
Analyzing Challenges in Software Engineering Capstone Projects

Yvonne Sedelmaier, Dieter Landes
Faculty of Electrical Engineering and Informatics
Coburg University of Applied Sciences and Arts

96450 Coburg, Germany
e-mail: yvonne.sedelmaier@hs-coburg.de, dieter.landes@hs-coburg.de

Abstract—Engineering complex software systems is a very
delicate and challenging task, which involves a variety of
technical, general non-technical, and context-specific non-
technical challenges. Getting better insight into the nature of
these challenges is of paramount importance for aligning
intended learning outcomes and didactical setup in software
engineering capstone projects that aim at exercising and
extending these competences. In order to obtain a fine-grained
understanding of perceived challenges in capstone projects, this
work presents results of a qualitative analysis of self-reports
which students wrote as post-mortem documents after being
part of such a capstone project. As a main contribution, the
qualitative analysis substantiates results in earlier work that
technical issues tend to be less challenging than non-technical
ones, e.g., collaboration within the team and beyond, issues of
project management and organisation, and methodological
issues related to requirements engineering and effort estimation.
In addition, the paper reveals challenges that might have been
overlooked so far, e.g., project organisation (and not just
planning), individual motivation, and individual deficiencies in
setting or adhering to deadlines.

Keywords-capstone project; software engineering; challenges;
qualitative analysis.

I. INTRODUCTION
Software is a core ingredient of nearly any part of our

everyday life. Software, however, requires highly skilled
developers. Consequently, software engineering education
plays an important role in higher education in order to acquire
and exercise these skills. Traditionally, universities
emphasized technical skills, such as, e.g., programming or
testing skills, in software engineering education.
Undoubtedly, software development requires profound
technical knowledge [1]. Evidently, technical proficiency is
not the only thing that matters. In recent years, it has become
increasingly clear that non-technical, or soft, skills are equally
important as software is developed in teams of individuals
which need to interact with each other and various
stakeholders such as, e.g., customers or users of their software.
Software engineers need to analyze and understand complex
situations and use a creative and solution-oriented approach.
Various researchers emphasize the importance of non-
technical skills in software engineering [2]–[6].

Software engineering requires a specific profile of
competences that combines technical, general non-technical,
and context-specific non-technical skills [7].

Internal surveys we conducted over the years indicate that
students tend to overestimate their level of technical and non-
technical competences. Many software engineering projects
fail due to at least one of the following reasons: scheduling,
specifications and/or average manufacturing costs [8]. Button
and Sharrock [8] also state that software engineers tend to
distinguish between two basic types of problems: "First, those
that are due to deficiencies in the state of general engineering
practice, and second, those that arise from the state of the
project they were engaged in. Engineering work on any
particular development thus does not involve only the
resolution of the problems arising from the specific
circumstances of the project itself, but also contends with
problems that are recognized as generic problems of
engineering work per se" [8]. Students hardly believe these
facts. In their opinion they would do much better and lead the
project to success if they were the actors.

As soft skills are core competences of a software engineer,
they should be a core ingredient of software engineering
education at universities. Yet, soft skills should not be
exercised in isolation, but rather in a typical professional
setting and in conjunction with technical skills.

Project work is one approach to bring complexity and
problem awareness into university education. Project work
fosters many soft skills, such as communication skills and the
ability to work together in a team. Interpersonal skills cannot
be trained without other people around, and project work
combines these competences with the context in which they
are needed. Furthermore, project work offers students
opportunities to understand inter-relationships between
technical knowledge and soft skills. Project work in a
university context gives students the chance to prove that they
can really succeed while understanding the difficulties of
project work and the reasons for failure.

This contribution investigates these issues in more detail.
More specifically, the research question that drives this work
is identifying the (major) challenges that students face in
software engineering projects during their university
education. To that end, we performed a qualitative analysis of
post-mortem reports after finishing a capstone software
engineering project.

The next section discusses related work before Section III
provides some details on the setup of the capstone project and
its underlying intended learning outcomes. Section IV
outlines the research design before Section V presents and
discusses the results of the qualitative analysis. A summary
and outlook on future work concludes the paper.

135Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

II. RELATED WORK
A better understanding of the inner workings of (capstone)

projects in software engineering has been addressed in earlier
work under various perspectives.

