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Abstract—The automated generation of source code, often
referred to as metaprogramming, has been pursued for decades in
computer programming. Though many such metaprogramming
environments have been proposed and implemented, scalable
collaboration within and between such environments remains
challenging. It has been argued in previous work that a meta-
circular metaprogramming architecture, where the the metapro-
gramming code (re)generates itself, enables a more scalable
collaboration and easier integration. In this contribution, an
explorative case study is performed to integrate this meta-circular
architecture with another metaprogramming environment. Some
preliminary results from applying this approach in practice are
presented and discussed.

Index Terms—Evolvability; Normalized Systems; Simulation
Models; Automated programming; Case Study

I. INTRODUCTION

The automated generation of source code, often referred
to as automatic programming or metaprogramming, has been
pursued for decades in computer programming. Though the
increase of programming productivity has always been an
important goal of automatic programming, its value is of
course not limited to development productivity. Various dis-
ciplines like systems engineering, modeling, simulation, and
business process design could reap significant benefits from
metaprogramming techniques.

While many implementations of such automatic program-
ming or metaprogramming exist, many people believe that au-
tomatic programming has yet to reach its full potential [1][2].
Moreover, where large-scale collaboration in a single metapro-
gramming environment is not straightforward, realizing such
a scalable collaboration between different metaprogramming
environments is definitely challenging.

In our previous work [3], we have presented a meta-circular
implementation of a metaprogramming environment, and have
argued that this architecture enables a scalable collaboration
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between various metaprogramming projects. In this contri-
bution, we perform an explorative case study to perform a
first integration with another metaprogramming environment.
To remain generic, the two metaprogramming environments
are aimed at generative programming for completely different
types of software systems, and based on totally different meta-
models. At the same time, they are suited for this study, as
they both pursue a more horizontal integration architecture.

The remainder of this paper is structured as follows. In
Section II, we briefly present some aspects and terminology
with regard to metaprogramming, and argue the relevance of
two related concepts: meta-circularity and systems integra-
tion. In Section III, we explain the need for collaborative
metaprogramming and the issues that need to be solved.
Section IV presents the architecture and meta-model of both
metaprogramming environments whose integration is explored
in this contribution. Section V elaborates on the possible
integration of these metaprogramming environments, detailing
the possibilities, progress, and remaining issues. Finally, we
present some conclusions in Section VL

II. METAPROGRAMMING, META-CIRCULARITY,
AND SYSTEMS INTEGRATION

The automatic generation of source code is probably as old
as software programming itself, and is in general referred
to by various names. Aufomatic programming, stresses the
act of automatically generating source code from a model or
template, and has been called ”a euphemism for programming
in a higher-level language than was then available to the
programmer” by David Parnas [4]. Generative programming,
”to manufacture software components in an automated way”
[5], emphasizes the manufacturing aspect and the similarity to
production and the industrial revolution. Metaprogramming,
sometimes described as a programming technique in which
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“computer programs have the ability to treat other programs as
their data” [6], stresses the fact that this is an activity situated
at the meta-level, i.e., writing software programs that write
software programs.

Academic papers on metaprogramming based on intermedi-
ate representations or Domain Specific Languages (DSLs), e.g.,
[7], focus in general on a specific implementation. Also related
to metaprogramming are software development methodologies
such as Model-Driven Engineering (MDE) and Model-Driven
Architecture (MDA ), requiring and/or implying the availability
of tools for the automatic generation of source code. Today,
these model-driven code generation tools are often referred to
as Low-Code Development Platforms (LCDP), i.e., software
that enables developers to create application software through
configuration instead of traditional programming. This field is
still evolving and facing criticisms, as some question whether
these platforms are suitable for large-scale and mission-critical
enterprise applications [1], while others even question whether
these platforms actually make development cheaper or eas-
ier [2]. Moreover, defining an intermediate representation or
reusing DSLs is still a subject of research today. We mention
the contributions of Wortmann [8], presenting a novel concep-
tual model for the systematic reuse of DSLs, and Gusarov et.
al. [9], proposing an intermediate representation to be used for
code generation.

