
Teaching Agile Software Engineering Practices Using Scrum and a Low-Code
Development Platform – A Case Study

José Carlos Metrôlho1,2, Fernando Reinaldo Ribeiro1,2, Pedro Passão2
1R&D Unit in Digital Services, Applications and Content

2Polytechnic Institute of Castelo Branco
Castelo Branco, Portugal

e-mail: metrolho@ipcb.pt, e-mail: fribeiro@ipcb.pt, e-mail: pedropassao@ipcb.pt

Abstract— Following the recent trends in software engineering
regarding the growing adoption of agile methodologies and
low-code development platforms, and considering the results of
surveys, we carried out on students, alumni and some IT
companies, we adapted the software engineering teaching of a
computer engineering course to the needs and new trends of
the IT industry. The Scrum methodology and the OutSystems
low-code development platform were used in a project-based
learning approach for teaching agile software engineering
practices. This approach was complemented with the
presentation and discussion of several topics during the
theoretical classes, lectures given by professionals from IT
companies and study visits to an IT company that uses agile
methodologies and low-code platforms. This approach aims to
enhance the technical skills, namely development skills on a
widely used low-code platform and other software engineering
skills, but also to reinforce some non-technical skills of
students like teamwork and communication, today highly
valued by IT companies. The first results are quite positive.

Keywords- agile methodologies; education; Low-code
platforms; software engineering; Scrum; teaching.

I. INTRODUCTION
Several approaches have been used for teaching software

engineering. The way they propose to do it differs. However,
regardless of the proposed approach, there are some aspects
that already seem to be well accepted and that seem to be a
common trend for several approaches: there is an effort to
make the teaching of software engineering as close as
possible to what is done in IT companies; Most strategies try
to provide students with practical experience in a software
engineering project using methodologies and tools also used
in IT companies; and there is a growing concern on
empowering students with the non-technical skills required
in a software project. To achieve this, it is important to be
aware of the needs and trends of the market. It is important
to understand how the main concepts of the software
engineering subject are assimilated by the students and
understand the point of view of the companies which employ
and develop activities in this area.

Following the recent trends in software engineering, with
regard to the growing adoption of agile methodologies and
low-code development platforms, and considering the results
of surveys carried out in some IT companies [1], we made
some changes in the teaching of the software engineering
subject. In this paper, we describe an experience in teaching

software engineering. An agile development methodology
and a low-code development platform were used in a project-
based learning approach. This approach aims to enhance the
technical and non-technical skills of students, today highly
valued by IT companies, without, of course, neglecting other
methodologies and topics related to software engineering.

The remainder of this paper will be as follows: Section II
presents a brief review of related work; Section III presents a
background about agile development and low-code
development platforms; in Section IV, we present an
overview of our methodology for teaching undergraduate
software engineering using Scrum and a low-code
development platform; Section V presents some lessons
learned and challenges faced and finally, in Section VI we
present some conclusions and we outline the future work.

II. RELATED WORK
Several approaches and strategies have been followed to

provide students with the best training in software
engineering. Some of them are more theoretical, more
focused on the study of theory, concepts, methods and
methodologies, while others are more practical, fostering
practical experimentation to students, and often carried out in
collaboration with companies. Some are more traditional, in
the sense that they privilege traditionally used practices,
others are more avant-garde and encourage contact with the
most innovative practices and new market trends. All of
them aim to give students the appropriate knowledge and
skills for their professional activity in software engineering.
However, the way they propose to do it differs.

Emulating the workplace using distributed software
development projects, involving various courses or
institutions, is an approach proposed by several authors
(e.g., [2][3]). The Distributed and Outsourced Software
Engineering course [2] proposed teaching software
engineering using globally distributed projects. The projects
were developed in collaboration with eleven universities in
ten different countries providing students with the
experience of working with different cultures, native
languages and time zones. This approach also helped to alert
students to the importance of understanding typical software
engineering issues, such as the importance of software
requirements for specifications, or the relevance of adequate
system design. However, they also identify some time
scheduling inconveniences, and difficulties in keeping teams

160Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

committed to their peers. In [3], students work on real
distributed open-source projects as full members of software
development teams. Students use the same software
development processes as regular team members and are
provided with explicit mentorship from mentors from each
project. With this approach students integrate and apply the
skills they have learned in their courses and they develop
and improve their technical communication skills in a real
development setting.

