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Abstract—When designing systems, we must solve many problems
associated with the correct definition of system requirements, the
right understanding, and proper implementation. Finding that
design or implementation contains an error or is incomplete,
and identifying where a change needs to be made, are different
issues that require different approaches. Models and diagrams,
often diagrams from the Unified Modeling Language (UML), are
used to capture the system’s requirements and basic design. The
basic ones include the domain model, use case diagram, activity
diagram, and scenario models. Scenarios show the communication
and cooperation of objects in solving the use case under specific
conditions. If the system is implemented following the design,
it is possible to generate scenarios at runtime (either actual
implementations or using simulation models). Thus, we can have
assumed scenarios of the investigated use case’s behavior and
real scenarios reflecting the performed design. In many cases, it
is not useful to have a detailed view of the entire communication
between objects. However, it is enough to focus on specific parts,
such as messages or states of objects. In this paper, we will focus
on detecting discrepancies between expected and actual behavior
and quickly identifying the problem’s location through scenarios.
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I. INTRODUCTION

When designing systems, we have to solve many problems
associated with the correct definition of system requirements,
the right understanding, and proper implementation. There are
many ways to approach these problems, but their common
denominator is always verifying the correctness and correcting
possible problems. Finding that design or implementation
contains an error or is incomplete, and identifying where a
change needs to be made, are different issues that require
different approaches.

Models and diagrams, often diagrams from the UML
language, are used to capture the system’s requirements and
basic design. The basic models include class diagrams, use
case diagrams, and activity diagrams. The domain model (class
diagram) depicts the basic concepts of the proposed system.
The use case diagram summarizes the possibilities of using the
system. The activity diagram captures the system’s behavior
in various conditions (it is a workflow defining individual use
cases).

An integral part of the requirements and design analysis
should be scenario modeling. Scenarios are an essential el-
ement, as they show the communication and cooperation of
objects in solving the use case under specific conditions. Thus,
one use case may have multiple scenarios, which may differ
in certain parts. If the system is implemented (at least for
verification purposes) following the design, it can generate
scenarios at runtime (either actual implementations or using

simulation models). Thus, we can have assumed scenarios
of the investigated use case’s behavior and current scenarios
reflecting the created design. As already mentioned, one use
case can have several different scenarios. However, the struc-
ture of the scenario is usually the same for the learned set of
conditions. Therefore, it is possible to use scenarios to compare
the expected and actual course of solving the use case.

Many tools allow you to set various conditional breakpoints
and record the passage through set points. However, in many
cases, it is necessary to reconstruct (or record) the entire path
to the breakpoint (including information on the conditions
achieved) at least from a specified point in time. A suitable
means is to generate scenarios according to preset criteria. In
many cases, it is not useful to have a detailed view of the
entire communication between objects. Still, it is enough to
focus on specific parts, messages, states of objects, etc. This
paper will focus on how to detect differences between expected
and actual behavior and quickly identify the problem’s location
through scenarios. We will focus only on selected problems of
requirements and design validation through scenarios.

The paper is structure as follows. First, we introduce the
basic principles of the work in Section III. The demonstration
case study is described in Section IV. Then, problems of
scenario modeling and validation are introduced in Sections
V and VI.

II. RELATED WORK

This work is part of the Simulation Driven Development
(SDD) approach [1][2], which combines basic models of the
most used modeling language Unified Modeling Language
(UML) [3][4] and the formalism of Object-Oriented Petri Nets
(OOPN) [5].

One of the fundamental problems associated with software
development is the specification and validation of the system
requirements [6]. The use case diagram from UML is often
used for requirements specification, which is then developed
by other UML diagrams [7]. The disadvantage of such an
approach is an inability to validate the specification models
and it is usually necessary to develop a prototype, which is no
longer used after fulfilling its purpose. Utilization of OOPN
formalism enables the simulation (i.e., to execute models),
which allows to generate and analyze scenarios from spec-
ification models. All changes enforced during the validation
process are entered directly in the specification model, which
means that it is not necessary to implement or transform
models.

