
MARKA: A Microservice Architecture-Based Application
Performance Comparison Between Docker Swarm and Kubernetes

Tuğba Günaydın

Yıldız Technical University
Computer Engineering

İstanbul, Turkey
E-mail: tugba.gunaydin@std.yildiz.edu.tr

Göker Cebeci

Yıldız Technical University
Computer Engineering

İstanbul, Turkey
E-mail: goker.cebeci@std.yildiz.edu.tr

Özgün Subaşı

Integrated Finance
London, United Kingdom

E-mail: ozgun.subasi@integrated.finance

Abstract—Container-based distributed programming techniques
are used to make applications effective and scalable. Microservice
architecture is an approach that has been on the rise among
software developers in recent years. This paper presents a case
study comparing the performance of two commonly used con-
tainer orchestrators, Docker Swarm and Kubernetes, over a Web
application developed by using the microservices architecture. We
compare the performances of Docker Swarm and Kubernetes
under load by increasing the number of users. The aim of
this study is to give an idea to researchers and practitioners
about the performances of Docker Swarm and Kubernetes in
applications developed in the proposed microservice architecture.
The Web application developed by the authors is a kind of loyalty
application, that is to say, it gives a free item in exchange for
a certain number of purchased items. With this study, it was
concluded that the Docker Swarm is more efficient as the number
of users increases compared to Kubernetes.

Keywords–Microservice Architecture; Performance Evaluation;
Docker Swarm; Kubernetes; JMeter.

I. INTRODUCTION

With the microservice architecture, applications are devel-
oped that are very flexible and scalable. In the microservice
architecture approach, the application is split up into its small-
est functions; each function is dedicated for one job only, and
it is called as microservice. Microservices are put in packages
that are called containers that provide everything necessary
for running [1]. Microservices are difficult to operate because
they are distributed [2]. Container-based technologies are used
to orchestrate microservices. Two technologies stand out in
orchestrating microservices: Docker Swarm and Kubernetes
[3].

The proposed prototype is a loyalty application. Today, it
is very important to gain new customers and retain existing
customers for restaurants and cafes. For this reason, loyalty
applications are used. A product is offered to the customer free
of charge for a certain amount of purchased product. With this
study, the concept of loyalty application was realized with the
microservice architecture approach.

This paper presents a performance comparison of Docker
Swarm and Kubernetes on a microservice architecture-based
Web application. As the number of users increased, the time
to complete the test scenario of Docker Swarm and Kubernetes
was compared. The study can be classified under three main
titles: (1) Proposed Software Architecture and Application
(software architecture, approaches and application used for

implementation), (2) Test Scenario (scenario used to test the
system, Docker Swarm and Kubernetes) and (3) Experimental
Setup (load tests for orchestration tools). The rest of the
paper is structured as follows. In Section II, we present the
relevant studies in the literature. In Section III, our devel-
oped application and the microservice architecture used are
discussed in detail. The test scenario simulating the operation
of the application in real life is explained in Section IV. The
experimental environment and parameters are shown in Section
V. Finally, in Section IV, the results obtained are discussed and
we conclude our work.

II. LITERATURE REVIEW

With the increasing importance of scalability in recent
years, microservice architectures have become popular [4].
Microservices are used more effectively with container tech-
nology. There are different application approaches of container
technology and performance evaluation studies of these ap-
proaches [5]. We compared performances of Docker Swarm
and Kubernetes with an application using microservice archi-
tecture model.

Using scaling and microservice architecture approach stud-
ies of frequently used orchestrators, the appropriate orches-
trator can be selected for a certain application [6]. In this
comparison, the effect of more complex applications on the
performance of orchestrators is clearly shown [7]. Studies have
shown that cloud-based approaches are more performant and
flexible than traditional approaches for developing increasingly
complex applications [8]. We made a performance comparison
by revealing the microservice architecture we use in our
application.

There exist many studies focusing on designing and im-
plementing traditional monolithic Web service based Service
Oriented Architecture (SOA) systems with a focus on high
performance [9]-[10]. However, in this particular study, our
main focus is the use of microservices in creating SOA
based systems with a focus on load balancing amongst the
nodes. To enable the load balancing functionality, we utilize
technologies like Docker Swarm and Kubernetes. In this study,
the performance was compared by using the loyalty application
MARKA in 3 scenarios: without an orchestrator, using Docker
Swarm, and using Kubernetes.

106Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Figure 1. System Architecture Model and Network.

III. PROPOSED SOFTWARE ARCHITECTURE AND
APPLICATION

The Web application MARKA [11] has six microservices:
API (Application Programming Interface) Gateway, Authenti-
cation Service, User Service, Code Service, Transaction Ser-
vice, and QR (Quick Response) (Image) Generator Service. It
also has a front-end for user control screen and a database for
the management of data. The system architecture model can
be seen in the Figure 1.