The use of simulations and gamification to provide
students with a variety of experiences that would not be
possible in an academic environment, is an alternative
proposed by other authors (e.g.,[4]–[6]). Usually, these
approaches propose to gamify some phases of the software
life cycle and some tasks associated to each of them. The
goal is to increase the user's engagement, motivation and
performance when carrying out specific tasks. However,
these approaches also have some disadvantages. After two
periods of teaching using Scrum with gamification to learn
and train agile principles, Schäfer [5] identified some
lessons learned. Gamification is motivating and helps to
bring together participants with different experiences in
project teams.

Several project-oriented approaches have been proposed
in several software engineering training programmes (e.g.,
[7]–[10]. A project-based learning experience based on the
formation of small heterogeneous teams was presented in
[7]. Through a strategy of role rotation and documentation
transfer, all students perform different tasks and face
different challenges throughout the project. This is the case
they decided not to include any external stakeholder. In [8],
software engineering concepts are taught using the Scrum
framework in real life projects. The requirements are
discussed with external customers during a kick-off
meeting. During the project, students work together as self-
organized teams. They chose a project management and
team coordination process and they are only asked to use
some core tools that are needed to monitor the projects.

From a different perspective, the teaching of software
engineering has been adapting to new developments and
trends namely the agile methodologies. This topic has
deserved the attention of many authors who have published
several studies that address this subject. Usually, teaching
agile methodologies has focused on teaching a specific
method like Scrum (e.g., [11]–[13]) or XP (e.g., [14] [15]). A
project-based learning approach using the Scrum framework
in real life projects is presented in [11]. The module starts
with a kick-off where external stakeholders introduce their
topics, students apply for their preferred topics and the
supervisors define the teams of 5–7 persons. After 3 weeks,
the students must provide a project proposal which has to be
presented and defended face-to-face against customer
comments. The project proposal requires the definition of a
clear aim of the project, as well as a backlog of requirements
with an estimation and prioritization of the relevant user
stories. The projects are run in sprints, with a final
presentation and the hand-over of the results. An outline of

the literature related to Scrum in software engineering
courses [16] shows that providing students with practical
experience is of vital importance when teaching Scrum in
software engineering courses. It also states that most Scrum
courses require students to work in teams in order to develop
a non-trivial software project or practice simulation games.
A study on the impact of using agile methods in software
engineering education [17] concluded that using Agile
practices would positively influence the teaching process and
that they could stimulate communication, good relationships
among students, active team participation, and motivation for
present and future learning.

In fact, several approaches have been used for teaching
software engineering. However, and as mentioned in [18], it
is not clear which should be the best approach do follow
because there are different perspectives on the different
proposed approaches. Some of them propose to emulate the
workplace using distributed projects or using simulations and
games to simulate different scenarios. Others propose
project-based learning where students can train the various
stages of project development, following different
methodologies, and develop non-technical skills. However,
regardless of the approach followed, some aspects seem to
already be well accepted and seem to be a common trend for
several approaches. There is an attempt to bring teaching
closer to business reality. Many of these strategies include
providing students with hands-on experience in a software
engineering project using methodologies and tools that are
also used in IT companies. At the same time, many of these
strategies have also focused on empowering students with
the non-technical skills required in a software project. It is
also true that more traditional approaches, in which students
take on a more passive role and that place a higher priority
on teaching students to follow instructions and rules, do not
produce the intended results. Most current approaches, for
teaching software engineering, try to help students develop
their own ideas and strategies. They promote project-based
learning and they try to engage students in the problem
definition, design process and system thinking.

