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Abstract-Code smells are assumed to indicate bad design that
can cause an unsustainable system. Many studies have tailored
fixed threshold values for code smell metrics. However, these
threshold values have ignored the fact that every system is
unique, and it cannot be dynamically evolved throughout the
codebase life cycle. This paper presents a novel approach that
formulates dynamic code quality metrics with thresholds that are
derived from software design. The first step in this approach is to
measure the complexity of the design. Many researchers had
developed many complexity metrics to measure the level of
complexity in software models. Most of these metrics are limited
and focus on counting the number of elements in each design,
ignoring the unique characteristics of these elements and their
interactions. In this study, we also propose a new methodology to
measure the complexity of any software design. This
measurement approach is based on evaluating each element in
any class diagram by assigning a complexity rate. Finally, we
propose a methodology to evaluate the effectiveness of this
approach.

Keywords - code quality; model-driven engineering; software
quality metrics; UML class diagram; software design.

I. INTRODUCTION

An important goal of software engineering is to deliver
software systems that can be sustainably maintained for an
extended period of time. Software sustainability is a systematic
challenge facing many communities, including professional
software developers, open source communities and the
research and scientific communities. It is estimated that half of
software engineers’ time and efforts are consumed performing
avoidable maintenance activities. Current software code quality
metrics that reply to code smells and technical debt suffer from
key fundamental limitations. First, current methods are reactive
in nature, as they are dependent on the emergence of adverse
symptoms. Generally, such methods promote code refactoring
to address deficiencies but provide little upfront guidance to
avoid or minimize the emergence of such deficiencies.
Moreover, current metrics are insensitive to diverse
technologies, platforms and software contexts. This is a
significant limitation, particularly at this period when software
platforms, middlewares and contexts are in rapid flux. In
addition, quality quantifications are not sufficiently fluid to
adapt to changing software priorities and context throughout
the software life cycle.

This paper presents a methodology to define code quality
metrics with thresholds that are derived from software design.
This ensures alignment between the intentional specification of
software design characteristics and its implementation. This
approach means that metrics can evolve as the codebase design
evolves throughout the software lifecycle. Moreover, this

approach means that each code module will have its own
unique quality metrics that are tailored to its unique context.
Also, in this paper, we introduce new complexity metrics for
software designs. Many researchers had developed some
complexity metrics to measure the level of complexity in
software models [26]-[30]. Most of these metrics are limited in
scope and focus on counting the number of elements in each
design, overlooking the unique characteristics of these
elements and their interactions. In this study, we propose a new
methodology to measure the complexity of any software
design. This measurement approach is based on evaluating
each element in any class diagram by assigning a complexity
rate.

The rest of the paper is structured as follows. In Section II,
we describe the problem of current code quality metrics, then,
we cover some related works. In Section IV, we present our
proposed approach, and in Section V, we show the expected
contribution of this work. In Section VI, we present the current
status of our approach, and finally, we conclude our work in
Section VII.

II. PROBLEM

Current code quality quantification methodologies adopt
metrics with rigid thresholds. These methodologies do not
adequately consider variations in development technologies
and the architectural roles of various code and design elements.
For example, one of the code quality metrics is large class code
smell [1], defined as any class with more than 1000 lines of
code. As software development platforms advance, managing a
class with 1000 lines of code may no longer be detrimental to
codebase quality. Similarly, high-performance computing
platforms may require classes that are significantly larger in
size to maximize performance. Moreover, long-living software
systems may require significantly lower thresholds to
accommodate the codebase as it evolves over an extended
period of time.

To illustrate the current situation, consider the following
simplified the Unified Modeling Language UML class diagram
shown in Figure 1. The class diagram lists a data-heavy class
(Class D), a computational heavy class (Class E) and some
associations between classes. A software engineer who
develops an implementation for this design, while following
the design closely, will inevitably create code that suffers from
significantly low sustainability quantification. For example,
because Class D is data-heavy, its size, in terms of lines of
code, will be very small, resulting in Lazy class code smell
[14]. Similarly, Class C is designed to access many methods
and attributes in other classes (it participates in five
associations). The code analysis of Class C returns God class
code smell [15].

141Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances



Contemporary code analysis approaches that uncover code
smells are agnostic to the intentions of the software designer,
as demonstrated in the example above. Traditional analysis
does not consider to what extent the implementation is aligned
with the design. The identified code smells are frequently not
an indication of unsustainable code but are, rather, a direct
result of the intentional design specifications.

Figure 1. UML class diagram example.

Class D is Lazy because it is designed to host data and
perform few computations. Class C is Large and has access to
many external entities because it is designed as a root element
in the design. Recommended code refactoring to remove the
code smells will unavoidably suggest refactorings that are
difficult to implement without violating the design
specification. Therefore, we argue that such metrics with rigid
thresholds are too rigid and are ineffective in characterizing
codebase qualities.