Microservices communicate with each other over the HTTP
(Hyper-Text Transfer Protocol). For instance, in order to create
a new transaction, the transaction service receives the informa-
tion of the received code from the code service first, and then
it gets the information of the user associated this code from
the user service. If the user and the owner of the code are
the same, it generates an error.This is because the user who
created the code and the user using it cannot be the same. Then,
the code service compares the company identification number
associated with the code from the database and determines
whether the code is a purchased item or a free item. When
these jobs are completed, the transaction service creates the
transaction. It calls the code service and updates the code as
used. If the code is for the purchased item, it also receives the
free item quantity information of the company from the user
service (information on how many products will be given free
of charge in sales). After getting the relevant company and the
number of transactions, it calculates how many free items the
user has won from the code service. From this, it calculates
whether the user earns free items with the final purchased
product(s). If the user has won free items, the code service
generates as many codes as there are free items.

A. Marka.Club (Front-End)
Front-end (Marka.club) is a software provided for the

end users to perform their operations. It enables the user to
create an account, log into the system, create codes and use
codes. End-user interactions are created here. An example of
a company dashboard can be seen in Figure 2 and an example
of a customer dashboard can be seen in Figure 3.

Customers buy the product and read the QR code produced
by the restaurant. When they purchase the amount of product
determined by the restaurant, they have the right to get one

Figure 2. Marka.club Front-End Screen Company Dashboard

Figure 3. Marka.club Front-End Screen Customer Dashboard

free product, so they produce a QR code. The restaurant reads
the QR code produced by the customer and gives one free
product to the customer.

B. API Gateway
The API gateway is the microservice that ensures that the

incoming request is directed to the responsible microservice.

C. Authentication Service
The authentication service is a login and register service.

If a user is not yet registered in the system, first, they get
registered into the system. There are two roles for registration:
customer or company. After users register, they can log in.

D. User Service
The user service is the service that keeps the user informa-

tion such as e-mail, first and last names, company-customer
roles, etc.

E. Code Service
The code service is a microservice that generates the codes

that the user will use in another role. For example, if the user’s

107Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

role is the company, it generates the codes that will be used by
the customer when purchasing an item. If the user’s role is the
customer, he/she generates the codes that will be used by the
company to get free items from the company. In other words,
when the customer earns a free item, a code is generated for
that free item and this code is used by the company. If it is a
valid code, the company gives a free item to the customer.

F. Transaction Service
The transaction service keeps the code transaction infor-

mation, such as which role produced the code, which role was
used, and how many codes were produced and used.

G. QR (Image) Generator Service
The QR generator service converts the codes generated to

the image file (QR) to be used on mobile devices. This feature
will be used when the application is used on mobile devices.

H. Database
A database has been created in which all transactions and

information are kept. MongoDB [12] was used as the database.
A single database has been created for proof of concept,
but each microservice uses its own collections that they are
responsible for, and they do not interfere with other areas of
responsibility.

IV. TEST SCENARIO

A test scenario was prepared to compare the container
orchestration platforms’ behavior under load. In this study,
Docker Swarm and Kubernetes were used as container orches-
tration tools. Docker Swarm [13] is developed by Docker En-
gine. Kubernetes [14] is developed by Google. The responses
of the platforms were measured according to the test scenario,
depending on the request per unit time. The flow diagram of
the test scenario is as shown in Figure 4.

The test scenario was created by simulating the real-time
operation of the application: a company signs up for the
system, then logs into the system. Anyone who does not exist
in the system, be it a company or a customer, must sign up
in order to log into the system. By signing into the system, a
new user is created each time. The company generates codes
for the items to sell. The codes generated by the company are
saved into the database because the customers will use them
automatically. The customer signs up for the system and then
signs into the system. The customer will use all the unused
codes stored in the database; we make the customers use all
the codes generated to simulate a real-life load scenario for
our load testing. The customer generates free codes in return
for a certain number of codes used (as initially determined by
the company). The unused codes generated by the customer
are received and saved into the database. The company signs
into the system and uses all of the unused free codes generated
by the customer; with this, the customer takes the free items.

V. EXPERIMENTAL SETUP

The test procedure of the application was run in 3 different
ways: test without orchestrator, which means without any con-
tainer (except mongoDB); Docker Swarm test; and Kubernetes
test. The application is run with Docker Swarm and Kubernetes
on Docker Desktop.