III. AGILE DEVELOPMENT AND LOW-CODE PLATFORMS
The growing spread of agile software development

methodologies, the increasing attention they have attracted
and their growing adoption by IT companies, seem to ensure
that they will play an important role in the future. Some
recent surveys demonstrate the importance and the high level
of adoptions of these methodologies. A survey presented in
the 14th annual state of agile report [19] shows that 95% of
respondents report that their organizations practice agile
development methods. Accelerating software delivery,
enhancing ability to manage changing priorities, increasing
productivity, and improving business alignment are the top
reasons stated for adopting Agile. Scrum and related variants
are the most common agile methodologies used by
respondents’ organizations (referred by 58% of the
respondents). Another survey [20], which involved 3300 IT
professionals, mentions an even higher percentage, stating
that Scrum and related variants are used in 76% of
companies. Additionally, some studies have demonstrated

161Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

the greater satisfaction of companies and professionals who
have adopted these methodologies. For individual
professionals, they found that agile development seams to
led to greater satisfaction mainly because of collaborative
practices and business influences [21]. Another study [22]
points out several benefits that were identified by companies
that adopted agile methodologies namely: improving project
monitoring and tracking, improving interaction and
collaboration and fosters sharing knowledge.

Another trend that has been noted is the growing
adoption of low-code development platforms by IT
companies. The State of Application Development [20] refer
that 41% of respondents said their organization was already
using a low-code application platform and, a further 10%
said they were about to start using one. This growing interest
is also corroborated by the Low-Code Development Platform
Market [23]. It reports that the global low-code development
platform market size is projected to grow from USD 13.2
billion in 2020 to USD 45.5 billion by 2025, at a Compound
Annual Growth Rate of 28.1% during the forecast period.
The top reported reasons for adopting agile [20] are the
ability to manage changing priorities, project visibility,
business alignment, delivery speed/time to market and team
morale. These reasons are in line with the advantages that are
usually associated with the use of low-code development
platforms: They comprise many of the same tools
functionalities that developers and teams use to design, code,
deploy and manage an application portfolio [24]; A
significant part of the job can be done through a drag-and-
drop interface and although developers may still need to do
some coding this is just for specific tasks [25]; They are able
to accelerate the delivery of new software and applications,
allowing to update and deliver new features in short time
periods, they allow build apps for multiple platforms
simultaneously, and cross-platform support and data
integration capabilities have already been built and can be
customized easily [26]. In fact, these platforms have become
quite popular and are currently spread across many
companies around the world. A report from Forrester [27]
evaluated the 13 most significant low-code platforms
suppliers and identified Microsoft, OutSystems, Mendix,
Kony and Salesforce as leaders.

Another important aspect is that low-code platforms have
often been associated with agile development
methodologies. The adoption of agile development
methodologies, platforms and tools has been a way of
improving the ease and speed at which applications can be
developed. But, as referred in [28], there is still room for
improvement and in particular when it comes to education
and training, management commitment and staffing. There
is also a need for greater involvement from the wider
business, which agile and the use of tools such as low-code
both encourage while, at the same time, enhancing
developer productivity. The State of Application
Development [20] revealed that companies that have
adopted low-code have an 8% higher organizational agility
score compared to those not using low-code. They also refer
that this result seems to be related to the fact that a highly

mature agile culture helps organizations maximize the
benefits of low-code development platforms by combining
the fast decision-making of agile with fast development
speeds. However, to maximize agile teams’ performance
with a low-code platform, there are some aspects that must
be followed with particular attention. Some of these aspects
are identified in the document Adapting Agile to Build
Products with Low-Code: Tips and Tricks [29] and are
related to: the difficulty for teams in maintaining a sufficient
backlog of user stories ready for development due to the
faster development speed; the difficulty of new teams in low
code to achieve the necessary quality from the beginning of
the process; the significant difference in development
velocity between co-dependent teams; the need for a strong
product owner who is engaged, empowered and responsive;
and the need for collaboration between developers and
business analysts from the start of the development cycle,
especially for complex user stories.