There are methods of working with modified UML models
that can be transformed to the executable form automatically.
Some examples are the Model Driven Architecture (MDA)
methodology [8], Executable UML (xUML) [4] language, or
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Foundational Subset for xUML [9]. These approaches are
faced with a problem of model transformations. It is hard to
transfer back to model all changes that result from validation
process and the model becomes useless. Further similar work
based on ideas of model-driven development deals with gaps
between different development stages and focuses on the usage
of conceptual models during the simulation model develop-
ment process [10]. This approach is called model continuity.
While it works with simulation models during design stages,
the approach proposed in this paper focuses on live models
that can be used in the deployed system.

III. INITIAL ASSUMPTIONS

In this section, we will briefly describe the initial assump-
tions of the work. It consists of the basis of presented concepts
and the way on how we will demonstrate their usage.

A. Basic Concepts
As already mentioned, we will deal only with selected

possible uses of scenarios for requirements validation. Among
the most important are in particular:

• During the development of requirements, scenarios
of correct behavior under the given conditions were
specified. Our goal is to verify this behavior on the
created model or part of the implementation. In other
words, verify that the messaging sequence matches the
expected behavior.

• It is necessary to find out when and under what
conditions a specific method is called.

• It is needed to verify whether a specific method is
always called under certain conditions.

Figure 1. Domain model.

Because it is a simulation verification, it is always depen-
dent on simulation (test) data. In our view, however, we are
based on scenarios prepared in advance during the creation
of requirements and design. Suppose the models are modified
during the development process. In that case, these scenarios
are modified (here we come across the MDE condition, namely
that we always try to work at the model level).

B. Demonstration method
We will use the following procedure to demonstrate the

possibilities of working with scenarios. We will present an
example containing one simulation step in the balance calcu-
lation tool. We will design a domain model and a sequence
diagram according to the standard procedure. We can create a

workflow using Petri nets that allow us to generate scenarios.
We then make a so-called scenario model based on these
scenarios, which can be compared with scenarios generated
under different conditions. In the next step, we will include
a new request, which will be reflected in the addition of new
calls to the scenarios. We modify the created scenario model
and then compare it again with various generated scenarios.

IV. CASE STUDY

In this section, we will present a simple example based on
the part of the software solution of a tool for the simulation
of balance calculations of technological processes. This part
concerns the execution of one calculation step. We will present
only the part of the calculation step that is essential for
explaining the concept.

A. Domain Model
The basis of each design is a domain model that captures

the basic concepts of the proposed system. These concepts,
modeled mostly as classes, appear in other models describing
objects’ behavior or interaction. Technological processes are
modeled by units (blocks) that work with input streams (e.g.,
water, air, gas) and generate output streams. During processing,
the blocks recalculate the output streams’ properties following
the input streams and block settings.

Data:
simList : a list of blocks
forall b ∈ simList do

initialize b
end
forall b ∈ simList do

if b.hasChanged() then
b.innerFunction()
b.outFunction()
foreach p ∈ b.ports do

if p.hasChanged() then
recalculate a stream
copy a stream
send a stream copy to the connection

end
end

end
end

Figure 2. Description of the Balance calculation Use case.

The basic domain model is shown in Figure 1. It
contains classes modeling the following concepts: blocks
(UnitBlock), block ports (BlockPort), port connections
(Connection) and streams (Stream). Each port stores in-
formation about the associated stream, streams are transmitted
between blocks via a connection. The class Scheme models
the schema containing blocks and joints. Balance calculations
are then controlled by Solver.

B. Behavioral Model
A UML use case diagram is often used as the default model

specifying individual use cases to capture system requirements.
The behavior of use cases is then described in the text or
modeled by other diagrams, such as the activity diagram.
However, it is possible to use different formalisms, such as
Petri nets. The chosen concept then defines in what detail the
use case’s behavior can be specified and how difficult it is to
simulate the models created in this way due to requirements
verification or transform into the selected source code. For
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our purposes, we will choose only one use case, namely
performing a balance calculation. Its basic form is outlined
in Figure 2.

