
Plagiarism Detection Systems for Programming Assignments: Practical Considerations

Maxim Mozgovoy and Evgeny Pyshkin
University of Aizu

Tsuruga, Ikki-Machi, Aizu-Wakamatsu, Fukushima, 965-8580, Japan
Email: {mozgovoy,pyshe}@u-aizu.ac.jp

Abstract—We discuss a project contributing to the quality of
software engineering education by producing a state of the
art code duplication and plagiarism detection system, aimed at
college and university teachers. Though detecting plagiarism (as
unauthorized “borrowings” of code fragments) consumes time
and energy of the teachers, ignoring this issue makes a negative
impact on students’ discipline and lowers motivation of course
participants. While plagiarism detection in software code is a
well-known research task, there are no open source modern
plagiarism detection systems that are designed for actual class-
room use by implementing state of the art detection techniques,
convenient visualizations, integration with course management
systems, and supporting common use case scenarios.

Keywords–Education; plagiarism; software; programming; ex-
ercises; online learning.

I. INTRODUCTION

Societal lock-down of 2020 caused by Covid-2019 out-
spread pushed educational institutions to enforce teaching
and learning processes based on active using of online and
distant education technology. Distant learning tools have many
advantages (flexibility in using them at any time from vir-
tually any device, convenient access, possibilities for user
collaboration, creating less stressful study process), but also
considerable limitations. That’s why methodological and orga-
nizational solutions for distant learning should be developed
so that they would improve the teaching process in a way
serving both remote and traditional face-to-face teacher/student
communication. Further digitalization of learning process does
not mean its transfer to online environments only, developing
better computer-assisted tools to support traditional teaching
is equally important.

Programming is commonly considered as an activity fa-
voring outsourcing, task distribution and online communica-
tion, which make the project work of experienced engineers
more efficient and well organized. However, in programming
teaching, the lack of direct in-person communication often
makes difficult to fairly check the solutions of students and to
support them in their practical work. Even within the scope
of traditional face-to-face classes, it is hard to manage all
the students’ projects, especially if you have big groups of
students. Thus, instructors need good instruments to support
practical exercise assignments and their checks.

Teachers who conduct online classes, as we observe, typi-
cally do not seek to use a single universal tool covering all
their needs. Instead, they tend to choose the most suitable
software for the given task. For example, a teacher might
publish video recordings on YouTube, communicate with stu-
dents via Slack, organize videoconferences using Zoom, and
publish learning materials on Moodle. Some activities are,
however, easier to organize than others. Videoconferencing and

messaging is a relatively straightforward process with today’s
technology, while conducting exercise sessions and ensuring
proper homework evaluation can be more laborious. Since the
students may work on their assignments in an unsupervised
environment (and organizing a proper proctoring procedure
might be complicated and not always desirable), ensuring fair
study conditions for everyone and reducing the amount of
cheating is essential.

Plagiarism is a type of academic dishonesty that consists in
reusing documents composed by other authors without proper
acknowledgement of the original source [1]. Plagiarism is a
common phenomenon among students, as some of them may
tempt to reuse solutions developed by their peers or copied
online, thus, eliminating their educational value.

Many authors note that plagiarism can often be prevented
by designing better, more personalized assignments, training
students to avoid unintentional plagiarism, and administrative
measures [2] [3]. It is also often suggested that preventive mea-
sures should be combined with computer-assisted plagiarism
detection practices. Most detection tools, such as Turnitin [4],
are designed for detecting overlapping online sources for a
given document (an essay or a research paper), but some
recently developed instruments are specifically tailored for de-
tecting duplications in offline collections of software code [5].