Company Signs Up

Company Generates Codes

Gets Unused Codes and Saves

Gets Free Codes and Saves

Gets Free Unused Codes

Company Signs In

Company Uses All Free Unused
Codes which come from

Customer

End

Start

Customer Signs Up

Company Signs In

Customer Signs In

Customer Uses Unused Codes

Figure 4. API Test Scenario Flow Chart

JMeter [15] is a tool for load testing. It is used to test the
application against real-life situations. There are three basic
parameters that should be in a JMeter test plan: Thread Group,
Samplers and Listeners [16]. The thread group decides how
many threads there will be and for how long each thread
will be active. Samplers are for request types such as FTP
(File Transfer Protocol) requests, HTTP requests, JDBC (Java
Database Connectivity) requests etc. Listeners are used for the
visualization of results in the form of a graph, table, etc.

There is a bar graph named "aggregate" in JMeter. The
aggregate graph shows the average of the response time for
each request in the test. We compared the average response
times of requests by the number of users via aggregate graphs
for each one of our tests.

Test Without Orchestrator, Docker Swarm and Kubernetes
were compared with 10, 20 and 50 users as response times;
Docker Swarm and Kubernetes were compared with 100, 200,
400 and 500 users as response times.

The letters on the charts are as follows:

• A: Company Sign Up,
• B: Company Sign In,
• C: Get user info,
• D: Generate codes,
• E: Get codes,
• F: Customer Sign Up,
• G: Customer Sign In,

108Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

A B C D E F G H I J
0

1,000

2,000

3,000

4,000

5,000

Ti
m

e
(m

s)
TWO
DOCKER SWARM
KUBERNETES

Figure 5. Comparison of Average Response Time with 10 threads

• H: Customer uses codes,
• I: Get gifts,
• J: Use gifts.

The average response times of each request in the test are
shown on the aggregate graph with 10 users in Figure 5, 20
users in Figure 6, 50 users in Figure 7, 100 users in Figure 8,
200 users in Figure 9, 400 users in Figure 10 and, finally, 500
users in Figure 11.

A. Test Without Orchestrator (TWO)
For TWO, all services are used locally, without using any

container or orchestration tool. The local system information
is as follows: the Operating System is Windows 10 Home,
the RAM is 8 GB, the Processor is Intel(R) Core(TM) i5-
8250U CPU 1.60 GHz 1.80 GHz, and the System Type is
64-bit OS, x64-based processor. The JMeter settings for the
number of threads (users) are 10, 20 and 50, the rump-up
period (in seconds) is 0 and the loop count is 1.

Below are the times taken for each the test scenario to
complete, based on the number of users:

• 10 users: 1 minute and 9 seconds,
• 20 users: 1 minute and 43 seconds,
• 50 users: 3 minutes and 40 seconds.

When we performed the test with 100 threads, some threads
started timing out, so the test was not completed.

B. Docker Swarm Test
For Docker Swarm test, the application is using the Docker

Desktop and Docker Swarm as orchestrator. Docker Swarm
worked with 3 replicas. The local system information is the
same as in the case of TWO. The JMeter settings for the

A B C D E F G H I J
0

1,000

2,000

3,000

4,000

5,000

Ti
m

e
(m

s)

TWO
DOCKER SWARM
KUBERNETES

Figure 6. Comparison of Average Response Time with 20 threads

A B C D E F G H I J
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Ti
m

e
(m

s)

TWO
DOCKER SWARM
KUBERNETES

Figure 7. Comparison of Average Response Time with 50 threads

109Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

A B C D E F G H I J
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Ti
m

e
(m

s)

DOCKER SWARM
KUBERNETES

Figure 8. Comparison of Average Response Time with 100 threads

A B C D E F G H I J
0

5,000

10,000

15,000

20,000

25,000

Ti
m

e
(m

s)

DOCKER SWARM
KUBERNETES

Figure 9. Comparison of Average Response Time with 200 threads

A B C D E F G H I J
0

10,000

20,000

30,000

40,000

50,000

Ti
m

e
(m

s)

DOCKER SWARM
KUBERNETES

Figure 10. Comparison of Average Response Time with 400 threads

A B C D E F G H I J
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Ti
m

e
(m

s)

DOCKER SWARM
KUBERNETES

Figure 11. Comparison of Average Response Time with 500 threads

110Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

number of threads (users) are 10, 20, 50, 100, 200 and 400, the
rump-up period (in seconds) is 0 and, finally, the loop count
is 1.

Below are the times taken for each the test scenario to
complete, based on the number of users:

• 10 users: 52 seconds,
• 20 users: 1 minute 42 seconds,
• 50 users: 4 minutes 7 seconds,
• 100 users: 6 minutes 53 seconds,
• 200 users: 12 minutes 18 seconds,
• 400 users: 34 minutes 51 seconds,
• 500 users: 44 minutes 16 seconds.
When we performed the test with 1000 threads, some

threads started timing out, so the test was not completed.

C. Kubernetes Test
For Kubernetes Test, the application stand-up with using

Docker Desktop and Kubernetes as orchestrator. Kubernetes
worked with 3 replicas. Local system information is same
with TWO. The JMeter settings for the number of threads
(users) are 10, 20, 50, 100, 200 and 400, the rump-up period
(in seconds) is 0 and, finally, the loop count is 1.