IV. OVERVIEW OF OUR APPROACH
The software engineering subject is part of the second

year of a computer science course (undergraduate course). It
is a subject that has a semester load of 30 hours for
theoretical classes and 45 hours for laboratory classes. The
focus of our approach is to combine theory and practice and
ensure that the topics covered remain appropriate to
whatever the needs of employers and current trends in the
area of software engineering are. A project-based approach
is used in practical classes for teaching Software
engineering.

The teacher of theoretical classes presents the concepts
and methodologies and promotes discussion about them. In
these classes, several aspects related to the software
development cycle are taught and discussed. Students are
provided with an introduction to several software
development methodologies namely Waterfall, Extreme
Programming, Scrum, Spiral, Rapid Application
Development, Rational Unified Process, Feature Driven
Development, Behaviour Driven Development, etc. Other
topics analysed include quality and metrics in software
engineering, requirements analysis, software design,
implementation, testing, configuration management, among
others. In addition to the presentation and discussion of
several topics during the classes, other initiatives are
organized and implemented, namely lectures given by
professionals from software development companies and
study visits to software development companies. These
initiatives provide students with the contact and interaction
with real software engineering projects with real
stakeholders. They are carried out in the final weeks of the
semester, so by that time the students have already acquired
significant knowledge that will then allow them to get the
most out of them.

In practical classes, students acquire some practice of
software engineering through the process management,
specification, design, implementation and validation of a

162Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

software application, as a project for teams. Scrum is the
adopted agile software development methodology. The
teacher has experience with Agile methodologies and holds
a professional certification in the adopted low-code
platform. He was able to provide support during the initial
learning phase of application development on the low-code
platform, but also to support the various teams of students
during the scrum sprints of development of their projects.
The teacher acts as a product owner. Each team member has
a specific role (e.g., Scrum Master, developer, etc.). Each
team develops a different project. We have used Scrum
because several employers of companies in the software
development area, with whom we have had contact, use
agile methodologies [1], namely Scrum and because our
graduates have told us that it is clearly one of the
methodologies they use most [30]. In addition, we also aim
to improve students' teamwork, and this methodology is one
that fits well with this goal. These skills of teamwork have
been highly valued by employers and therefore they deserve
to be worked on in this subject as well. We have been using
Scrum in practical classes for years and the recent survey
[1] only reinforced it and that is why we continue to use it.

In past editions of this subject, the projects were related
to the development of games (using Unity) or even to
continue work started earlier in other subjects of the course
(developed in java). The new trends and the feedback we
obtained in a survey [1] led us to, in the previous academic
year, choose to introduce the development of projects in
practical classes using a low-code platform. This is an area
of great demand by our students' employers, so with this
approach we also wanted to provide new skills at the level
of coding competence. In other words, the survey we carried
out [1] was clear as to the importance of coding skills, but
also of other aspects such as requirements analysis and
development methodologies. So, on the one hand, with this
new approach we give students new coding skills using one
of these development platforms widely used by several
recruiting companies in the software development area. On
the other hand, due to the characteristics of these low-code
platforms, it allows us to emphasize and work with students
on other different and important aspects of the development
of software projects, such as requirements analysis, project
design, project management project, development
methodology, quality assurance, testing, planning, etc.
When students complete the entire course, they obviously
have much more comprehensive skills because in other
subjects they learn to program in various other languages
and paradigms (Java, PHP, Html, SQL, etc.). This subject of
software engineering is not a programming subject but a
subject in which the coding stage is only part of a whole.
The whole concerns the cycle of software development and
therefore it is also important to address and emphasize what
is not so addressed in other subjects of the course. Namely
the importance of development methodologies, planning,
requirements analysis, software quality, testing,
maintenance, documentation, etc. Considering this reality, it

seemed to us that the use in this subject of a low-code
platform in practical classes could bring advantages, and
after having implemented it, we remain convinced.