II. PLAGIARISM DETECTION IN STUDENT PROJECTS:
CHALLENGES AND PRACTICAL GOALS

Plagiarism detection in student-submitted software source
code is an established research topic, stemming from the
task of identifying duplicated fragments in large software
systems, which has its own importance, since the duplicated
code impairs project architecture, conditions worse project
maintainability, increases the risk of software bugs, and may
seriously affect code efficiency. The problem of detecting
software code improper reuse differs from natural language
plagiarism detection due to several factors:
• Code collections under testing are typically available

offline, since it is nearly impossible to find online
a fragment of code that solves a particular teacher-
supplied task, unless it is a well-known classical
algorithm;

• Students typically receive the same or very similar
assignments, so they tend to borrow code from their
peers or predecessors;

• Software code is easy to modify, refactor or obfuscate,
keeping its functionality intact;

• In principle, code reuse itself is a common engineering
practice, which does not always refer to plagiarism.

Thus, though it seems obvious to apply some natural lan-

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

guage processing algorithms suitable for general-purpose text
processing, we have to mention a number of important issues
demonstrating serious particularities of plagiarism detection in
software programs.

Contradiction between standard software engineering
practices and pedagogical aims. Teachers fight plagiarism,
since, first, it itself contradicts major pedagogical aims. How-
ever, at the same time (specifically, in engineering disciplines),
teachers should introduce existing standard solutions. Software
engineering practices naturally favor reusing the successful
solutions and standardized models, but the proper reuse should
be differentiated from large scale source code copying.

Detecting structural source code similarity. In process of
comparing the source code fragments, we are not so interested
in finding exact matches, but their structural resemblance
and/or functional equivalence. One may expect that recog-
nizing structural similarity of math equations may provide
useful insights in detecting structurally similar source code
fragments [6] [7], the latter being nothing but the texts in
a formal language. However, especially in the cases when
students are encouraged to use structural software organization
and presentation models (such as software design patterns,
specific project architectures, etc.), we could not accuse a
student in plagiarism, based on structural similarity only.

Few solutions may be used in classroom environments.
Surprisingly, there are very few systems designed specifically
for actual classroom use. Most researchers tend to be focused
on purely algorithmic aspects of the problem, such as robust
file comparison procedure, high speed of detection process or
explicit support for specific programming languages. There-
fore, the tasks of designing appropriate user interfaces or
providing specific functionality relevant for teachers of pro-
gramming classes is challenging, and often neglected.

Most commercial solutions are for texts in natural
languages. The gap between the achievements in developing
algorithms for source code processing and their applicability to
classroom environments is not filled by commercial companies
offering solutions focused primarily on detecting matches for
natural-language texts. As a result, teachers still often rely
on manual detection, which is a very time-consuming and
laborious process, they could not gain all the possible benefits
from using the online submission systems (such as Moodle
and/or automated code testing / grading instruments).

Thus, the problem of identifying reliable similarity de-
tection methods, suitable for academic environment and ap-
plicable to a wide range of programming languages is far
from being resolved. That is why, in sum, the practical goal
of our project is to automate teachers’ daily routine tasks
that consume much time and energy. We believe that the
existence of a convenient plagiarism detection instrument can
be a noticeable contributing factor for better quality of courses
offered at educational institutions. The teachers really need to
have more time to be concentrated on developing the course
content, creating interesting tasks, or organizing problem-based
learning teams, while it is in the interests of our society that
the students study harder, honestly, more efficiently and have
lower chances to pass the course by copying their peers’ work.
Some researchers observe that even skillful students often
feel demotivated when they see others passing courses using
“borrowed” solutions (which happens in large courses, where

the teachers have no time for appropriate checks of the whole
corpus of student submissions) [8], so an automated plagiarism
detection system would have a positive effect on all parties
involved in course activities.

III. PLAGIARISM PREVENTION AND DETECTION
TECHNIQUES

Figure 1. Taxonomy of plagiarism detection methods.