Concepts somewhat related to metaprogramming are ho-
moiconicity and meta-circularity. Both concepts refer to some
kind of circular behavior, and are also aimed at the increase of
the abstraction level, and thereby the productivity of computer
programming. Homoiconicity is specifically associated with a
language that can be manipulated as data using that language,
and traces back to the design of the language TRAC [10],
and to similar concepts in an earlier paper from Mcllroy
[11]. Meta-circularity, first coined by Reynolds describing his
meta-circular interpreter [12], expresses the fact that there is
a connection or feedback loop between the meta-level, the
internal model of the language, and the actual models or code
expressed in the language. Such circular properties have the
potential to be highly beneficial for metaprogramming, as they
could enable a unified view on both the metaprogramming
code and the generated source code, thereby reducing the
complexity for the metaprogrammers.

Based on a generic engineering concept, systems integration
in information technology refers to the process of linking
together different computing systems and software applica-
tions, to act as a coordinated whole. Systems integration is
becoming a pervasive concern, as more and more systems
are designed to connect to other systems, both within and
between organizations. Due to the many, often disparate,
metaprogramming environments and tools in practice, we
argue that systems integration should be explored and pursued
more at the metaprogramming level. Just as traditional systems
integration often focuses on increasing value to the customer
[13], systems integration at the metaprogramming level could
provide value to their customers, i.e., the software developers.
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III. TOWARD SCALABLE COLLABORATIVE
METAPROGRAMMING

Something all implementations of automatic programming
or metaprogramming have in common, is that they perform
a transformation from domain models and/or intermediate
models to code generators and programming code. In general,
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Fig. 1. Representation of the duplication of metaprogramming silos.

metaprogramming or code generation environments also ex-
hibit a rather straightforward internal structure. This structure
is schematically represented for a single metaprogramming
environment at the left side of Figure 1, and consists of:

o model files containing the model parameters.

e reader classes to read the model files.

e model classes to represent the model parameters.

o control classes selecting and invoking the different gen-
erator classes.

e generator classes instantiating the source templates, and
feeding the model parameters to the source templates.

o source templates containing the parameterised code.

Another metaprogramming environment will have a similar
internal structure, as schematically represented at the right
side of Figure 1. Such similar but duplicated architectures
exhibit a vertical integration architecture. In this architec-
ture, the functional entities are also referred to as silos, and
metaprogramming silos entail several significant drawbacks.
First, it is hard to collaborate between the different metapro-
gramming silos, as both the nature of the models and the
code generators will be different. Second, contributing to the
metaprogramming environment will require programmers to
learn the internal structure of the model and control classes
in the metaprogramming code. As metaprogamming code is
intrinsically abstract, this is in general not a trivial task.
And third, as contributions of individual programmers will
be spread out across the models, readers, control classes, and
actual coding templates, it will be a challenge to maintain a
consistent decoupling between these different concerns.

We have argued in our previous work that in order to achieve
productive and scalable adoption of automatic programming
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techniques, some fundamental issues need to be addressed
[14][3]. First, to cope with the increasing complexity due to
changes, we have proposed to combine automatic program-
ming with the evolvability approach of Normalized Systems
Theory (NST) providing (re)generation of the recurring struc-
ture and re-injection of the custom code [14]. Second, to avoid
the growing burden of maintaining the often complex meta-
code and continuously adapting it to new technologies, we
have proposed a meta-circular architecture to regenerate the
metaprogramming code itself as well [3]. We will go into some
more detail on NST and the corresponding metaprogramming
environment in the next section.

As this meta-circular architecture establishes a clear decou-
pling between the models and the code generation templates
[3], it allows for the definition of programming interfaces at
both ends of the transformation. This should remove the need
for contributors to get acquainted with the internal structure
of the metaprogramming environment. It also enables a more
horizontal integration architecture, by allowing developers
to collaborate on both sides of the interface. Modelers and
designers are able to collaborate on models, gradually im-
proving existing model versions and variants, and adding on
a regular basis new functional modules. (Meta)programmers
can collaborate on coding templates, gradually improving
and integrating new insights and coding techniques, adding
and improving implementations of cross-cutting concerns, and
providing support for modified and/or new technologies and
frameworks. Moreover, an horizontal integration architecture
could facilitate collaboration between two metaprogramming
environments. Exploring such a collaboration is the purpose
of the case study in this paper.

