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Abstract—The complexity of safety-critical embedded systems
increases as more and more functions are realized in software. In
order to deal with this rising complexity and still achieve a high-
level of software quality, Model-Driven Development (MDD) is in-
creasingly adopted in the industry. This paper proposes an MDD
approach based on the Unified Modeling Language (UML) in
order to automatically generate code for selected error detection
mechanisms recommended by the safety standard IEC-61508.
Thereby, we provide developers with a generative and automated
approach for the software design and implementation of these
error detection mechanisms. We demonstrate the application of
our approach in the context of a safety-critical fire detection
system.

Keywords–Automatic Code Generation; Embedded Systems;
Error Detection; Functional Safety; Model-Driven Development.

I. INTRODUCTION

Software quality is concerned with how well a piece of
software conforms to a set of functional and non-functional
requirements. It is especially important in safety-critical do-
mains, where deviation from the requirements specification
may result in serious harm for the environment or people, e.g.,
severe injuries or even loss of life [1]. A recent example is the
crash of two aircraft of type Boeing 737 MAX, leading to the
loss of life of everyone on board. The source for this crash has
been traced to the malfunction of sensor equipment which led
to an erroneous activation of a software module responsible
for the crash [2]. Further accidents have occurred in several
other safety-critical domains, such as railways, spacecraft or
nuclear energy [3].

Safety standards, such as IEC-61508 [1], aim to decrease
the risk of such accidents by proposing a set of software safety
mechanisms that increase software quality. Several approaches
in the literature have been suggested for providing support
for some phases of the lifecycle of a safety-critical system
defined in IEC-61508 (cf. Section V). However, step ten of the
safety lifecycle of IEC-61508, which is the actual realization
of the system and its safety mechanisms, has received little
attention in the literature. Thus, the realization of the system
is often left to the individual developers, i.e., realizing the
safety mechanisms via handwritten code. This process has
the usual drawbacks of manually implemented code compared
to automatic code generation, e.g., bugs introduced by the
developer.

This paper addresses this research gap for a subset of safety
mechanisms recommended by IEC-61508, as proposed in [4].
For this, we present a Model-Driven Development (MDD)

approach based on the Unified Modeling Language (UML) [5].
This approach enables developers to specify a set of error
detection mechanisms in an application model via UML stereo-
types. Subsequently, these error detection mechanisms may
be automatically generated into source code without requiring
any other manual changes to the application model. Thus, our
approach automates the design and implementation of error
detection mechanisms by leveraging generative programming
in the form of MDD.

Error detection is a crucial element of safety-critical em-
bedded systems for detecting and reacting to faults in the
system during runtime. For example, the output of a sensor
may be monitored for values that are outside the expected
range, indicating an error in the sensor. Such an error may
occur due to natural degradation processes in the sensor
hardware. Alternatively, it may be the result of environment
influences, such as cosmic rays or alpha particles that lead to
spontaneous bit flips in the software of the sensor (also known
as a soft error) [6].

In order to realize the vision of automatically generated
error detection mechanisms via MDD, we extend a model
representation for error detection mechanisms [7] and provide
the following, novel contributions:

1) A generic software architecture based on wrapper
classes that enables error detection via checksums,
replica voting and sanity checking.

2) Model transformations that enable the automatic gen-
eration of these error detection mechanisms without
requiring manual developer actions.

3) A prototype of our approach for the MDD tool IBM
Rational Rhapsody.

4) A use case demonstration of our approach for a
safety-critical fire detection system.

The remainder of this paper is organized as follows: In
Section II, we present a model representation of error de-
tection mechanisms that is the basis for the subsequent code
generation. The code generation itself, as well as the design
choices that shaped the process, are described in Section III.
We apply these concepts in a use case, which is presented in
Section IV. Section V presents existing literature related to our
work, before we conclude this paper in Section VI.

II. MODEL REPRESENTATION

This section describes the first part of our approach, the
model representation for error detection mechanisms. This

98Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances



Figure 1. UML 2.5 profile for error detection mechanisms. Adapted and
extended from [7].

model representation, in the form of a UML profile, is
used in Section III to automatically generate source code
for these mechanisms. Initial concepts of this profile have
already been proposed for the purpose of memory protec-
tion in [7]. In this paper, the profile has been refined and
extended to not only cover memory protection mechanisms,
but also general error detection mechanisms. This entails
a re-purposing of the <<CRCCheck>>, <<MNCheck>>,
<<RangeCheck>> stereotypes, as well as the introduction
of an additional stereotype, the <<UpdateCheck>>. Further-
more, as there are now more usage scenarios, the tagged values
of the <<AttributeCheck>> stereotype have been extended.
The extended profile is shown in Figure 1.

Each error detection mechanism is represented by its own
stereotype that may be applied to any variable appearing in a
UML model. However, the main targets are member variables
(attributes) inside UML classes, as local variables are often not
modeled in UML diagrams. Furthermore, due to their longer
lifetime than local variables, it is more likely that attributes
are the subject of an error.