It is often noted in the literature that plagiarism prevention
should be the main goal of a teacher, while detection is seen
as a “last resort” measure. Various methods of plagiarism
prevention were suggested. Generally, they are aimed to make
plagiarism technically hard, socially unacceptable, and legally
dangerous [3]. The teachers are advised to design personalized
assignments and conduct onsite problem solving sessions,
when possible. School policymakers are expected to devise
“honor codes” and similar mechanisms to make the students
aware of high importance of “fair play” principles at a given
institution. Furthermore, violators of the code are expected to
face severe disciplinary punishment.

Nevertheless, plagiarism detection is still seen as a valuable
activity, since the very knowledge of plagiarism checking
may deter cheating. As noted above, numerous works are
dedicated to the technical side of the problem. Even systems
belonging to a relatively narrow group of “hermetic detection
systems for source code” [9] can be categorized into several
classes according to their basic approach to detection [3]
(see Figure 1). By “hermetic” we mean that borrowings are
expected to be found in the same collection rather than in an
online source [9]

Over the last decades, a number of software similar-
ity and source code clone detection methods were devel-
oped [10] [11] [12] [13]. However, the evaluation of their
relative detection performance, applicability to particular pro-
gramming languages, and robustness to refactoring techniques
is still a subject of research works [5].

In addition to formal clone detection algorithms, the work-
flow analysis can be promising: if the system can detect that
a learner copied and then pasted a large amount of source
code at once, such a behavior may be considered as a possible
plagiarism issue [14]. In particular, the chosen method(s)
should be able to identify matching fragments of the source
code files, which is not always possible for techniques based
on normalization by decompilation.

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

IV. INTRODUCING THE PROJECT: SOURCES AND PROJECT
GOALS

The principal challenge of the project is to create a system
that would combine high plagiarism detection efficiency with
the simplicity of use and appeal to a broad teacher audience
by providing capabilities consistent with pedagogical goals and
teaching practice.

At least, the following goals should be achieved in a
system, applicable in a programming course context:

• “Hermetic” plagiarism detection in a collection of
student-submitted assignments.

• Exclusions of certain fragments marked as “templates”
by the teacher. Teachers often provide code templates
that are expected to be integrated into a student’s
solution, and these templates should not be considered
unauthorized borrowings.

• Simplified detection and reporting procedure “histor-
ical” submissions. When students copy from their
peers, it is desirable to identify specific pairs of similar
documents and deal with their authors on individual
basis. However, if a student copied an assignment
submitted in the past, it might be enough to provide a
simplified report merely proving the fact of cheating.

• Rich reporting and visualization capabilities, which
would enable the teachers to find clusters of matching
documents efficiently and perform manual analysis of
identified similarities.

• Support for a variety of programming languages, and
an option to “tokenize” code (see, for example, [15]),
which helps to identify plagiarism even if the source
code is refactored (lines rearranged, variables re-
named, etc.).

• An efficient approximate matching algorithm, able to
find partial matches located in non-contiguous areas
of source documents.

• Integration with online course management systems
(such as Moodle) and/or online code testing tools
(such as Aizu online judge [16]).

Some of these capabilities can be are found in earlier
systems [17]. For example, WCopyfind [18] for NLP pla-
giarism detection provided features for HTML reporting and
worked with user-defined document collections. Sherlock [19]
supported templates, text tokenization, as well as certain visu-
alization instruments.

V. CONCLUSION

Since, this paper describes an ongoing project, many issues
still need more study and efforts. We need conduct interviews
with other programming class teachers to identify all actual
classroom practices including the use of online submission
systems, current plagiarism prevention and detection measure-
ments, and grading policy. Careful analysis of these practices
will help in revealing the practical use cases for plagiarism
detection to be used as a basis for our system. In large,
achieving the project goals may significantly affect further
development of innovative programming teaching practices
(such as those described in [20]) within the scope of improving
computer education.

ACKNOWLEDGEMENT

The work is supported by the University of Aizu Research
Funding.