IV. STRUCTURE OF THE METAPROGRAMMING
ENVIRONMENTS

In this section, we present the architectures and meta-models
of the two metaprogramming environments considered in this
integration case study. The first metaprogramming environ-
ment is the NST meta-circular architecture, as it explicitly aims
to realize horizontal integration and scalable collaboration.
The second metaprogramming environment is concerned with
a completely different application domain, i.e., models for
simulation systems, and is based on a totally different meta-
model. However, by clearly separating the modeling in the
front-end from the generative programming in the back-end,
it is also pursuing a more horizontal integration architecture.

A. Normalized Systems Elements Metaprogramming

Normalized Systems Theory (NST), theoretically founded on
the concept of stability from systems theory, was proposed
to provide an ex-ante proven approach to build evolvable
software [14][15][16]. The theory prescribes a set of theorems
(Separation of Concerns, Action Version Transparency, Data
Version Transparency, and Separation of States) and formally
proves that any violation of any of the preceding theorems will
result in combinatorial effects thereby hampering evolvability.
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As the application of the theorems in practice has shown to
result in very fine-grained modular structures, it is in general
difficult to achieve by manual programming. Therefore, the
theory also proposes a set of design patterns to generate the
main building blocks of (web-based) information systems [14],
called the NS elements: data element, action element, workflow
element, connector element, and trigger element.

An information system is defined as a set of instances of
these elements, and the NST metaprogramming environment
instantiates for every element instance the corresponding de-
sign pattern. This generated or so-called expanded boiler plate
code is in general complemented with custom code or craft-
ings to add non-standard functionality, such as user screens
and business logic. This custom code can be automatically
harvested from within the anchors, and re-injected when the
recurring element structures are regenerated.

While the NST metaprogramming environment was origi-
nally implemented in a traditional metaprogramming silo as
represented in Figure 1, it has been evolved recently into a
meta-circular architecture [3]. This meta-circular architecture,
described in [3] and schematically represented in Figure 2,
enables both the regeneration of the metaprogramming code
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Fig. 2. Closing the meta-circle for expanders and meta-application.

itself, and allows for a structural decoupling between the two
sides of the transformation, i.e., the domain models and the
code generating templates.

The domain models for the web-based information systems
are specified as sets of instances of the various types of
NS elements. While these elements can be entered in a
meta-application and/or graphical modeler, they are formally
specified in XML files, whose structure is defined in a corre-
sponding XML Schema.

As the NS meta-model is just another NS model [3], the
various types of elements can be specified in XML files,
just like any other instance of a data element. Aimed at the
automatic programming of multi-tier web-based information
systems, the meta-model of the NST metaprogramming en-
vironment is a model for web-based information systems.
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Fig. 3. A graphical representation of the core part the NS (data) meta-model.

The core data model of this metaprogramming environment
is represented in Figure 3. This graphical representation, a
screenshot from the NST Modeler tool, is similar to most
ERD (Entity Relationship Diagram) visualizations, but uses
colors to distinguish between different types of data entities
[17]. The unit of an NS model is a component, and within
such a component model, we distinguish the various types of
NS elements [14], such as Data elements, Task elements, and
Flow elements. These elements, colored light blue and located
in the top row, can have options, e.g., Task options. Both the
entities representing elements and their corresponding options,
are characterized by a typing or taxonomy entity, e.g., Task
element type or Task option type, represented in light red. The
data elements contain a numer of attributes or Fields, where a
field can be either a data attributes or a relationship link, and
provide a number of Finders. Both fields and finders can have
options characterized by corresponding option types.

Every individual code generator or NS expander is declared
in an Expander XML file, specifying for instance the type of
element it belongs to, and the various properties of the source
artifact that it generates. For every such artifact expander,
one needs to provide a coding Template, based on the
StringTemplate (ST) engine library, and an XML expander
Mapping file, specifying the various template parameters in
terms of model parameters through Object-Graph Navigation
Language (OGNL) expressions.

B. Generative Programming of Simulation Models

The United States Army has developed and documented
hundreds of approved models for representing behaviors and
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systems, often separate from the simulation environments
where they are to be implemented. The manual translation of
these models into actual simulation environments by software
developers, leads to implementation errors and verification dif-
ficulties, and is unable to avoid the workload of incorporating
these models into other simulation environments.

In order to address these potential drawbacks, a generative
programming approach is being examined, aiming to capture
military-relevant models within an executable systems engi-
neering format, and to facilitate authoritative models to operate
within multiple platforms. The goal of this work is to be able to
capture authoritative conceptual models and then to generate
software to implement those representations/behaviors. This
generated software can be quickly integrated into multiple
simulations regardless of their programming language thereby
saving development cost and improving the consistency across
simulation systems.