III. RELATED WORK

This section will cover some related works in code quality
metrics and design complexity metrics.

A. Code Quality Metrics

It has been argued that identifying appropriate code quality
metrics and their thresholds is challenging, many have
proposed using experience as a primary source for metric
definition [21]- [23]. Code metrics are too sensitive to context
and that metrics appropriate to one project are not adequate
predictors for another. Aniche et al. investigated the effect of
architecture on code metrics [4], proposing Software
Architecture Tailored Thresholds (SATT), an approach that
detects whether an architectural role is considerably different
from others in the system in terms of code metrics and provides
a specific threshold for that role. Our work presented in this
paper is similar in the sense that it aims to improve the
accuracy of code metric thresholds. However, while the SATT
approach derives a unique threshold only if the architectural
role of the module is deemed to be significantly different, our
approach derives unique thresholds even in cases where the

architectural role may only be slightly different. Gil and
Lalouche demonstrated this phenomenon by applying both
statistical and visual analyses of code metrics [2]. Fortunately,
they demonstrate that context dependency can be neutralized
by applying a Log Normal Standardization (LNS) technique. In
a similar study, Zhang et al. showed that code metrics are
dependent on six factors, namely, application domain,
programming language, age, lifespan, the number of changes
and the number of downloads [3].

Oliveria et al. proposed a method that extracts relative
thresholds from benchmark data, and they evaluated their
method in the Qualitas Corpus, finding that the extracted
thresholds represent an interesting balance between real and
idealized design rules [12]. Furthermore, Kapova et al.
presented an initial set of code metrics to evaluate the
maintainability that can be applied to different relational
transformations, which play important roles when considering
architecture refinement transformations [13]. The authors
demonstrated the use of these metrics on a set of reference
transformations to show their application in real-world settings
and to help software architects judge the maintainability of
their model transformations. Based on these judgments,
software architects can take corrective actions (like
refactorings or code-reviews) whenever they identify a decay
in the maintainability of their transformations.

B. Design Complexity Metrics

Many different metrics for the class diagram has been
developed to help software developers to analyze complexity
and maintainability in the early phase of software lifecycle.
One of them is developed by Peter, in [26], to analyze the
complexity of architecture by using metric tree. He used UML
diagram as an input to find some key indicators. He developed
metrics to predict class’s fault-proneness and to provide quality
measurements. M. Genero discussed two groups of metrics to
measure the complexity of class diagrams [30]. Kang et al.
proposed weighted class dependence graphs to present a
structure complexity measure for the UML class diagram by
calculating classes and relationships between them [28]. They
are using the entropy distance to measure the complexity of the
class diagram. Use stochastic variables x and y to denote the
output and input edges weight of each node. Doraisamy et al.
proposed a model metric to be a guideline for software project
managers in order to control and monitor software [25].

Moreover, a class diagram metrics proposed by Marchesi
metrics to measure the complexity by balancing the
responsibilities among packages and classes, and of cohesion
and coupling among system entities [31]. The metrics are
Design Size in Classes (DSC), Number of Hierarchies (NOH),
Average Number of Ancestors (ANA), Direct Class Coupling
(DCC), Cohesion Among Method of Class (CAM), and
Measure of Aggregation (MOA). Chidamber and Kemerer
proposed some metrics, only three of them for measuring the
UML class diagram [27][29] which are Number of Children
(NOC), Depth of Inheritance Tree (DIT), and Weighted
methods per Class (WMC). Concas in his work focuses on
investigating process complexity [5]. He defines process
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complexity as the degree to which a business process is
difficult to analyze, understand or explain. claims that the only
way to analyze the process complexity is by using the process
control-flow complexity metrics. Ma et al. [32] proposed a
hierarchical metrics set in terms of coupling and cohesion for
large-scale Object-Oriented (OO) software systems. They
analyzed the proposed approach on a sample of 13 open-source
OO software systems to empirically validate the set. Fourati et
al. [33] propose an approach that identifies anti-patterns in
UML designs through the use of existing and newly defined
quality metrics that examines the structural and behavioral
information through the class and sequence diagrams. It is
illustrated through five of some well-known anti-patterns:
Blob, Lava Flow, Functional Decomposition, Poltergeists, and
Swiss Army Knife. Kim and Boldyreff suggested a software
metrics that can be applied to the elements of UML
modelling [24]. The proposed UML metrics are based on the
metamodel scheme and divided into four categories of metrics
which are model, class, message, and use case metrics.

IV. PROPOSED SOLUTION

Our proposed approach derives code quality metrics and
their dynamic threshold values from software designs.
Beginning, our approach focuses on design elements pertaining
to data types, their complexities, frequencies, and the estimated
complexity of the operations of such data. Then, from the
estimated class and method complexity, We quantified fuzzy
quality metrics to measure two of the bad code smells, which
are large class and long method.

