
Agile Specification of Code Generators for Model-Driven Engineering

Kevin Lano, Qiaomu Xue
Dept. of Informatics

King’s College London, UK
Email: kevin.lano@kcl.ac.uk, qiaomu.xue@kcl.ac.uk

Shekoufeh Kolahdouz-Rahimi
Dept. of Software Engineering

University of Isfahan, Iran
Email: sh.rahimi@eng.ui.ac.ir

Abstract—The production of code or other text from soft-
ware models is an essential task in Model-Driven Engineering
(MDE) approaches for software development. Automated code
generation is key to the productivity improvements observed
in MDE approaches. Nonetheless, there has been a lack
of systematic research into optimising the construction of
code generators, and in the current state of the art such
generators are usually developed manually, which involves
detailed programming in 3GLs, or in specialised code gen-
eration languages. In either case, high expertise in the source
language abstract syntax is necessary. In this paper, we survey
different approaches for the construction of code generators,
and we define an approach for declarative specification of code
generators by text-to-text mappings, in terms of the concrete
syntax of both source and target languages. We show that this
approach enables the rapid development of code generators,
which are also more concise and efficient compared to previous
generators.

Keywords — Code generation; Agile development; UML;
Model-Driven Engineering.

I. INTRODUCTION

Code generation is the production of programming lan-
guage code (e.g., Java) or other text (e.g., XML) from a
model of a source language, such as a subset of UML,
or a Domain-Specific Language (DSL). Code generation is
an essential step in the application of Model-Driven Engi-
neering (MDE) [18] to software application development,
enabling the automated production of software artifacts
from specification or design models, which are usually at a
higher abstraction level than the artifacts (i.e., they abstract
away from details of a specific implementation platform
or programming language). This means that an application
can be specified once and different code versions generated
automatically from the specification, targeted at several
different platforms. For example, a mobile app could be
specified in a platform-independent form, and then separate
implementations generated from the specification, targetted
at the iOS and Android mobile platforms [14]. For a new
target platform or language version, a new code generator
needs to be produced, but existing application specifications
can be reused.

Despite the importance of code generation, there has been
relatively little research published on optimising the overall
production process of code generators [5][25]. Instead, most

published work has focussed on describing particular code
generators [1][10][19][26], and issues specific to a particular
generator. There are no general guidelines for assuring the
quality of code generators, and perhaps as a consequence
of this lack, the quality of automatically generated code is
sometimes poor in comparison with manually-written code
[13][17].

The task of developing a code generator consists of three
main activities:

1) Defining a semantically valid representation of the
source language in the target language and verifying
this representation;

2) Defining a code generation strategy to create the target
representation of each source model;

3) Writing and testing code generation rules in a 3GL or
code generation language.

If we restrict attention to source languages which are
subsets of UML, crucial concepts which need to be rep-
resented in a target language are classes and interfaces, fea-
tures (attributes, references and operations), inheritance and
polymorphic operation semantics, object creation/deletion,
object communication, object state changes, and Object
Constraint Language (OCL) data types and operators.

The task of finding a valid representation may be relatively
simple if there is small semantic distance between UML
and the target (e.g., in the case of OO programming lan-
guages, such as Java, C# and C++, which support orthodox
class/inheritance concepts). But for other target languages
(e.g., for C, Python, JavaScript) there is considerable seman-
tic distance from UML, and no simple encoding of UML
concepts.

In this paper we focus on items 2) and 3) above. Section
II reviews the state of the art in code generation approaches,
and Section III introduces our approach to code generation
specification and implementation, using the CST L concrete
syntax transformation language. Section IV provides a com-
parative evaluation of the approach, Section V discusses
threats to validity, and Section VI gives related and future
work.

II. CODE GENERATION APPROACHES

A code generator can be defined either in terms of the
abstract syntax of the languages it relates, or in terms of

9Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

their concrete syntax: abstract syntax refers to the conceptual
elements of a language, represented as a Backus-Naur Form
(BNF) grammar or metamodel, and the features and inter-
relations and constraints of these elements. Concrete syntax
refers to the written textual form or graphical form of
models/programs or other artifacts in a language.