To keep students motivated, the themes and objectives of
the projects could be defined by the teams of students or
alternatively by carrying out themes proposed by the teacher
of the practical classes. With this new approach, projects
include the development of web and mobile applications
using a low-code platform. In practical classes Scrum is the
development process used. The teacher of the practical
classes monitors weekly the evolution of each of the
projects. This monitoring allows for the assigning of grades
between teams but also being able to differentiate the grades
of each element of a team. Monitoring is weekly, during
contact classes with students. The student teams, in addition
to the weekly class time, also work outside of classes. Tasks
are all registered in Trello, allowing the teacher and the
whole team to have a permanent record of the progress of
the respective project. Trello is used for project management
and to track progress on tasks.

During the semester, the project evolves over several
sprints (of two weeks), in which the teacher (acting as
product owner) evaluates with the respective team what was
achieved in the previous sprint and what should be the sprint
backlog of the sprint that follows.

The final grade of the subject, in terms of the practical
part, results from an intermediate evaluation of each student
based on the work presented in the middle of the semester
and from a second evaluation made at the end of the
semester. In these two stages, a demo is made by each team,
resulting in grades and feedback given by teachers to the
various teams. The grades result from the application of
parameters related to various aspects of the various phases
of the project's development and the Scrum methodology.
Some of the parameters are: Requirements analysis,
software development process (e.g. roles, artefacts, timings,
hits and misses), task scheduling, modelling (e.g. user
stories, storyboards), implemented features, conclusions and
future work, user interface, documentation, and final
presentation and discussion. In the past academic year, due
to Covid-19, classes were provided using video
conferencing for teacher-student or teacher-team interaction.
The fact that low-code platforms provide several online
teaching materials (webinars, tutorials, examples, etc.) was
also useful to successfully overcome the limitations
mentioned above. This complementary material helped all
teams to quickly and timely assimilate necessary knowledge
about development in the adopted platform, in order to
implement their projects.

We also noticed that the learning and adaptation to the
use of low-code platform by students was overall very good.
The developed projects resulted in applications with
practically all user stories implemented and validated. The
students in their final reports addressed aspects about the
various stages and timings of the work developed, as far as
software engineering is concerned. Some of the projects

163Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

resulted in web applications with good user interfaces.
Throughout the semester, we verified a high activity and
motivation by practically all students. All projects resulted
in functional applications, some of which reached quality
close to the maximum score.

The low-code platform that we used in practical classes
was the OutSystems. We choose this platform because it is a
platform widely used by software development companies
in Portugal and because we have had a collaboration
protocol with that company for several years, under which
we have accessible software licenses. Another important
fact in the choice is that this platform can easily coexist with
agile methodologies such as Scrum [31] and it is one of the
leaders in the low-code market [27].

V. LESSONS LEARNED AND CHALLENGES FACED
Even considering the entropy caused by the effects of

Covid-19 (videoconference classes and student/team
meetings also via videoconference), in the end it resulted in
good results from both the theoretical and practical parts.
The inclusion of the low-code platform in practical classes,
allowed students to develop web applications, and to
develop new skills in one of the low-code platforms widely
used in software development companies. Additionally, and
very importantly, this approach allowed us to meet the
findings of the survey that was carried out on IT companies
[1]. It allows to strengthening students with other skills
related to software engineering like development
methodologies, requirements analysis, project management,
schedules, testing, etc. As mentioned before, this subject is
not focused on coding, for that there are several others in the
course where several programming skills are covered. We
also believe that this approach contributes to the
improvement of the non-technical skills of students, namely
teamwork and communication.

It is also important to consider that Low-code platforms
have some advantages and are suitable in the context of this
subject of software engineering. However, they do not
replace the need for the knowledge covered in other subjects
to prepare our students for a wider range of knowledge,
about other approaches and technologies that are also very
useful and often necessary.

VI. CONCLUSION AND FUTURE WORK
After listening to several stakeholders with the aim of

keeping the themes and methodologies taught in the subject
of Software engineering updated, we share in this paper an
update done recently. This update consisted in making the
projects developed in the practical classes using Scrum and
a low-code platform. This decision was to reinforce students
development skills (on a low-code platform currently
highly used in the labour market) and lead students to a
greater focus on other software engineering skills
(teamwork, communication, requirements, software quality,
schedules, documentation, among others). The results
achieved were positive, and the feedback from the students
was very rewarding. In a survey conducted at the end of the

semester, on a scale of 0 to 6, students rated the overall
satisfaction in relation to the subject with 5.4.