Data:
b is a block
p ∈ b.ports is an output port of the b
s ∈ p is a steam associated to the port p
p.setAttr(value)
s.setValue(value)
p.setChanged()

Figure 3. Description of the attribute changing.

Each block models different technological units, and there-
fore the calculations are different too. However, the basic
structure is the same, and from the simulation point of view,
the critical question is whether or not any of the output streams
have changed. Assume that each port has a flag set when any
attribute of the associated stream from the output function
changes. In this case, the behavior description could look like
the one shown in Figure 3.

C. Workflow Model
To model behavior as workflow, the formalism of Petri

Nets can be used. The model is conceived as a sequence
of events, i.e., transitions, whether internal or external. The
execution of an event may be conditional, and it is possible to
define different branches and, thus, different specific use case
execution scenarios. An event’s execution may involve sending
a message to another object, or the event may be executed in
response to an incoming event. In the classical concept, it is
necessary to map individual sent messages to specific methods
of classes, which makes it difficult to read and understand the
model. When using Petri nets, the scenario is clearly defined
by a sequence of events (i.e., transitions), whether internal or
external.

p1

p2

self innerF.

self outF.

#e

t1

#e

p3

self propagate.

t2

#e

#e

self hasChanged

Figure 4. The calculation workflow.

Figure 4 shows the workflow modeling method for the
Balance calculation use case from Figure 2. The workflow
models the behavior for one specific calculation block. Figure
5 shows the workflow modeling method for the method outF().
The workflow models one possible scenario consisting of set
one attribute of the port @p with value 10.

V. SCENARIO MODELING

One scenario corresponds to a sequence of interactions
between individual system objects or system objects and users.
Interactions are often written in the form of a diagram, the most
commonly used in this area being an activity diagram and a
sequence diagram from UML. The activity diagram is suitable
for modeling the whole use case’s behavior, while the sequence
diagram captures one specific use case scenario. This section
will introduce the possibilities of using sequence diagrams as
a base for scenario modeling.

A. Predefined Scenarios
Scenarios help to specify the correct, expected system

behavior for a particular task. As already mentioned, scenarios
are often modeled using sequence diagrams. The disadvantage
is that the designer often creates these diagrams manually and
must follow the rules for their creation, such as following the
names defined by the domain model.

p1

return

p setAttr: v.

(p, v)

t1

#e

(@p, 10) 

Figure 5. The outF workflow – one scenario.

However, if we have, in addition to the domain model,
also created models of behavior as a workflow, it is possible
to generate these scenarios and make our work easier. A small
example of such a workflow, created using Petri nets, is shown
in Figures 4 and 5. Figure 4 shows part of the method calculate
of the UnitBlock concept (class), and Figure 5 shows part of
the outF method’s behavior.

The problem is that the outF method captures only one
possible scenario, while the sequence diagram allows you to
capture different variants of similar behavior. In this article, we
will not deal with the possibilities of sequence diagrams. We
will only outline this problem on a more complex diagram to
capture the behavior caused by sending the method calculate,
i.e., by performing the appropriate use case. The diagram is
shown in Figure 6.

B. Scenario Definition
To define the scenario model, we start from the description

of scenarios described in [11]. These scenarios work with Petri
net models but can be easily adapted to messaging-defined
scenarios. The scenario model is described as a messaging
sequence, where messages can be grouped into blocks. These
blocks represent one sub-scenario. There may be messages and
sub-scenarios in the model, which may be repeated – it is
possible to define their repetitions using regular expressions.

Each captured message is a pair of msg = (msgs,msgr)
representing the sending of the message and its return (termi-
nation). Between msgr and msgr, there may be a sequence of
additional messages that express the calculation to achieve the
desired goal of the msg message.
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Figure 6. Sequence diagram of the balance calculation behavior.