For example, part of the metamodel of the C language is
shown in Figure 1.

Figure 1. C language metamodel

The CStruct class is the abstract syntax representation of
C struct type definitions, which have the concrete syntax:

struct S
{ MT1 cm1;

...
MTn cmn;

};

where each of the MTi cmi; are the concrete syntax of
CMember elements that are the members of the CStruct.

In these terms there are three general approaches to
writing code generators:

1) Abstract syntax to abstract syntax: code generation
rules are written in a programming language or in a
general Model Transformation (MT) language, to map
from elements of the abstract syntax of the source
language, to elements of the abstract syntax of the
target language.

2) Abstract syntax to concrete syntax: templates using tar-
get concrete syntax are defined, with variable parts or
slots within these templates having content depending
upon source model elements and expressions written
in terms of source language abstract syntax.

3) Concrete syntax to concrete syntax: the mapping is
defined only in terms of source and target language
concrete syntax, with rules specifying how source

concrete syntax fragments should be represented in
target concrete syntax.

In cases where abstract syntax is used, this involves navi-
gation over the elements of a source or target model using
the data structures of a 3GL, or via an expression language,
which is usually based on OCL [24].

An example of the first approach is the UML to C code
generator of [19], which is written in OCL. The second
approach is supported by specialised model-to-text MT
languages, such as EGL [8], Acceleo [2], and Xtext/Xtend
[9]. The third approach is supported by concrete syntax
MT languages, such as the concrete graph transformation
language of [12].

A. Issues in code generation

The task of code generation may require the resolution of
several fundamental problems:

1) Language abstraction gap: the distance between the
source and target languages is too great to be bridged
by a single generation step, and multiple steps or
human input is needed. For example, declarative spec-
ification in Agile UML [6] is expressed using OCL
predicates as invariants or postconditions. This spec-
ification is quite distant from executable code, and
several translation stages are required to refine the
specification into an executable form.

2) Structural gap: the source and target languages may
have different structures, so that one source element
can contribute to the target syntax of multiple target
elements (a 1-many relationship), or information from
multiple source elements could be combined to form
one target element (a many-1 relationship). For exam-
ple, a UML class attribute is represented by a C struct
member, and by possibly multiple setter and getter
operations, in separate header and code files [19].

3) Semantic gap: where source language concepts cannot
be directly represented in the target language because
of semantic differences, so that a more complex and
indirect encoding is needed. For example, UML in-
heritance has no direct representation in C [19], and
differs in its semantics from Python or JavaScript
inheritance. Likewise, the constructs of UML statema-
chines have no direct correspondence with conven-
tional programming language constructs [1][26].

Each of the three general approaches listed above address
these problems in different ways, and there are also various
tradeoffs in each approach. Abstract syntax to abstract
syntax specifications can address the language abstraction
gap by using intermediate languages between the source and
target, and chaining transformations in sequence (Figure 2).
Structural and semantic gaps can be addressed by complex
coding in terms of the abstract syntaxes. However this

10Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

approach requires deep understanding of the metamodels
of both source and target languages, and understanding of
OCL-style navigation expressions, in addition to knowledge
of target language concrete syntax. Because abstract syntax
is typically more verbose and detailed than concrete syntax,
such specifications can become very large and complex pro-
grams or transformations, which are not easy to understand
or maintain.

Figure 2. Staged code generation

Abstract to concrete syntax approaches using template
languages involve specification with a combination of ab-
stract syntax source language expressions and concrete target
text. Thus to use these approaches, knowledge of the source
language metamodel and of the target language concrete
syntax is needed, but not of the target language metamodel.
Again, complex navigation expressions are typically needed
to refer to and select source model elements. The structure
of a template-based specification is usually closely tied to
the structure of the target language program components.