REFERENCES
[1] T. Kakkonen and M. Mozgovoy, “Students cyber-plagiarism,” in Ency-

clopedia of Cyber Behavior. IGI Global, 2012, pp. 1168–1177.
[2] R. A. Posner et al., The little book of plagiarism. Pantheon, 2007.
[3] M. Mozgovoy, Enhancing computer-aided plagiarism detection. Uni-

versity Of Joensuu Joensuu, 2007.
[4] M. N. Halgamuge, “The use and analysis of anti-plagiarism software:

Turnitin tool for formative assessment and feedback,” Computer Appli-
cations in Engineering Education, vol. 25, no. 6, 2017, pp. 895–909.

[5] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of code
similarity analysers,” Empirical Software Engineering, vol. 23, no. 4,
2018, pp. 2464–2519.

[6] K. Yokoi and A. Aizawa, “An approach to similarity search for math-
ematical expressions using mathml,” Towards a Digital Mathematics
Library. Grand Bend, Ontario, Canada, July 8-9th, 2009, 2009, pp. 27–
35.

[7] E. Pyshkin and M. Ponomarev, “Mathematical equation structural
syntactical similarity patterns: A tree overlapping algorithm and its
evaluation,” Informatica, vol. 40, no. 4, 2016.

[8] D. Chuda, P. Navrat, B. Kovacova, and P. Humay, “The issue of (soft-
ware) plagiarism: A student view,” IEEE Transactions on Education,
vol. 55, no. 1, 2011, pp. 22–28.

[9] T. Kakkonen and M. Mozgovoy, “Hermetic and web plagiarism de-
tection systems for student essaysan evaluation of the state-of-the-art,”
Journal of Educational Computing Research, vol. 42, no. 2, 2010, pp.
135–159.

[10] M. Novak, “Review of source-code plagiarism detection in academia,”
in 2016 39th International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics (MIPRO). IEEE,
2016, pp. 796–801.

[11] D. Kılınç, F. Bozyiğit, A. Kut, and M. Kaya, “Overview of source
code plagiarism in programming courses,” International Journal of Soft
Computing and Engineering (IJSCE), vol. 5, no. 2, 2015, pp. 79–85.

[12] M. Akhin and V. Itsykson, “Clone detection: Why, what and how?” in
2010 6th Central and Eastern European Software Engineering Confer-
ence (CEE-SECR). IEEE, 2010, pp. 36–42.

[13] A. Sheneamer and J. Kalita, “A survey of software clone detection
techniques,” International Journal of Computer Applications, vol. 137,
no. 10, 2016, pp. 1–21.

[14] A. S. Carter and C. D. Hundhausen, “Using programming process
data to detect differences in students’ patterns of programming,” in
Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, 2017, pp. 105–110.

[15] M. Ďuračı́k, E. Kršák, and P. Hrkút, “Current trends in source code
analysis, plagiarism detection and issues of analysis big datasets,”
Procedia engineering, vol. 192, 2017, pp. 136–141.

[16] C. M. Intisar and Y. Watanobe, “Classification of online judge program-
mers based on rule extraction from self organizing feature map,” in 2018
9th International Conference on Awareness Science and Technology
(iCAST). IEEE, 2018, pp. 313–318.

[17] M. Mozgovoy, T. Kakkonen, and G. Cosma, “Automatic student plagia-
rism detection: future perspectives,” Journal of Educational Computing
Research, vol. 43, no. 4, 2010, pp. 511–531.

[18] L. Bloomfield, “Software to detect plagiarism: Wcopyfind (version
2.6),” 2009.

[19] M. Joy and M. Luck, “Plagiarism in programming assignments,” IEEE
Transactions on education, vol. 42, no. 2, 1999, pp. 129–133.

[20] E. Pyshkin, “Liberal arts in a digitally transformed world: Revisiting
a case of software development education,” in Proceedings of the
13th Central & Eastern European Software Engineering Conference in
Russia, ser. CEE-SECR ’17. New York, NY, USA: ACM, 2017, pp.
23:1–23:7.

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