Below are the times taken for each the test scenario to
complete, based on the number of users:

• 10 users: 51 seconds,
• 20 users: 1 minute 6 seconds,
• 50 users: 2 minutes 36 seconds,
• 100 users: 5 minutes 40 seconds,
• 200 users: 12 minutes 20 seconds,
• 400 users: 40 minutes 25 seconds,
• 500 users: 48 minutes 33 seconds.
When we performed the test with 1000 threads, some

threads started timing out, so the test was not completed.

VI. CONCLUSION

The performances of Docker Swarm and Kubernetes under
load were compared via an application. A conclusion has been
reached regarding the performances of Docker Swarm and
Kubernetes in the architecture described in this study.

The test we did without using an orchestrator (TWO) could
not handle the load in more than 50 threads. Thus, it is clearly
seen that it is not efficient as the load on the application
increases. The application could not respond to high loads.

Although Docker Swarm takes longer time in tests with
fewer users, when the number of users increased, it was
completed in a shorter time than Kubernetes. The ability of
Docker Swarm and Kubernetes to be scalable in load tests has
not been tested in this study.

Considering the architecture of the application and the
number of microservices, we can say that its complexity is low.
For this reason, as the number of users increases, we see that
the Docker Swarm test yields better results than Kubernetes
and also completes in a shorter time.

In this study, 3 replicas were used in Kubernetes and
Docker Swarm. As the number of incoming requests increases,
the automated replica creation capabilities test will be dis-
cussed in a future study.

ACKNOWLEDGMENT

We would like to thank Associate Professor Mehmet Sıddık
AKTAŞ (affiliation: Yıldız Technical University, Computer En-
gineering, İstanbul, TURKEY) for his valuable contributions
and inspiring guidance.

REFERENCES
[1] A. Modak, S. Chaudhary, P. Paygude, and S. Ldate, “Techniques to

secure data on cloud: Docker swarm or kubernetes?” in 2018 Second
International Conference on Inventive Communication and Computa-
tional Technologies (ICICCT). IEEE, 2018, pp. 7–12.

[2] R. Heinrich et al., “Performance engineering for microservices: research
challenges and directions,” in Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering Companion,
2017, pp. 223–226.

[3] N. Marathe, A. Gandhi, and J. M. Shah, “Docker swarm and kubernetes
in cloud computing environment,” in 2019 3rd International Conference
on Trends in Electronics and Informatics (ICOEI). IEEE, 2019, pp.
179–184.

[4] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA), 2016, pp.
44–51.

[5] M. Amaral et al., “Performance evaluation of microservices architec-
tures using containers,” in 2015 IEEE 14th International Symposium
on Network Computing and Applications, 2015, pp. 27–34.

[6] L. Mercl and J. Pavlik, “The comparison of container orchestrators,”
in Third International Congress on Information and Communication
Technology, X.-S. Yang, S. Sherratt, N. Dey, and A. Joshi, Eds.
Singapore: Springer Singapore, 2019, pp. 677–685.

[7] Y. Pan, I. Chen, F. Brasileiro, G. Jayaputera, and R. Sinnott, “A
performance comparison of cloud-based container orchestration tools,”
in 2019 IEEE International Conference on Big Knowledge (ICBK), Nov
2019, pp. 191–198.

[8] W. Li and A. Kanso, “Comparing containers versus virtual machines
for achieving high availability,” in 2015 IEEE International Conference
on Cloud Engineering, 2015, pp. 353–358.

[9] G. C. Fox et al., “Real time streaming data grid applications,” in
Distributed Cooperative Laboratories: Networking, Instrumentation, and
Measurements. Springer, 2006, pp. 253–267.

[10] M. Aktas et al., “iservo: Implementing the international solid earth
research virtual observatory by integrating computational grid and
geographical information web services,” in Computational Earthquake
Physics: Simulations, Analysis and Infrastructure, Part II. Springer,
2006, pp. 2281–2296.

[11] Marka.club. [accessed Oct. 2020]. [Online]. Available: https://github.
com/kodkafa/marka.club

[12] Mongodb. [accessed Oct. 2020]. [Online]. Available: https://www.
mongodb.com/

[13] Docker swarm. [accessed Oct. 2020]. [Online]. Available: https:
//docs.docker.com/engine/swarm/

[14] Kubernetes. [accessed Oct. 2020]. [Online]. Available: https://
kubernetes.io/

[15] Jmeter. [accessed Oct. 2020]. [Online]. Available: https://jmeter.apache.
org/

[16] D. Nevedrov, “Using jmeter to performance test web services,” Pub-
lished on dev2dev, 2006, pp. 1–11.

111Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