To address language gaps, preliminary model-to-model
transformations could be used as in Figure 2, with only the
final step being model-to-text [15]. The preliminary trans-
formations could construct a design model suitable for direct
translation to any target language in a given language family.
For structural and semantic gaps, auxiliary operations and
data would need to be used, with possibly multiple passes
through the source model, and multiple output templates
(e.g., for C production from UML, a C header file template
and a C code file template would be needed). This again
requires complex specification in the source abstract syntax.
The mix of source and target languages in one artifact can
be confusing, and such specification can be prone to errors
due to misuse of delimiters between the language texts [21].

Concrete syntax to concrete syntax approaches have the
advantage that no knowledge of abstract syntax is needed.
In addition, any navigation over source and target models is
implicit, based on the concrete syntax structures. Thus, the
code generation rules can be defined in an intuitively natural
manner in terms of the concrete source and target syntax.

However, for cases of abstraction, structural or semantic
gaps, more complex mapping mechanisms are needed, with
auxiliary operations and possibly multiple rules/multiple
passes over the source text. In principle, concrete syntax
to concrete syntax transformations could be chained as in
Figure 2 to use intermediate textual languages to bridge
gaps.

III. CONCRETE SYNTAX TO CONCRETE SYNTAX
SPECIFICATION USING CST L

Our experience of building large code generators in Java
[20] and in OCL [19] convinced us that a more usable, agile
and lightweight approach was needed.

For the simpler specification of code generators, we have
developed a textual concrete syntax transformation notation
CST L. This is a DSL for code generation, which enables
the direct definition of code-generation transformations by
means of concrete syntax to concrete syntax mappings.

A. CST L concepts

CST L is designed to be a small language, which can be
used by general software practitioners, and does not require
a high degree of MDE expertise. Its execution semantics
can be understand in terms of familiar string matching and
replacement concepts. Figure 3 shows the metamodel of
CST L.

Figure 3. CST L metamodel

A CST L module consists of a sequence of rules grouped
into categories. Individual rules in CST L notation have the
form:

selement |-->telement<when> Condition

11Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

The <when> clause and condition are optional. The left
hand side (LHS) of a CST L rule is some piece of concrete
syntax in the source language, e.g., in Kernel Metamodel
(KM3) [16] textual notation for UML class models, and
the right hand side (RHS) is the corresponding concrete
syntax in the target language (e.g., C, Java, Swift, etc),
which the LHS should translate to. Apart from literal text
concrete syntax, the LHS may contain variable terms 1, 2,
etc, representing arbitrary source concrete syntax fragments
(possibly constrained by the optional condition), and the
RHS may refer to the translation of these fragments also
by 1, 2, etc. This enables CST L mappings to be applied
recursively. Rules are grouped into source language syntactic
categories, such as binary expressions or statements, and
apply to elements in these categories. Specialised rules are
listed before more general rules.

For example, to map a KM3 text syntax of a UML class
to type and data declaration text in a C header file, assuming
that the class contains only simple data feature definitions
x : T , we could write the following rules to translate UML
types, attribute declarations and class declarations:

Type::
Integer |-->int
Real |-->double
Boolean |-->unsigned char
String |-->char*
Set(_1) |-->_1*
Sequence(_1) |-->_1*
_1 |-->struct _1*<when> _1 Class

Attribute::
_1 : _2; |--> _2 _1;\n
_1 : _2; _3 |--> _2 _1;\n _3

Class::
class _1 { _2 } |-->struct _1\n{_2};
class _1 extends _2 { _3 } |-->
struct _1\n{ struct _2* super;\n_3};

These rules translate a class declaration

class Customer extends Person
{ name : String;

age : Real;
}

into:

struct Customer
{ struct Person* super;

char* name;
double age;

};

Rule conditions can be combined by conjunction (comma)
and negation, for example:

_1 = _2 |-->_1 == _2<when>
_1 not String, _1 not object,
_1 not collection

Negation can often be avoided by using the ordering of rules.
The above rule could alternatively be expressed as a default
case after specific = rules for strings, objects and collections.