A. Complexity Metrics

The approach involves assigning complexity rate [20]
values to each attribute, method and association within the
class as shown in TABLE I. We assign a complexity rate
(������ ) to an attribute’s visibility (����. ) and type (����.) to
estimate the attribute’s complexity (�������). Each complexity
rate (������) can be primitive, simple, or complex. Then we
estimate method complexity (���ℎ������) by summing the
complexity of the method’s visibility (�����.), the return type
(�����.) and the total parameters list (�����.). Further, We
estimate the association complexity (��������) by adding all
incoming (����. ) and outgoing (�����. ) association links.
Finally, by summing all attributes, methods and association
complexities, we can estimate the class complexity
(���������), which we use to quantify code quality factors,
such as expected lines of code for any class (����(�����)).

The following formulas describe the proposed approach.
Formula 1 estimates the complexity of the attributes, as derived
from the UML class diagram shown above. Formula 2
estimates method complexity based on the complexity of the
parameters and return types. Formula 3 estimates the
complexity of the association for each class. Formula 4 uses
the previous calculations to estimate the class complexity. The
following describes the quantification approach in greater
detail.

������� = (����. ∗ ������) + (����. ∗ ������) (1)

where ( �������) is attribute complexity, (����.) attribute
visibility, (����. ) attribute type and (������ ) the complexity
rate.

TABLE I. CLASSIFICATION OF THE COMPLEXITY RATE

���ℎ������ = (�����. ∗ ������) + (�����. ∗ ������)

+ ��(�����.

�

���

∗ ������)� (2)

Element Scope Name Classification Examples Rating

Attributes

Visibility ������

Primitive Private 1

Simple
Protected,
Package

2

Complex Public 3

Type �������

Primitive
int, char,
boolean

1

Simple
float, long,
double, str

2

Complex
array, struct,
tuple, date,

time, list, map
3

Derived
object, array
of complex

types
4

Methods

Parameters �����.

Primitive
int, char,
boolean

1

Simple
float, long,
double, str

2

Complex
array, struct,
tuple, date,
time, list

3

Derived
object, array
of complex
types, map

4

Return Type �����.

Primitive
int, char,

boolean, void
1

Simple
float, long,
double, str

2

Complex
array, struct,
tuple, date,
time, list

3

Derived
object, array
of complex
types, map

4

Visibility �����.

Primitive Private 1

Simple
Protected,
Package

2

Complex Public 3

Association

Incoming ����.

Primitive 1 to many 1

Simple
many to

many, 1 to 1
2

Complex

all others
(such as
n .. m to

many, etc..)

3

Outgoing �����.

Primitive 1 to many 1

Simple
many to

many, 1 to 1
2

Complex all others 3
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Here, (���ℎ������ ) is method complexity, (�����. ) is
method visibility, ( �����. ) is method return type and
(∑ (�����.

�
��� ∗ ������)) is the complexity rate for all

parameters in the method.

�������� = ��(����.

�

���

∗ ������)� + ��(�����.

�

���

∗ ������)� (3)

(�������� ) is the association complexity, (∑ (����.
�
��� ∗

������)) is the complexity for all incoming associations to the
class and (∑ (�����.

�
��� ∗ ������)) is the complexity for all

outgoing associations.

��������� = ���������

�

���

� + �����ℎ������

�

���

�

+ �������� (4)

The class complexity (��������� ) can be calculated by

summing the complexity of all class attributes �∑ �������
�
��� �,

the complexity of all methods in the class
�∑ ���ℎ������

�
��� � ��� the class association complexity

(��������).

Class complexity ( ��������� ) and method complexity
(���ℎ������) can be used to estimate the expected lines of
code for the class, or any method within the class, by
multiplying them by the class factor (������) or method factor
(������� ). Both the class factor and method factor will be
estimated empirically as part of the planned research activities.

B. Fuzzy Metrics

The fuzzy quality metrics are a new methodology to
measure two of the bad code smells, which are large class and
long method. This methodology is based on measuring the
difference between the actual and expected values of the lines
of code for the class and method. To demonstrate this concept,
we illustrate a fuzzy metric for the large class and long method
code metrics [20].