Brereton and Lees [9] investigate four factors that
arguably have some impact on the outcomes of student
projects. In particular, they focus on team size, range of
abilities within the teams, the presence of female team
members, and the mix of expertise beyond computing in the
team. Their findings indicate that these factors do not have
significant impact except for the gender mix – teams with two
or more female members performed better than purely male
teams.

Wikstrand and Börstler [10] identified various correlations
between structural aspects of team projects. Most
importantly, the type of the project, i.e., Web project, editors
/ generators, or other projects, plays a major role for project
success. In addition, the authors identified project planning as
a crucial, but often underestimated issue in student projects,
particularly as students tend to not take planning and other
process issues seriously.

Bastarrica et al. [11] investigated the role of four major
aspects in capstone software engineering projects, namely
technical challenges, teamwork, planning, and requirements
clarification. For each of these four aspects, the authors tried
to figure out if they changed between project initiation and
closure with respect to their perceived value and difficulty.
Most prominently, they perceived a decrease in the value of
addressing technical issues properly and an increase of
perceived difficulty of negotiating requirements with clients.
On the other hand, in this study students seemed to have a
realistic impression of difficulties associated to proper project
planning, while they found teamworking harder than
expected.

In a similar vein, Paasivara et al. [12] investigate 15
hypotheses with respect to a change in attitude over the
duration of a capstone project. They also substantiated that
technical issues lose importance, while non-technical issues,
e.g., communication within the team and with stakeholders,
understanding requirements, or following a defined process
gained in terms of perceived importance and difficulty.

All the mentioned research provides valuable insights by
substantiating of refuting hypotheses, based on a statistical
analysis of data gained in surveys or interviews. Nevertheless,
the origin of the formulated hypotheses remains unclear. For
that reason, our research takes a step back in order to identify
potential challenges, technical as well as non-technical, in
capstone projects, based on a qualitative research design. In
other words, our work tries to lay the foundation for
formulating hypotheses on relevant success factors and
challenges on a sound basis. This seems to be an important
contribution to avoid overlooking crucial aspects due to
premature formulation of hypotheses.

III. STRUCTURE AND GOALS OF THE CAPSTONE PROJECT

A. Educational Context
Students in our bachelor program in informatics can enroll

in a Software Engineering project (SE project) in their final

year. Participants acquired solid programming skills during
courses in their first and second years, and they already took
a compulsory introduction to software engineering and two
elective courses focusing on software requirements,
architecture, and testing in more detail. The SE project is
intended as a means to tie together what has been learned on
software engineering so far and gain hands-on experience in a
self-directed mode. Students are supposed to learn from their
own experiences, rather than getting rigid instructions from
instructors. Generally, the main task in the project consists of
devising and implementing a (Web-based) information
system that supports and automates some business process
(i.e., belongs to type “Web project” in Wikstrand’s and
Börstler’s terminology [10]). In most cases, development is
from scratch, i.e., no enhancement or reengineering of existing
systems.

The SE project is offered as an elective course, which
typically runs for 14 weeks with 6 European Credit Transfer
System (ECTS) credits, i.e., puts a workload of approximately
180 hours on each participant. This workload includes 4
contact hours per week in which the project teams physically
meet at the university. During these physical meetings,
instructors are present, but act as observers in the background
unless explicitly asked for support. Teams also meet virtually,
using tools such as Skype or social media to make agreements.
So far, we have had nine iterations of the SE project from 2011
to 2020.

Since the course is an elective, the number of participants
varies from year to year, ranging from 10 to 25 students.
Participants are split in project teams of 4 to 6 members.
Typically, project topics are contributed by real customers and
differ between teams. Customers typically do not have an IT
background, which brings issues of multidisciplinarity into
the projects.

Organizing a team, tailoring a process model, and
developing a software system at the same time overstrained
bachelor students. Therefore, we mixed bachelor and master
students in the same project, starting with the third iteration of
the SE project. Bachelor students focus on technical issues,
constitute the development team, and experience project
management in a more passive fashion. In contrast, the master
students are in charge of leading the project and in particular
of adapting the process model to the specific situation. Each
team is free to choose a process model. In the more recent
offerings of the project, teams regularly embarked on agile
approaches, in particular Scrum [13]. The project teams
decide on which deliverables and which project roles are
really important and how they will implement the chosen
process model.