Any stereotype of an LHS model element may also be
used as a condition on it, for example:

Attribute::
_1 : _2 |--> let _1 : _2<when>_1 readOnly

for a mapping from UML to Swift.

The metafeature notation i‘f enables access to features f
of the abstract syntax. For example, 1‘elementType returns
the element type of whatever language element is held in
variable 1.

Furthermore, a set of rules can be grouped together in a
single file, representing one way of mapping source elements
to target elements. Separate files can define alternative or
additional mappings. For example, separate files cheader.cstl
and cbody.cstl could be used to create the header and body
files of a C program derived from a UML model. This
addresses the issue of 1-many structural gaps, and enables
context-dependent alternative translations of source syntactic
elements. If f .cstl is a file containing a CST L module, then
the notation 1‘f .cstl applies this module to the contents of
1.

B. CST L semantics

The execution semantics of CST L is based on string
pattern matching and rewriting. Given a source text element
elem of syntactic category CT , the first CT rule whose LHS
matches elem and whose conditions are true is applied to
elem, with metavariables i of the LHS being bound to cor-
responding source fragments within elem. These fragments
are then themselves mapped by the rule set and the result of
transformation is substituted for i on the RHS of the rule.
If no rule applies, an element is mapped to itself.

Formally, a CST L specification module cg contained in
a file cg.cstl defines a function τcg from the texts of source
language L1 to those of target language L2 as follows.

For each source text e ∈ L1, of L1 category C, successive
rules r of the C :: group in cg are checked to determine if
r.lhs can match to e.

Each r is of the form

lhs |-->rhs<when> Conditions

12Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

An absent condition is interpreted as true. r matches e if
e equals r.lhs with substitutions of subtexts ei of e for
the variables i of r.lhs, i.e., e equals r.lhs[ei/ i] (ignoring
leading or trailing spaces). r is then applicable to e if
Conditions[ei/ i] also hold. In this case, the result of cg
applied to e is

τcg(e) = r.rhs[τcg(ei)/ i]

where r is the first C :: rule matching e. If no rule of the
C :: group matches e, then e is copied to the output:

τcg(e) = e

in either case, the specifier must ensure that the result τcg(e)
is a valid text of L2.

For example, the UML attribute declaration s :
Sequence(Real); matches the LHS 1 : 2; of the
first Attribute rule above, with 1 bound to s and 2 bound
to Sequence(Real). The latter type text is then rewritten
to double* by the Type rules for Sequence and Real, so
that the overall result of the attribute rule application is
double* s;\n.

Metafeatures i‘f are evaluated as τcg(ei‘f) = τcg(ei.f),
where ei is the abstract syntax element corresponding to ei.

A module application i‘f .cstl is evaluated as
τcg(ei‘f .cstl) = τf (ei).

C. CST L applications

We have applied CST L to the translation of UML to
Java (UML2Java8), and to Swift (UML2Swift). These are
used as part of UML to Android and UML to iOS mobile
app generation tools. CST L is also provided as part of
the Agile UML toolset [6] as a facility to enable users to
quickly specify new code generators from UML to different
programming languages, hence extending the toolset for
their own needs.

The emphasis in the UML2Java8 and UML2Swift code
generators is on the generation of fully functional code
from OCL expressions. OCL has over 100 operators [24],
thus at least these many rules are needed to translate OCL
expressions to program code. 152 of the 183 rules (83%)
of the UML2Java8 generator are either mapping rules for
different kinds of OCL expression (139 rules) or for state-
ments (13 rules). Some examples of expression rules from
this generator are:

BinaryExpression::
_1 & _2 |-->_1 && _2
_1->count(_2) |-->Collections.frequency(_1,_2)
_1->select(_2 | _3) |-->

Ocl.selectSet(_1,(_2)->{return _3;})
<when> _1 Set

_1->includes(_2) |-->_1.contains(_2)
_1->includesAll(_2) |-->_1.containsAll(_2)

A Java 8 library of OCL functions, Ocl.java, is also defined
to support the implementation of some operators, such as
→select. The UML2Swift generator is similarly constructed.