In the future, we will continue to be attentive to
stakeholder feedback, to keep materials and methodologies
updated in order to prepare students as best as possible and
close to what is followed in the software development
industry.

REFERENCES
[1] J. C. Metrôlho and F. R. Ribeiro, “Holistic Analysis of the

Effectiveness of a Software engineering Teaching
Approach,” Int. J. Adv. Softw., vol. 12, no. 1 & 2, pp. 46–
55, 2019.

[2] M. Nordio et al., “Teaching Software engineering Using
Globally Distributed Projects: The DOSE Course,” in
Proceedings of the 2011 Community Building Workshop
on Collaborative Teaching of Globally Distributed
Software Development, 2011, pp. 36–40, doi:
10.1145/1984665.1984673.

[3] R. Holmes, M. Craig, K. Reid, and E. Stroulia, “Lessons
Learned Managing Distributed Software engineering
Courses,” in Companion Proceedings of the 36th
International Conference on Software engineering, 2014,
pp. 321–324, doi: 10.1145/2591062.2591160.

[4] M. Yampolsky and W. Scacchi, “Learning Game Design
and Software engineering Through a Game Prototyping
Experience: A Case Study,” in Proceedings of the 5th
International Workshop on Games and Software
engineering, 2016, pp. 15–21, doi:
10.1145/2896958.2896965.

[5] U. Schäfer, “Training scrum with gamification: Lessons
learned after two teaching periods,” in 2017 IEEE Global
Engineering Education Conference (EDUCON), 2017, pp.
754–761, doi: 10.1109/EDUCON.2017.7942932.

[6] W. Ren, S. Barrett, and S. Das, “Toward Gamification to
Software engineering and Contribution of Software
Engineer,” in Proceedings of the 2020 4th International
Conference on Management Engineering, Software
engineering and Service Sciences, 2020, pp. 1–5, doi:
10.1145/3380625.3380628.

[7] B. Pérez and Á. L. Rubio, “A Project-Based Learning
Approach for Enhancing Learning Skills and Motivation
in Software engineering,” in Proceedings of the 51st ACM
Technical Symposium on Computer Science Education,
2020, pp. 309–315, doi: 10.1145/3328778.3366891.

[8] A. Heberle, R. Neumann, I. Stengel, and S. Regier,
“Teaching agile principles and software engineering
concepts through real-life projects,” in 2018 IEEE Global
Engineering Education Conference (EDUCON), 2018, pp.
1723–1728, doi: 10.1109/EDUCON.2018.8363442.

[9] M. L. Fioravanti et al., “Integrating Project Based
Learning and Project Management for Software
engineering Teaching: An Experience Report,” in

164Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, 2018, pp. 806–811, doi:
10.1145/3159450.3159599.

[10] M. Gordenko and E. Beresneva, “A project-based learning
approach to teaching software engineering through group
dynamics and professional communication,” in Actual
Problems of System and Software engineering.
Proceedings of the 6th International Conference Actual
Problems of System and Software engineering, 2019, pp.
278-288.

[11] A. Heberle, R. Neumann, I. Stengel, and S. Regier,
“Teaching agile principles and software engineering
concepts through real-life projects,” in 2018 IEEE Global
Engineering Education Conference (EDUCON), 2018, pp.
1723–1728, doi: 10.1109/EDUCON.2018.8363442.

[12] G. Wedemann, “Scrum as a Method of Teaching Software
Architecture,” in Proceedings of the 3rd European
Conference of Software engineering Education, 2018, pp.
108–112, doi: 10.1145/3209087.3209096.

[13] I. Bosnić, F. Ciccozzi, I. Čavrak, E. Di Nitto, J. Feljan,
and R. Mirandola, “Introducing SCRUM into a
Distributed Software Development Course,” 2015, doi:
10.1145/2797433.2797469.