To enable them to fulfill their roles, instructors offer on-
demand coaching for master students to reflect and improve
their leadership skills. This individual coaching establishes a
forum to discuss challenges and problems they face in their
teams and obtain help by the instructors to master these
challenges.

B. Intended Learning Outcomes
The teaching goals of the capstone project differ for

bachelor and master students. The focus for bachelor students

136Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

lies on understanding and combining chunks of technical
knowledge, which up to then have been isolated, into one big
picture, and on integrating in a team, which includes fostering
communication skills. Master students focus on organizing
and leading a team. The difficulties for them are, e.g.,
communicating with team members, structuring tasks, and
motivating team members for effective teamwork. Master
students are responsible for the results and for meeting
deadlines, as well as for assuring the quality of the software.

Intended learning outcomes are mainly competences and,
consequently, assessment is competence-oriented as well. At
least two instructors accompany/observe the project teams
during the presence hours each week to get an idea of
teamwork and individual contributions.

In particular, grading of the bachelor students is based on
the following aspects:

• technical quality of results (completeness, complexity
of the project topics) including artefacts, such as
requirements specifications, software architecture
documents, test specifications, etc.

• (customization of and) adherence to a process model,
• individual technical contribution,
• individual team-orientation,
• individual self-reflection, and
• final presentation.

Likewise, grading for the master students is based on
• adaptation of the process model including

documentation of the tailored process,
• process quality and leadership,
• self-reflection, and
• final presentation.
A post-mortem reflection is conducted as an additional

element to stimulate learning. To that end, students were
asked to reflect on their own individual role in the project, as
well as the performance of the entire team. Reflection and
metacognition are advantages of project work and are
didactical methods to foster soft skills and competences.

Self-reflection is stimulated in two steps. First, each of the
students has to prepare a short individual self-report that
addresses issues such as

• their roles and tasks in the project,
• their expectations with respect to the project and the

degree to which these had been met,
• particular issues in the project that they personally

would have handled differently and, from their
personal point of view, more successfully,

• which role they would have liked in the project and
what they would have done differently in that role,
and

• how interaction and cooperation between team
members evolved during the project, including their
subjective explanation for these changes.

Secondly, one week after the project is complete, the
project teams meet with instructors for a post-mortem analysis
session of approximately two hours, which serves to reiterate
any possible aspect that seems worth being discussed in the
group.

The self-reports establish the data base that we analyze
subsequently.

IV. RESEARCH DESIGN

A. Qualitative Research Design
The research uses a mixed methods approach with focus

on qualitative analyses applying the basic strategy of
Grounded Theory (GT) [14] in combination with Mayring’s
content analysis [15] [16] . GT aims at developing middle
range theories by generating codes in a multi-stage procedure
[17]. One step of the analysis consists of going through the
material carefully and assigning appropriate semantic codes to
the text segments to which they apply. “Coding means
categorizing of segments of data with a short name that
simultaneously summarizes and accounts for each piece of
data. Your codes show how you select, separate, and sort data
to begin an analytic accounting of them” [18]. In particular,
the generation of the code system is not accomplished up-
front, but rather by inductive category formation while going
through the material. Simultaneously, new or existing codes
are added as tags to relevant portions of the material while
reading, abstracting and interpreting the texts.

B. Research Questions
This paper focusses on the following research questions:

What are the main challenges for students in SE projects?
What are major issues they have to deal with?

C. Research Data
An SE project team consists of 5 members on average. The

large majority of participants was male, with only four
females taking part over the years. All females were enrolled
in the bachelor program.

To get answers to the research question, we rely on
students’ post-mortem self-reports. Over nine years we
collected 79 reports from 81 students in 13 teams. All teams
were guided by a master student, so that 14 self-reports were
written by master students. The reports have an average length
of two pages of prose text. Self-reports were written
anonymously.

The self-reports encompass lots of potentially interesting
data, which may be analysed from various perspectives. At the
current stage of our research, we focus on challenges in SE
projects to answer our research questions.