CST L can also be used for general DSL to code syn-
thesis, provided that the DSL elements can be expressed as
a subset of our UML source language. Stereotypes can be
used to label UML elements as representing DSL elements,
and rules for DSL code generation expressed in terms of
these stereotypes.

IV. EVALUATION

We evaluate the approach by comparing UML to 3GL
code generators specified using different approaches (Table
I). We compare the development effort of the generators, and
their sizes, syntactic complexity and efficiency. The size is
measured in lines of code (LOC). MaxES is the maximum
OCL expression size used in navigation expressions (opera-
tors + identifiers in the expression). This is the MEL measure
of [28]. All approaches cover the structural parts of the
generated code, but differ in how they synthesise behaviour
(constructor and method bodies).

TABLE I. COMPARISON OF CODE GENERATION APPROACHES

Generator Implemented Size MaxES Scope
UML2C++ [20] Java 18,100 – Behaviour

from OCL
UML2Java Acceleo/ 3,957 27 Outline
[7] Java behaviour
UML2Java [27] EGL 1,425 35 Statemachine

behaviour
UML2Java8 [6] CST L 426 11 Behaviour

from OCL
UML2Swift [6] CST L 398 5 Behaviour

from OCL

Table I shows that the CST L Java generator is sub-
stantially smaller compared with other UML to Java ap-
proaches. Unlike the Acceleo and EGL generators, it is
focussed on behaviour implementation instead of structural
implementation. The declarative nature of the specification
should also make it easier to comprehend and to change
than imperative or hybrid code generators involving explicit
model navigation. The syntactic complexity is indicated by
the maximum condition or navigation expression size – for
the CST L solution this is also significantly smaller than for
the other solutions.

In Table II we compare the performances of the Acceleo,
CST L and a Java-coded UML to Java code generator on
the Acceleo test model example.uml, which consists of 6
classifiers, 8 data features, 6 operations and 5 inheritance
relations (Figure 4).

Larger examples were created by duplicating this basic
structure. We also added some functionality to the operations
of the example. The results in Table II show that the CST L

13Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Figure 4. Acceleo example model

generator is approximately 10 times more efficient than
the Acceleo generator, despite including OCL expression
processing. This improvement is likely to be caused by the
purely tree-based processing of CST L, in contrast to the
graph navigations of Acceleo. CST L specifications contain
no global variables or other ‘memory’ of which rules have
been applied, so that rule applications (e.g., upon separate
classes) are independent and could be parallelised. The
CST L solution is similar in efficiency to the Java-coded
UML2Java4 generator of [6].

TABLE II. PERFORMANCE COMPARISON OF UML TO JAVA CODE
GENERATION APPROACHES

Model Size Acceleo CST L Java
(UML2Java8) (UML2Java4)

1 25 480ms 45ms 28ms
2 50 750ms 70ms 47ms
4 100 800ms 36ms 37ms
10 250 1.12s 80ms 79ms
15 375 1.52s 104ms 194ms

TABLE III. COMPARISON OF CODE GENERATOR DEVELOPMENT
EFFORT

Approach/Generator Effort
Acceleo/Java: UML2Java [7] 3000+ hours
Java: UML2C++ [20] 2170 hours
OCL: UML2C [19] 1375 hours
CST L: UML2Java8 36 hours
CST L: UML2Swift 50 hours

Table III compares the development effort of different
generators, in terms of person hours. These show substantial
reductions in effort for the CST L developments, compared
to developments using 3GL programming, templates or
OCL. This reduction arises because (i) the code generator
file has a modular structure based on the source language
syntax categories; (ii) no programming language or OCL
code needs to be written; (iii) the overall size of the generator
is substantially reduced and is contained in 2 or 3 small files.
Not only is the initial effort lower in the CST L generators,
but also the cost of making changes to the specification.