[14] J. J. Chen and M. M. Wu, “Integrating extreme
programming with software engineering education,” in
38th International Convention on Information and
Communication Technology, Electronics and
Microelectronics, 2015, pp. 577–582, doi:
10.1109/MIPRO.2015.7160338.

[15] B. S. Akpolat and W. Slany, “Enhancing software
engineering student team engagement in a high-intensity
extreme programming course using gamification,” in 27th
Conference on Software engineering Education and
Training, 2014, pp. 149–153, doi:
10.1109/CSEET.2014.6816792.

[16] V. Mahnic, “Scrum in software engineering courses: An
outline of the literature,” Glob. J. Eng. Educ., vol. 17, no.
2, pp. 77–83, 2015.

[17] S. Al-Ratrout, “Impact of using Agile Methods in
Software engineering Education: A Case Study,” in 2019
6th International Conference on Control, Decision and
Information Technologies (CoDIT), 2019, pp. 1986–1991,
doi: 10.1109/CoDIT.2019.8820377.

[18] S. Beecham, T. Clear, D. Damian, J. Barr, J. Noll, and W.
Scacchi, “How Best to Teach Global Software
engineering? Educators Are Divided,” IEEE Softw., vol.
34, no. 1, pp. 16–19, 2017, doi: 10.1109/MS.2017.12.

[19] Digital.ai, “14th annual state of agile report,” 2020.
https://stateofagile.com/ (accessed Aug. 20, 2020).

[20] OutSystems, “State of Application Development Report,”

2019.
[21] M. Kropp, A. Meier, C. Anslow, and R. Biddle,

“Satisfaction, Practices, and Influences in Agile Software
Development,” in Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software
engineering, 2018, pp. 112–121, doi:
10.1145/3210459.3210470.

[22] F. Kamei, G. Pinto, B. Cartaxo, and A. Vasconcelos, “On
the Benefits/Limitations of Agile Software Development:
An Interview Study with Brazilian Companies,” in
Proceedings of the 21st International Conference on
Evaluation and Assessment in Software engineering,
2017, pp. 154–159, doi: 10.1145/3084226.3084278.

[23] Marqual IT Solutions Pvt. Ltd (KBV Research), “Global
Low-Code Development Platform Market By Component
By Application By Deployment Type By End User By
Region, Industry Analysis and Forecast, 2020 - 2026,”
Report, 2020. [Online]. Available:
https://www.kbvresearch.com/low-code-development-
platform-market/.

[24] OutSystems, “Low-Code Development Platforms,” 2019.
https://www.outsystems.com/low-code-platforms/
(accessed Jul. 30, 2020).

[25] C. Boulton, “What is low-code development? A Lego-like
approach to building software,” CIO (13284045), 2019.
http://search.ebscohost.com/login.aspx?direct=true&db=b
th&AN=134645048&site=eds-live (accessed Aug. 07,
2020).

[26] J. Idle, “Low-Code rapid application development - So,
what‘s it all about?,” Platinum Business Magazine, pp.
52–53, 2016.

[27] J. R. Rymer and R. Koplowitz, “The Forrester WaveTM:
Low-Code Development Platforms For AD&D
Professionals, Q1 2019,” 2019.

[28] I. Media, “Agile is as agile does. Understanding the role
of agile development and low-code solutions in the
delivery of digital transformation.” Incisive Media, 2018.

[29] T. Huff, “Adapting Agile to Build Products with Low-
Code: Tips and Tricks,” 2019.
https://www.outsystems.com/blog/posts/adapting-agile-to-
low-code/ (accessed Jul. 28, 2020).

[30] J. Metrôlho and F. Ribeiro, “Software engineering
Education: Sharing an approach, experiences, survey and
lessons learned,” in Thirteenth International Conference
on Software engineering Advances, 2018, pp. 79–84.

[31] T. Huff, “Agile and Scrum: Understanding the
Differences,” 2019.
https://www.outsystems.com/blog/posts/agile-and-scrum/
(accessed Jul. 12, 2020).

165Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