D. Application of the Research Design
As outlined above, our approach develops a category

system incrementally by first marking those text segments that
refer to challenges that students had to face in SE projects.
This was accomplished using the MAXQDA analysis tool
[19]. In the first coding procedure, subcategories are
developed by going through all self-reports and marking text
passages. Doing so results in an initial category system with
little structure, which possibly includes some duplications. In
a second step, initial categories are merged, sorted, and

137Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

grouped according to their meaning. In this way, an
unambiguous and structured category system arises.

E. Initial Results - Overview
As a result, our research process yielded 1,379 codes in 19

categories. One of these categories is a main category
“challenges”, which is of particular interest for this paper.

The main category “challenges” encompasses 3
unambiguous subcategories (professional & technical issues,
human factors, and organizational matters). Furthermore, we
found 3 categories that collect complex challenges.
Challenges in this category (internal communication,
complexity, leadership) combine at least 2 challenges of the
unambiguous categories. Challenges concerning internal
communication, for example, may have human and
organizational causes. In addition, a category “other
challenges” was built to sum up marginal problems of
working together.

Focussing on these relevant categories, 732 coded text
segments from 72 self-reports were evaluated and showed the
top three challenges in SE projects (see Table I and Figure 1):
Human factors are the biggest challenges for students when
working in a team, followed by organizational matters and
professional & technical issues.

It is worth noting that the main categories “Internal
communication”, “Big picture / Complexity”, and
“Leadership (-)” are atomic in the sense that they do not have
any subcategories.

TABLE I. STUDENTS’ CHALLENGES IN SE CAPSTONE PROJECTS

Students’ Challenges in SE Capstone

Projects
Percent (valid) Percent Documents

Human factors 87.5 79.75 63

Organizational Matters 75 68.35 54
Professional & Technical
Issues 72.22 65.82 52

Internal Communication 50 45.57 36

Big Picture / Complexity 47.22 43.04 34

Other Challenges 40.28 36.71 29

Leadership (-) 25 22.78 18
DOCUMENTS with
Code(s) 100 91.14 72

DOCUMENTS without
Code(s) - 8.86 7

ANALYSED
DOCUMENTS - 100 79

F. Most Prominent Issues in Main Categories
A closer look at the main categories shows the following

top issues within a specific category, as seen in Tables II, III,
IV, and V.

TABLE II. TOP ISSUES IN HUMAN FACTORS

Top 4 Issues in Category “Human factors”

Category Number of
codes Percent

Collaboration bachelor and master
students 32 10.49

Motivation 31 10.16

Collaboration 25 8.2
Communication with Third / Other
Disciplines 20 6.56

The first subcategory refers to issues that relate to the

interaction of bachelor and master students within a project
team. The second subcategory reflects issues that are linked to
a lack of individual motivation. The third subcategory refers
to issues of how members of the project teams (excluding the
master students) cooperated, while the last subcategory
focusses on the communication with stakeholders outside the
project team, possibly across disciplinary boundaries.

Figure 1. Students’ Challenges in SE Capstone Projects (in percent)

88
75 72

50 47 40
25

Challenges Percent (valid)

138Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

TABLE III. TOP ISSUES IN ORGANIZATIONAL MATTERS

Top 5 Issues in Category “Organizational Matters”

Category Number of
codes Percent

Time aspects / Timeliness 34 26.15

Management in general 33 25.38

Software Process Modell 16 12.31

Distribution of Tasks and Responsibilities 16 12.31

Communication 13 10.00

In terms of organisational matters, the first subcategory

refers to issues related to stretching deadlines or skipping
tasks due to time pressure or lack of time. The second
subcategory collects issues related to organizing the project,
e.g., developing a precise project plan, arrange meetings,
facilitate meetings, etc. The third category refers to issues in
the context of making the process model work properly. The
fourth category addressed issues related to sharing the
workload and assigning / accepting responsibilities in the
project team, while the last one refers to (lack of)
communication among team members.

TABLE IV. TOP ISSUES IN PROFESSIONAL & TECHNICAL ISSUES

Top 5 Issues in Category “Professional & Technical Issues”

Category Number of
codes Percent

Documentation 27 21.77

Software Requirements 25 20.16

Technical Knowledge 17 13.71

Effort Estimation 12 9.68

Tools 10 8.06

In the main category „Professional & Technical issues”,

the first subcategory deals with the deliverables beyond the
actual code, e.g., requirements or architecture documents. The
second subcategory refers to methodological issues related to
clarifying requirements. The third and fifth subcategories deal
with issues related to missing technical knowledge or tool
deficiencies, while the fourth category refers to deficiencies
related to time and effort estimations.