We can also compare the size of the generated code for
the example model of Figure 4: this is 107 LOC for the
CST L UML2Java8 generator, 380 LOC for the Acceleo
UML2Java, and 1628 LOC for the Java coded UML2Java4
translator of [6]. The latter provides many additional func-
tionalities, such as input and export of models from XML
and CSV, which the CST L and Acceleo generators do not.

V. THREATS TO VALIDITY

We address instrumental bias by performing all measure-
ments in a consistent manner. Regarding selection bias, our
evaluation example is taken from the Acceleo repository,
and hence it is independent of the authors. Regarding gen-
eralisation from the single example presented here, we have
also used CST L to generate app code for several Android
and iOS apps of different kinds, and found similar results
in terms of high efficiency and low generated code size.
Regarding relevance, we have only implemented UML to
code mappings, DSL to code mappings are the subject of
future work.

VI. RELATED AND FUTURE WORK

Investigations into the use of machine learning, specif-
ically Long Short Term Memory (LSTM) neural nets, to
synthesise model transformations from examples of input
and output models have shown that this can be practically
useful [4], however it requires large numbers of examples
and significant training time. The same approach could
potentially be used to derive code generators from examples
presented either in abstract or concrete syntax.

Tools have also been created that convert UI sketches
into UI code [3][22]. These are based on object recognition
approaches, so could be used as a means of processing
manually-drawn concrete syntax graphical models (such as
class diagrams or activity diagrams) prior to code generation
from these models. Other low-code approaches for code
production are template-based or data-based app builders,
such as Microsoft PowerApps [23] or Google AppSheet
[11].

14Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

A disadvantage of ML approaches, such as LSTM neural
nets, are that they only produce implicit ‘black box’ spec-
ifications of generators. In contrast, CST L specifications
provide a clear and explicit expression of how source
language syntax maps to target language syntax. Compared
to app builders, we use a wide range of UML features to
define application data and functionality. The CST L rules
give precise control over which code elements are produced
for these specifications.

An important area for future work is ensuring the quality
of generated code [13]: code generators should not increase
the technical debt burden of a software system, and where
possible should ensure that code quality standards are met.
There should not be unnecessary code generated, and du-
plicated and excessively complex code should be avoided,
together with other flaws, such as bidirectional module
dependencies. Our approach can avoid complex duplicated
code by factoring out complex code definitions into the
OCL support library. An example is the complex Swift code
needed for regular expression matching: the Ocl.swift library
defines a function matches(str : String, pattern : String),
which encapsulates this code, so that the CST L translation
rule can be simplified to:

_1->matches(_2) |-->
Ocl.matches(str: _1, pattern: _2)

VII. CONCLUSION

We have considered alternative approaches for the defi-
nition of code generators, and proposed a novel declarative
approach, which permits simpler and more concise specifi-
cations, compared to existing approaches. We showed that
the approach can produce smaller and more efficient code
generators for UML to Java transformation.

REFERENCES

[1] A. Aabidi, A. Jakimi, R. Alaoui and E. Hassan El Kinani,
“An object-oriented approach to generate Java code from
hierarchical-concurrent and history states”, Int. Journal of
Information and Network Security, vol. 2, 2013, pp. 429–440.

[2] Acceleo project, https://www.eclipse.org/acceleo, accessed
18.8.2020.

[3] T. Beltramelli, “pix2code: Generating code from a GUI
screenshot”, https://arxiv.org/abs/1705.07962, 2017. Accessed
18.8.2020.

[4] L. Burgueno, J. Cabot, and S. Gerard, “An LSTM-based neural
network architecture for model transformations”, MODELS
’19, 2019, pp. 294–299.

[5] A. Dieumegard, A. Toon, and M. Pantel, “Model-based formal
specification of a DSL library for a qualified code generator”,
OCL 2012, pp. 61–62.