The message msgs is defined in the model as a param-
eterized tuple msgs = (C1{o1},C2{o2},msgn{a1, ..., an}),
where C1 is the classifier of the class whose instance sends
the message msgn (msgn is the identifier of the sent message)
of the object of class C2. Each of the listed elements can be
parameterized; the parameters are given in curly braces. For
the class classifier it is possible to mark (name) their instances
(o1, o2), for the sent message its attributes can be defined
(a1, ..., an). Attributes can have a form of specific values or
just formal parameters.

The message msgr is defined in the model as a parameter-
ized tuple msgr = (C1{o1},C2{o2},msgn{a1, ..., an}, ret),
where the first three elements semantically correspond to the
message msgs and ret is the return value (object) of the
message. This value can be a specific object, variable, or
special symbol ε representing the information that the method
returns nothing or the return value is not important from the
scenario definition point of view.

We denote the scenario model by the symbol δ. The model
consists of a sequence of symbols msgs, msgr, and δ, which
can be repeated according to the given rules. The rules are
simple. It is necessary to follow the pairing of msgs and msgr,
and the syntax of the notation. The rules can be described by
a context-free grammar GM = (Σ,N,P, {S}), where Σ =
{msgs,msgr, δ, ∗} (∗ represents the iteration symbol, i.e., the
possibility of repetition), N = {S} and P is a set of rewriting
rules in the following form.

S ⇒ δ S
S ⇒ δ ∗ S
S ⇒ msgs S msgr

When checking compliance with the rule, it is usually
unnecessary to examine the parameters, only whether the

correct syntax has been followed. This possibility can be
expressed in grammar, either by engaging in the above context-
free grammar or by creating a regular grammar.

The example scenario model from our example then looks
like this. First, we define a sub-scenario δsc set for setting the
attributes corresponding to the red highlighted sequence sc-set
in Figure 6.

δsc set = (UnitBlock,Port, setAttr{v}),
(Port, Stream, setValue{v}),
(Port, Stream, setValue{v}, ε),
(Port{p},Port{p}, setCahnged),
(Port{p},Port{p}, setCahnged, ε),
(UnitBlock,Port, setAttr{v}, ε)

Another sequence that can be repeated is marked in red in
Figure 6. Part of this sequence is captured as a sub-scenario
δsc prop. The scenario captures only significant points for the
idea; the whole scenario would be unnecessarily long in this
listing.

δsc prop = (UnitBlock,Port, propagate),
...
(Port, Stream, copy),
(Port, Stream, copy, s),
...
(Port,Connection, accept{s}),
...
(UnitBlock,Port, propagate, ε)

The resulting model scenario, which corresponds to Figure
6, is then captured by the scenario δm.
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δm = (Solver,UnitBlock, calculate),
(UnitBlock{b},UnitBlock{b}, innerF),
(UnitBlock{b},UnitBlock{b}, innerF, ε),
(UnitBlock{b},UnitBlock{b}, outF),
δsc set∗,
(UnitBlock{b},UnitBlock{b}, outF, ε),
δsc prop∗,
(Solver,UnitBlock, calculate, ε)

VI. SCENARIO VALIDATION

The validation is then performed by comparing the model
scenario with the actual scenario, respecting the regular expres-
sion’s control characters. A tool based on finite state machines
can be used for evaluation. Evaluation can take place in several
modes, depending on the type of authentication required.

• Entire scenario validation. We verify the whole se-
quence of the scenario. If we encounter a deviation,
we record an error at this point. In this way, it is
possible to verify that a method should not be called;
that the method is not called in the correct place; or the
method with the wrong parameters (attributes, object
sending the message, the object receiving the message)
is called.

• Pass validation. The model defines only the key
aspects that must be followed in that order. If there
are other calls outside these defined points, they are
ignored for evaluation. It can be used, for example,
if we are only interested in the question of whether a
particular message is sent after another message has
been executed.