�����������(�����) = ���(�����) −  ����(�����) (5)

����(�����) = ��������� ∗ �����(���������) (6)

�����(���������)

=
���(�����) ∗ ���(�������)

���������(�����) ∗  ���������(�������)
(7)

Where ����(�����) is the expected size in terms of lines
of code, ���(�����) is the total LOC for all classes, and
���(�������) is the average of LOC for all classes.
Similarly, the fuzzy metric for method is defined as follows:

�����������(���ℎ��) = ���(���ℎ��) −  ����(���ℎ��) (8)

����(���ℎ��) = ���ℎ������ ∗ ���ℎ��(���������) (9)

���ℎ��(���������) = ���ℎ������(�������) (10)

V. EXPECTED CONTRIBUTIONS

The expected contribution of this work is to present a new
methodology for estimating software code quality. We expect
that design-driven code quality metrics will improve the
maintainability and sustainability of software systems by
considering the variations in development technologies and the
architectural roles of various code and design elements. This
ensures that the derived metrics are uniquely tailored to the
software under development and the derived metrics can
dynamically evolve throughout the codebase life cycle.
Another contribution in this paper is to introduce new
complexity metrics for software designs. The approach is based
on evaluating every element in each software design by
assigning a relative complexity rate. The complexity rate can
be either primitive, simple, or complex. As such, the
complexity of a system can be estimated by summing the
complexity values of all elements within the system.

VI. CURRENT STATUS

This work has been formulated and submitted to different
conferences. Overall, the plan came over the following phases.
Phase 1: Define the complexity metrics for software design and
evaluate it theoretically and empirically. Four conference
papers have been submitted based on the first phase. One of
those papers has been accepted at the 20th IEEE International
Conference on Software Quality, Reliability, and Security.
Two other papers were accepted at the Future Technologies
Conference 2020 [34][35]. The fourth paper is under review at
the Software Quality Days conference 2021. Phase 2:
formulate and evaluate the fuzzy quality metrics. In this phase,
three conference papers have been submitted to some venuses.
The first one has been accepted and presented at the
International Conference on Model-Driven Engineering and
Software Development MODELSWARD 2020 [20]. The other
two paper are under review at the International Conference on
Computer Science and Software Engineering CASCON 2020,
and 20th IEEE International Working Conference on Source
Code Analysis and Manipulation SCAM 2020. Phase 3:
Completing, submitting, and defending the dissertation.

The preliminary results pertaining to class-level complexity
and code fuzzy smell are as follows. In class complexity we
have applied the proposed approach on code repositories
obtained from opensource projects. The selection criteria
considered code repositories that are most active on GitHub
[16]. We included, among others, codebases developed by
Google [17], Microsoft [18] and the National Security Agency
[19]. We compared the results from our quantification metrics
to the actual metrics derived from the codebase analysis
(Figure 2). High correlation with 84%, would suggest that our
metrics accurately characterize codebase quality. In the near
future, we plan to compare correlation values obtained from
this approach to those obtained from applying traditional code
quality metrics.
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In fuzzy code smells we attempted an extensive empirical
evaluation of fuzzy code smell approach using expert reviews
of large corpuses [37] of smells in open source repositories by
comparing our metics, and a wide range of static code analysis
tools (PMD [38], infusion [39], JDeodorant [40], and JSpIRIT
[41]), against the expert reviews data sets. The results for the
precision and recall show that fuzzy smell method aligned
significantly better with expert’s data sets than contemporary
code analysis tools as shown in Figure 3.

Figure 2. Correlation between class complexity and LOC.

Figure 3. Precision and recall of large class code smell.

Finally, we calculated the F1 score, which is the harmonic
mean of precision and recall. The F1 score is used because in
many studies, the F-measure is the ultimate measure of
performance of a classifier [36]. After calculating the F1 score
for all the approaches, we found that the best performance for

detecting a bad large class smell is our approach. Figure 4
shows that the accuracy of the fuzzy metric is the highest with
55%. The second highest is PMD with 39%, then JDeodorant
with 33%, and after that JSpIRIT with 27%. The lowest
accuracy is found for inFusion with only 7%. Moreover, for
detecting a bad long method smell, we found that our approach
is the best as well.

Figure 4. The total F1 score for classes of each tool.

VII. CONLUSION AND FUTURE WORK

In this paper, we presented a new approach that defines
code quality metrics with thresholds that are derived from
software design. This ensures alignment between the
intentional specification of software design characteristics and
their implementation. This approach means that metrics can
evolves as the codebase design evolves throughout the
software lifecycle. Moreover, this approach means that each
code module will have its own unique quality metrics that are
tailored to its unique context. Our approach started with
measuring the complexity of each class and method in the
system. We then estimated the expected size for each class and
method by using the complexity measurement that we
calculated from the first step. The last step is to calculate the
fuzzy code smell based on the difference between the actual
and expected size of each class and method.

The research plan in future work is to evaluate the proposed
metrics theoretically and empirically by using the following
methodologies: (1) Theoretical evaluation of the complexity
metrics by using Weyuker’s nine properties model. (2)
Evaluate whether the metrics derived from software designs
provide a better characterization of codebase quality and
sustainability than alternate traditional metrics. (3) Quantify
thresholds for the fuzzy code smells derived from the software
design. (4) Compare our new fuzzy code smells with code
smells resulting from code smells detection tools for different
codebases.
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