TABLE V. TOP ISSUES AMONG OTHER CHALLENGES

Top 3 Issues in Category “Other Challenges”

Category Number of
codes Percent

General Organisation 12 29.27

Shared Vision 9 21.95

Individual Situation 5 12.20

The main category „Other Challenges” relates to issues on
a meta level, namely the organization of the project as a course
and the individual situation of team members in the context of
other subjects, but also a common understanding of priorities
for the project, within the team or between team and
instructors.

V. DISCUSSION
In contrast to the majority of earlier work on the subject,

this work employs a well-founded qualitative approach to
analysing educational data, in this case in the context of
software engineering capstone projects.

Following this qualitative line of research, we arrived at
19 main categories of challenges that students face in capstone
projects. These 19 main categories correspond to semantic
clusters of issues raised in more than 70 textual post-mortem
self-reports. Due to the chosen approach, categories and
subcategories are subject to change whenever additional data
become available.

The database of more than 70 textual self-reports is rich in
the sense that it might provide insight from various diverse
points of view. For now, we put a focus on identifying
challenges students might face in a capstone project. Given
that perspective, our result is closest in nature to the analysis
by Paasivaara et al. [12]. Given our data, we can substantiate
their findings that technical issues play only a minor role with
respect to the “success” of a student project in comparison to
other aspects, such as collaboration within the team and
beyond, issues of project management and organisation, and
methodological issues related to requirements engineering
and effort estimation. In addition, we also found indications
that, like stated by Wikstrand and Börstler [10], issues related
to project planning are some challenge. Yet, our results are
more fine-grained, thus allowing for more sophisticated
hypotheses that might be tested subsequently. For instance,
project organisation (and not just planning), individual
motivation and individual deficiencies in setting or adhering
to deadlines have not been mentioned as important issues in
related research.

Furthermore, our findings are pretty well in line with the
intended learning outcomes of the capstone project. As
mentioned in Section III-B, developing problem-awareness
with respect to issues related to a gross oversight and team
formation and teamwork are among the most important goals
of the capstone project. As these issues are mentioned
frequently in the coded text segments (see Table I), students
actually seem to realize that things look simpler as they are on
closer inspection. As a consequence, we largely reached our
intended learning outcomes.

VI. SUMMARY AND OUTLOOK
Providing students with an opportunity to tie together their

knowledge on engineering (moderately) complex software
systems and exercise and expand non-technical competences
is paramount for well-educated graduates in software
engineering. Capstone software engineering projects are very
popular approach to that end. Yet, these capstone projects vary
in terms of “success”, both from the point of view of involved
stakeholders and with respect to intended learning outcomes.

139Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

This paper aims at getting better insight into which
challenges student face in software engineering capstone
projects. To do so, self-reports of nine years were evaluated
qualitatively with the MAXQDA analysis toolset. Our
findings indicate that major challenges for students lie in
human, organizational and professional. Furthermore, internal
communication, complexity, and leadership are areas of
potential difficulties in student projects.

As main results, our research identifies areas that pose
difficulties of some sort or another to students when running
a somewhat complex software engineering project. This
establishes an opportunity to state more elaborate hypotheses
on success or risk factors with respect to intended learning
outcomes for software engineering outcomes.

In future studies, self-reports will be evaluated with other
foci, e.g.: What are the learning outcomes from students`
perspectives? What did students learn? Are there differences
between bachelor and master students concerning the
mentioned questions?

ACKNOWLEDGMENT
This work is funded by the German Federal Ministry of

Education and Research (Bundesministerium für Bildung und
Forschung) under grant number 01PL17022A as part of the
EVELIN project. The authors are responsible for the content
of this publication.