[6] Eclipse Agile UML project, https://projects.eclipse.org/
projects/modeling.agileuml, accessed 18.8.2020.

[7] Eclipse UML2Java code generator, https://git.eclipse.org/
c/umlgen/, accessed 18.8.2020.

[8] Epsilon project, https://projects.eclipse.org/projects/modeling.
epsilon, accessed 18.8.2020.

[9] M. Eysholdt and H. Behrens, “Xtext: implement your language
faster than the quick and dirty way”, OOPSLA 2010, pp. 307–
309.

[10] M. Funk, A. Nysen, and H. Lichter, “From UML to ANSI-C:
an Eclipse-based code generation framework”, RWTH, 2007.

[11] Google, https://www.appsheet.com, accessed 18.8.2020.

[12] R. Gronmo, B. Moller-Pedersen, and G. Olsen, “Comparison
of three model transformation languages”, ECMDA-FA, 2009,
pp. 2–17.

[13] X. He, P. Avgeriou, P. Liang, and Z. Li, “Technical debt in
MDE: A case study on GMF/EMF-based projects”, MODELS
2016, pp. 162–172

[14] H. Heitkotter, T. Majchrzak, and H. Kuchen, “Cross-platform
MDD of mobile applications with MD2”, SAC 2013, ACM
Press, 2013, pp. 526–533.

[15] Z. Hemel, L. Kats, D. Groenewegenn, and E. Visser, “Code
generation by model transformation: a case study in transfor-
mation modularity”, Sosym, 9: 375–402, 2010.

[16] F. Jouault and J. Bezivin, “KM3: a DSL for metamodel
specification”, ATLAS team, INRIA, 2006.

[17] L. Kapova, T. Goldschmidt, S. Becker, and J. Henss, “Eval-
uating maintainability with code metrics for model-to-model
transformations”, QoSA 2010: Research into Practice – Reality
and Gaps, Springer, 2010, pp. 151–160.

[18] K. Lano, Agile model-based development using UML-RSDS,
CRC Press, 2016.

[19] K. Lano, S. Yassipour-Tehrani, H. Alfraihi, and S. Kolahdouz-
Rahimi, “Translating from UML-RSDS OCL to ANSI C”,
OCL 2017, STAF 2017, pp. 317–330.

[20] K. Lano, H. Alfraihi, S. Kolahdouz-Rahimi, M. Sharbaf,
and H. Haughton, “Comparative case studies in agile MDD”,
FlexMDE 2018, MODELS 2018, pp. 203–212.

[21] K. Lano, S. Fang, H. Alfraihi, and S. Kolahdouz-Rahimi,
“Simplified specification languages for flexible and agile mod-
elling”, FlexMDE, MODELS 2019, pp. 460–467.

[22] Microsoft, sketch2code, https://www.microsoft.com/en-
us/ai/ai-lab-sketch2code, accessed 18.8.2020.

[23] Microsoft, PowerApps, https://powerapps.microsoft.com, ac-
cessed 18.8.2020.

[24] OMG, Object Constraint Language Specification v2.4, 2014.

[25] I. Stuermer, M. Conrad, H. Doerr and P. Pepper, “Systematic
testing of model-based code generators”, IEEE TSE, 33(9),
2007, pp. 622–634.

[26] E. Sunitha and P. Samuel, “Object-oriented method to im-
plement the hierarchical and concurrent states in UML state
chart diagrams”, Software engineering research, management
and applications, Springer-Verlag, 2016, pp. 133–149.

[27] TU/e, SLCOtoJava1.0 code generator,
https://gitlab.tue.nl/SLCO, 2020.

[28] M. Wimmer, S. Martinez, F. Jouault, and J. Cabot, “A Cat-
alogue of Refactorings for model-to-model transformations”,
Journal of Object Technology, vol. 11, no. 2, 2012, pp. 1–40.

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