The architecture of this metaprogramming environment,
schematically represented in Figure 4, divides the problem
into two domains, i.e., the front-end and the back-end. In
the front-end, corresponding to the conceptual models at the
left column, the Subject Matter Experts (SME), scientists,
and software model developers are able record the model
definitions and behaviors or algorithms. In the back-end,
represented in the three other columns, those model defini-
tions and algorithms are transformed through templating and
metaprogramming into executable code, targeted at specific
architectures and implementations. To properly decouple these
parts, an Interchange Format (IF) was created that allows one
or more front-ends to be created to record models in a way that
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Fig. 4. Schematic representation of the generative programming architecture for simulation models.

suits the needs of the front-end user community, and to pass
those models to be used for code generation in the back-end.

The interchange format between the front-end and the back-
end is based on XML documents, whose structure is defined by
an XML Schema or XSD (XML Schema Definition Language).
This interchange format structure, i.e., the XSD, is called the
Synthetic Training Environment (STE) Canonical Universal
Format (SCUF).

This meta-model is not intended to support a full program-
ming language, but rather to focus on the domain elements
used within the U.S. Army’s canonical descriptions of the sim-
ulation models. Nevertheless, it represents most concepts of
a traditional procedural programming language. Specifically,
these include the data type declarations, datastores, and various
elements of algorithms, such as conditions, expressions and
iterators. Figure 5 provides a class diagram of the SCUF meta-
model, anew similar to most ERD visualizations.

To capture the human readable text of the canonical sim-
ulation model descriptions along with executable code in
the front-end, the generative programming environment uses
PyFlow [18], which is an open source project that is similar
to other visual scripting frameworks including Unity’s Bolt
or Playmaker [19], and Unreal’s Blueprints [20]. The U.S.
Army added custom additions to PyFlow that includes both
the ability to execute the models, as well as the capability to
generate the SCUF code, the interchange format to transfer the
model from the front-end to the back-end. The back-end code
generator uses the Apache Velocity templating engine to create
the output files in multiple programming languages (C#, C++,
and Java currently).

V. TOWARD INTEGRATING THE
METAPROGRAMMING ENVIRONMENTS

The two metaprogramming environments target the auto-
matic programming of two different types of software systems:
multi-tier web-based information systems, and executable
(army) models for simulation systems. Consequently, the two
metaprogramming environments have a completely different
meta-model. Moreover, both the front-end technologies captur-
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ing the models, and the target programming languages —even
the code templating engines— are different.

What both metaprogramming environments have in com-
mon is a structured decoupling between the definition of
models and the generation of code. Moreover, the interchange
format of the models is in both environments based on XML
documents, whose structure is defined by an XML schema.
This means that it is conceptually possible to map the gen-
erative programming environment for simulation models onto
the collaboration architecture represented in Figure 2.

A. Embracing the SCUF Meta-Model

The NST meta-circular metaprogramming environment al-
lows for the structural generation of all reader, writer, and
model classes of any model —or meta-model— that can be
expressed as a set of NST data elements. The SCUF meta-
model, based on XML and defined by an XML Schema,
satisfies this requirement. Based on the definition of the SCUF
data entities (as represented in the class diagram of Figure 5,
e.g., ypeDefinition, DatastoreType, ConditionalBlock, Expres-
sion, Declare, Statement, etcetera), NST data elements can
be created. For instance, Statement needs to be defined as
an NST data element with a name field which is a string, a
type field that is a link to the TypeDefinition data element,
and an expression field that is a link to the Expression data
element. These data elements can be specified in XML, or in
the user interface of the NST meta-application, or even directly
generated from the XML Schema. For every data element, the
various classes of the NST stack in the left part of Figure 2
can be generated. These include:

e Reader and writer classes to read and write the XML-
based SCUF files, e.g., StatementXmlReader and State-
mentXmlWriter.

o Model classes to represent and transfer the various SCUF
entities, and to make them available as an object graph,
e.g., StatementDetails and StatementComposite.

e View and control classes to perform CRUDS (create,
retrieve, update, delete, search) operations in a generated
table-based user interface.
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Fig. 5. A graphical representation of the core part the SCUF (data) meta-model.