REFERENCES

[1] I. Sommerville, Software Engineering, 9th ed. Boston:
Pearson, 2011.
[2] C. Gold-Veerkamp, Erhebung von Soll-Kompetenzen im
Software Engineering - Anforderungen an Hochschulabsolventen
aus industrieller Perspektive. Wiesbaden: Springer Vieweg, 2015.
[3] P. L. Li, A. J. Ko, and J. Zhu, “What Makes a Great
Software Engineer?,” in 37th International Conference on Software
Engineering (ICSE), 2015, pp. 700–710.
[4] H.-K. Lu, C.-H. Lo, and P.-C. Lin, “Competence analysis
of IT professionals involved in business services — Using a
qualitative method,” in 24th Conference on Software Engineering
Education and Training (CSEE&T), 2011, pp. 61–70.
[5] I. Richardson, L. Reid, S. B. Seidman, B. Pattinson, and
Y. Delaney, “Educating software engineers of the future: Software
quality research through problem-based learning,” in 24th

Conference on Software Engineering Education and Training
(CSEE&T), 2011, pp. 91–100.
[6] J. G. Rivera-Ibarra, J. Rodríguez-Jacobo, and M. A.
Serrano-Vargas, “Competency Framework for Software
Engineers,” in 23rd Conference on Software Engineering Education
and Training (CSEE&T), 2010, pp. 33–40.
[7] Y. Sedelmaier, Basics of didactics for software
engineering: Research-based and application-oriented development
and evaluation. Saarbrücken: LAP LAMBERT Academic
Publishing, 2019.
[8] G. Button and W. Sharrock, “Project work: The
organisation of collaborative design and development in software
engineering,” (en), Comput Supported Coop Work, vol. 5, no. 4, pp.
369–386, 1996.
[9] P. Brereton and S. Lees, “An Investigation of Factors
Affecting Student Group Project Outcomes,” in 18th Conference on
Software Engineering Education & Training (CSEE&T), 2005, pp.
163–170.
[10] G. Wikstrand and J. Borstler, “Success Factors for Team
Project Courses,” in 19th Conference on Software Engineering
Education & Training (CSEE&T), 2006, pp. 95–102.
[11] M. C. Bastarrica, D. Perovich, and M. M. Samary, “What
Can Students Get from a Software Engineering Capstone Course?,”
in 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering Education and Training Track
(ICSE-SEET), 2017, pp. 137–145.
[12] M. Paasivaara, D. Voda, V. T. Heikkilä, J. Vanhanen, and
C. Lassenius, “How Does Participating in a Capstone Project with
Industrial Customers Affect Student Attitudes?,” in 2018
IEEE/ACM 40th International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-
SEET), 2018, pp. 49–57.
[13] M. Klopp, C. Gold-Veerkamp, J. Abke, K. Borgeest, R.
Reuter, S. Jahn, J. Mottok, Y. Sedelmaier, A. Lehmann, and D.
Landes, “Totally Different and yet so Alike,” in 4th European
Conference on Software Engineering Education (ECSEE'20): ACM,
2020, pp. 12–21.
[14] B. G. Glaser and A. L. Strauss, The Discovery of
Grounded Theory: Strategies for Qualitative Research. Chicago:
Aldine Transaction, 2009.
[15] P. Mayring, Qualitative Content Analysis. Available:
http://www.qualitative-
research.net/index.php/fqs/article/view/1089/2385 (2020, Sep. 02).
[16] ____, Qualitative Inhaltsanalyse: Grundlagen und
Techniken, 11th ed. Weinheim: Beltz, 2010.
[17] U. Kuckartz, Qualitative Inhaltsanalyse. Methoden,
Praxis, Computerunterstützung, 4th ed. Weinheim, Basel: Beltz
Juventa, 2018.
[18] K. Charmaz, Constructing grounded theory, 2nd ed. Los
Angeles: SAGE, 2014.
[19] S. Rädiker and U. Kuckartz, Analyse qualitativer Daten
mit MAXQDA. Wiesbaden: Springer Fachmedien Wiesbaden, 2019.

140Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

	I. Introduction
	II. Related Work
	III. Structure and Goals of the Capstone Project
	A. Educational Context
	B. Intended Learning Outcomes

	IV. Research Design
	A. Qualitative Research Design
	B. Research Questions
	C. Research Data
	D. Application of the Research Design
	E. Initial Results - Overview
	F. Most Prominent Issues in Main Categories

	V. Discussion
	VI. Summary and Outlook
	Acknowledgment
	References

