testing can provide some kind
of quality evaluations, but to a limited extent. In fact, some
aspects of code quality (e.g., whether the code is organized
in a way that favors maintainability) cannot be assessed via
testing.

This paper describes an approach to software quality
evaluation that consists of two phases: in the first phase,
tools are used to identify possible issues in the code; in the
second phase, code is manually inspected to verify whether
the reported issues are associated to real problems. The tools
used are of two kinds: the first performs static analysis of
code looking for patterns that are likely associated to prob-
lematic code; the second type yields measures of static code
properties (like size, complexity, cohesion, coupling etc.), thus
helping identifying software elements having excessive, hence
probably problematic, characteristics.

The mentioned approach was applied to the code of the
web portals used by a European company to let its customers
use a set of services. The experience was successful, as
tool-driven inspections uncovered several types of defects. In
the process, the tools (namely SpotBugs and SourceMeter)
identified problems of inherently different nature, hence it is
advisable to use both types of tools.

Based on our findings, the business company was able to
learn what are the most frequent and dangerous types of defects
that affect the acquired code: this knowledge is being used to
perform focused verification activities.

The proposed approach and toolset (possibly composed
of equivalent tools) can be useful in several contexts where
code quality evaluation is needed. Noticeably, the proposed
approach can be used in different types of development pro-
cess, including agile processes.

Among the future possible evolutions of this work, the most
intriguing one concerns studying the possibility of replacing
inspection via some sort of AI-based models that can discrim-
inate false positives and true problems.

ACKNOWLEDGMENT

This work has been partially supported by the “Fondo di
ricerca d’Ateneo” of the Università degli Studi dell’Insubria.

REFERENCES

[1] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan
notices, vol. 39, no. 12, 2004, pp. 92–106.

[2] https://spotbugs.github.io/ [retrieved: August 2020].
[3] https://find-sec-bugs.github.io/ [retrieved: August 2020].
[4] “Open Web Application Security Project (OWASP),”

https://www.owasp.org [retrieved: August 2020].
[5] “Common Weaknesses Enumeration,” https://cwe.mitre.org [retrieved:

August 2020].
[6] R. Ferenc, L. Lang, I. Siket, T. Gyimthy, and T. Bakota, “Source

meter sonar qube plug-in,” in 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation, 2014, pp. 77–
82.

[7] https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html/
[retrieved: August 2020].

[8] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, 1976, pp. 308–320.

[9] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6,
1994, pp. 476–493.

[10] A. H. Watson, D. R. Wallace, and T. J. McCabe, Structured testing: A
testing methodology using the cyclomatic complexity metric. US De-
partment of Commerce, Technology Administration, National Institute
of , 1996, vol. 500, no. 235.

[11] M. Bray, K. Brune, D. A. Fisher, J. Foreman, and M. Gerken, “C4
software technology reference guide-a prototype.” Carnegie-Mellon
Univ., Pittsburgh PA, Software Engineering Inst, Tech. Rep., 1997.

[12] JPL, “JPL Institutional Coding Standard for the C Programming Lan-
guage,” Jet Propulsion Laboratory, Tech. Rep., 2009.

[13] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the value of static analysis for fault detection in
software,” IEEE transactions on software engineering, vol. 32, no. 4,
2006, pp. 240–253.

[14] F. Thung, L. Lucia, D. Lo, L. Jiang, P. Devanbu, and F. Rahman,
“To what extent could we detect field defects? an extended empirical
study of false negatives in static bug-finding tools,” Automated Software
Engineering, vol. 22, no. 4, 2015, pp. 561–602.

[15] A. Habib and M. Pradel, “How many of all bugs do we find? a
study of static bug detectors,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018,
pp. 317–328.

[16] A. Vetrò, M. Torchiano, and M. Morisio, “Assessing the precision of
FindBugs by mining java projects developed at a university,” in 2010
7th IEEE Working Conference on Mining Software Repositories (MSR
2010). IEEE, 2010, pp. 110–113.

[17] A. Vetrò, M. Morisio, and M. Torchiano, “An empirical validation
of findbugs issues related to defects,” in 15th Annual Conference on
Evaluation and Assessment in Software Engineering (EASE 2011).
IET, 2011, pp. 144–153.

[18] D. A. Tomassi, “Bugs in the wild: examining the effectiveness of static
analyzers at finding real-world bugs,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2018, pp.
980–982.

[19] D. Steidl, F. Deissenboeck, M. Poehlmann, R. Heinke, and B. Uhink-
Mergenthaler, “Continuous software quality control in practice,” in 2014
IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2014, pp. 561–564.

[20] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger, “Comparing bug
finding tools with reviews and tests,” in IFIP International Conference
on Testing of Communicating Systems. Springer, 2005, pp. 40–55.

[21] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[22] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “Jdeodorant: Iden-
tification and removal of feature envy bad smells,” in 2007 IEEE
International Conference on Software Maintenance. IEEE, 2007, pp.
519–520.

[23] “JDeodorant website,” 2020. [Online]. Available:
https://github.com/tsantalis/JDeodorant

[24] L. Lavazza, S. Morasca, and D. Tosi, “Comparing static analysis and
code smells as defect predictors: an empirical study,” in Empirical
Software Engineering and Measurement – ESEM 2020, 2020.

[25] L. Lavazza, D. Tosi, and S. Morasca, “An empirical study on the
persistence of spotbugs issues in open-source software evolution,”
in 13th International Conference on the Quality of Information and
Communications Technology – QUATIC, 2020.

60Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