This implies that the various existing SCUF models, represent-
ing instances of the SCUF data entities and therefore instances
of the NST data elements, can be read and made available as
an object graph, allowing to evaluate model parameters using
Object-Graph Navigation Language (OGNL) expressions at
the emplating engine. Moreover, an additional application
with a table-based user interface is available to create, view,
manipulate, and write SCUF models.

B. Supporting the Templating Engine

Having defined the SCUF data entities as NST data el-
ements, the NST metaprogramming environment allows to
evaluate SCUF model parameters through OGNL expressions
in SCUF model graphs, and to make them available to
coding templates. In order to simply activate the existing
coding templates of the simulation models, and to use the
NST metaprogramming environment as a piece of evolvable
middleware to pass the SCUF models to the code templates
for the simulation models, two tasks remain to be performed.

« Every coding template needs to be declared in a separate
XML Expander definition.

« For every coding template, the appropriate OGNL expres-
sions to evaluate the relevant model parameters, need to
be defined in an XML Mapping file.

The fact that both metaprogramming environments use differ-
ent templating engines causes a final integration issue. A first
option would be to convert the Velocity templates of the simu-
lation software to the StringTemplate format supported by the
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NST environment. In this scenario, the required effort would
be proportional to the template base of the simulation models,
and would need to be repeated for integration efforts with other
environments using this templating engine. Moreover, Velocity
templates allow more logic that would have to be ported to
Java helper classes in the StringTemplate environment.

A second and preferable option is to include support in
the NST metaprogramming environment for the Velocity tem-
plating engine. Considering the limited amount of templating
engines being used by metaprogrammers, this scenario seems
both manageable and worthwhile. Moreover, the effort would
not be proportional to the size of the template base. And as
there is virtually no logic in the current NST templates, i.e., all
model parameters are combined and processed in the software
that feeds the templating engine, it is reasonable to say that
we expect no major blocking issues.

VI. CONCLUSION

The automated generation of source code, often referred
to as metaprogramming, has been pursued for decades in
computer programming, and is considered to entail significant
benefits for various disciplines, including software develop-
ment, systems engineering, modeling, simulation, and business
process design. However, we have argued that metaprogram-
ming is still facing several issues, including the fact that it
is challenging to realize a scalable collaboration within and
between different metaprogramming environments due, to the
often vertical integration architecture.
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In our previous work, we have presented a meta-circular
implementation of a metaprogramming environment, and have
argued that this architecture enables a scalable collaboration,
both within this environment and possibly with other metapro-
gramming environments. In this paper, we have explored such
a collaborative integration with another metaprogramming
environment. This second environment for metaprogramming
targets the generation of a different type of software systems,
and is based on a different meta-model, but also exhibits a
more horizontal integration architecture.

We have shown in this contribution how both metapro-
gramming environments can be integrated within the proposed
meta-circular architecture, by extending the generation of the
meta-code, i.e., the code that makes the actual parameter
models available to the coding templates, to the second
metaprogramming environement. We have explained that the
only reason that the coding templates of this second metapro-
gramming environment cannot be seamlessly integrated yet,
is that they use another templating engine. However, we have
also indicated that it should be relatively straightforward to
support this alternative templating engine.

This paper is believed to make some contributions. First, we
show that it is possible to perform an horizontal integration of
two metaprogramming environments, and to enable collabora-
tion and re-use between these environments. Such integrations
could significantly improve the collaboration and productivity
at the metaprogramming level. Moreover, we show that this in-
tegration is possible between metaprogramming environments
that are based on completely different meta-models. Second,
we explain that the horizontal integration of a second metapro-
gramming environment with the meta-circular architecture,
could largely remove the burden of maintaining the internal
classes of this metaprogramming environment.

Next to these contributions, it is clear that this paper is also
subject to a number of limitations. It consists of a single case
of integrating a second metaprogramming environment with
the meta-circular architecture. Moreover, the presented results
are quite preliminary, and the second metaprogramming envi-
ronment is not yet operational in the meta-circular architecture,
as its templating engine is not yet supported in this archi-
tecture. Therefore, neither the complete horizontal integration,
nor the productive collaboration between the two environments
has actually been proven. However, this explorative case study
can be seen as an architectural pathfinder, and we are planning
to both broaden and deepen the collaboration on the horizontal
integration of different metaprogramming environments.
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