A. Entire Scenario Validation
We will now introduce these verification concepts with our

examples. Let us start with the whole sequence. We must first
obtain a scenario of the actual models or implementations.
We modify the original workflow to new conditions and then
generate different scenarios, which, however, must structurally
correspond to the model scenario. Such a workflow modifica-
tion is shown in Figure 7 – in this case, the attribute is set
more than once.

p1

return

p setAttr: v.

(p, v)

t1

#e

(@p1, 10),

(@p2, 20)

(@p3, 30) 

empty

o

Figure 7. The outF workflow – second scenario.

The generated scenario δ1 then corresponds to the original
scenario from Figure 6, only the part marked sc-set is replaced
by the sequence of calls from Figure 8. Sequence of calls
δsc−set1 and δsc−set2 corresponding to marked blocks sc-set1
and sc-set2 in Figure 8 is as follows (only an example for
sc-set1 is presented).

δsc set1 = (UnitBlock,Port, setAttr{10}),
(Port, Stream, setValue{10}),
(Port, Stream, setValue{10}, ε),
(Port{p},Port{p}, setChanged),
(Port{p},Port{p}, setChanged, ε),
(UnitBlock,Port, setAttr{10}, ε)

Figure 8. Sequence diagram of the extended outF workflow.

By comparing the sub-scenario δsc set with the sequence of
scenarios δsc set1 and δsc set2 we find that they are structurally
identical, only substitutions {v/10} and {v/20} occur. Then,
it can be concluded that δscset∗ == δscset1, δscset2 and then
δm == δ1. The newly generated scenario thus corresponds to
the scenario model.

B. Pass Validation
We will show a variant where we will not be interested in

the whole scenario, but only the fulfillment of some condition.
We will create/generate a model scenario containing only those
calls that we consider crucial for validation. In our example,
this can be the condition the propagate method must always be
called after any call of the setAttr method. The model scenario
can then look like this. The newly generated scenario thus
corresponds to the scenario model.

δpass = (UnitBlock,Port, setAttr{v}),
(UnitBlock,Port, propagate)

When comparing the model scenario with the generated
one, we will only be interested in whether the above sequence
is followed and other parts of the scenario will be uninteresting.

C. New Functionality Validation
The last example is the addition of new functionality to an

existing requirements model and implementation. This func-
tionality refers to a new type of attribute change propagated
backward, i.e., through input streams back to input blocks.
When setting the attribute, the given port must be set as
changed, and at the end of the use case, the backProp method
must be called, which will ensure data transfer in the correct
direction. A possible scenario for this behavior is shown in
Figure 9.
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Figure 9. Scenario of the new functionality – backProp.

A model scenario δback verifying the correctness of the
primary sequence of messages is shown in the following
statement.

δback = (UnitBlock,Port, setBackAttr{v}),
(Port, Stream, copy)
(Port, Stream, copy, s2)
(UnitBlock,Port, backProp)
(Port,Connection, backAccept{s2})

VII. CONCLUSION

In this paper, we introduced the basic concept of require-
ments validation and its implementation through scenarios.
Scenarios can be described in various ways, such as sequence
diagrams. However, workflows offer a more general descrip-
tion ability than a sequence diagram and allow the generation
of specific scenarios or models, i.e., some patterns that can
then be used for comparison. The workflow can be modeled,
for example, by Petri nets, as briefly shown in this paper.
Real scenarios can then be obtained either by modifying the
workflow or directly from the implementation if a tool was
available that captures essential information for generating
sequence diagrams or their parts.

We currently have a tool for generating sequence diagrams
from models described by Petri nets. The presented concept

works only with a structural comparison. In the future, it
seems to be an interesting possibility to parameterize the
sequences themselves. This feature would make it possible,
for verification purposes, to specify precisely which specific
objects are involved in the communication, in what state, etc.
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