At the center of the profile is a top-level stereotype,
<<AttributeCheck>>. It contains all those tagged values,
which are common among different types of attribute checks.
Several concrete attribute checks inherit from this stereotype
and provide additional modeling information relevant to the
respective attribute check. For the scope of this paper, it is
sufficient to know, that each attribute check contains several
configuration parameters and that some of these parameters
may be shared among several attribute checks applied to the
same attribute. For example, the “nrReplicas” tagged value
represents the number of replicas of the attribute to which
the attribute checks are applied. If two or more attribute
checks are applied to an attribute, then this value must be
consistent among all modeled attribute checks, lest there may
be conflicting modeling information.

Currently, the profile models the following error detection
mechanisms:

• <<CRCCheck>>, which models a cycling redun-

dancy checksum (CRC) for the protected attribute.
The checksum may be used to detect that the variable
has been changed in an unauthorized fashion, e.g.,
due to spontaneous bit flips caused by environmental
circumstances [6].

• <<RangeCheck>>, which models a numeric lower
and upper bound for the protected attribute. The
bounds may be used to detect erroneous values de-
livered by sensors outside their specification range,
as well as implementation errors, e.g., in case of a
typographical error in a mathematical formula.

• <<MNCheck>>, which realizes an M-out-of-N
check. It creates a total of N replicas of the attribute.
Of these, at least M must agree with each other for
the check to be passed. A well known example for
this is triple-modular-redundancy, where there are a
total three replicas, of which at least two must agree
with each other. This enables error detection, e.g., in
case one replica contains another value than the other
two. It also enables error correction, i.e., in case two
replicas still contain the same value, the third replica
may be set to the value of the two others.

• <<UpdateCheck>>, which defines a duration t. In
order to pass the check on access, the variable has to
have been updated within the previous t. For example,
the variable has to be updated within the previous
500ms before the variable was accessed. This type
of check may be used to detect that the module
responsible for updating the protected variable is still
running, as well as observing its timing constraints.

III. CODE GENERATION

This section describes how a software architecture may be
automatically generated from the UML profile described in
Section II. The approach consists of two steps. In the first
step, the UML application model designed by the developer
is transformed via model-to-model transformations to generate
model elements for the error detection mechanisms. This re-
sults in an intermediate model that contains the error detection
mechanisms, as well as the original application model. In the
second step, model-to-text transformations are performed that
generate source code from the intermediate model.

A. Basic Concept
A key challenge for our approach is how to generate

the error detection mechanisms in the model without manual
developer actions. We term such transformations without any
developer interactions transparent. In order to solve this design
challenge, we employ the concept of a wrapper class that
replaces the stereotyped protected variable. The transformation
from the primitive variable to the wrapper class is shown
in Figure 2. This wrapper class contains the variable that
should be protected and replaces the original variable inside
the containing class. We use the term containing class to refer
to the class in which the variable that should be protected
originally resides.

In order to achieve transparency for the replacement of the
original protected variable (var in Figure 2), the wrapper class
(ProtectedAttribute in Figure 2) contains a getter and
a setter by which the protected variable may be accessed or
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Figure 2. Basic concept for the transparent generation of error detection
mechanisms via MDD.

updated. Transparency may be achieved if the containing class
(ContainingClass in Figure 2) observes the information
encapsulation principle, i.e., var is only accessible through
dedicated getter and setter methods in ContainingClass.
If this is the case, then the getter or setter for var in
ContainingClass may transparently call the getter or
setter of ProtectedAttribute and pass along the return
values of the getProtected() and setProtected()
methods respectively.

The actual error detection check is performed when the
method getProtected() is called. In case there is no error
and the check is passed, the value of the protected variable
(protectedVar in Figure 2) is returned. In case there is
an error, specific error handling is performed to restore the
system to a safe state. This is described further in Section III-D.
The method setProtected() is used to update the value
of protectedVar. During this update, depending on the
specific error mechanism, additional operations may be carried
out. For example, a new CRC checksum may be calculated for
the updated value.

B. Software Architecture

This section describes the software architecture that may
be automatically generated from the stereotypes shown in
Figure 1. Reasons for certain design choices are explained in
Section III-C. The software architecture is shown in Figure 3.

We use the class ProtectedAttribute as the wrapper
class that contains the protected variable. It contains one or
more instances of the AttributeCheck interface, which
presents the previously mentioned abstraction of error detec-
tion mechanisms. Besides an initialization method, it provides
two methods: check(), which performs the error detection,
and update(), which may be used to update internal re-
dundant values required to perform the error detection. As
part of a prototype, we also implemented four realizations
of these interfaces, corresponding to the mechanisms de-
scribed in Section II (CRCCheck, MNCheck, RangeCheck,
UpdateCheck). New error detection mechanisms may eas-

Figure 3. Generic software architecture for error detection at the variable
level.

ily be introduced by constructing a corresponding class that
realizes the AttributeCheck interface.

The enumeration ACStatus and the singleton class
ErrorHandler are used to handle errors in case an error
detection mechanism has detected an error. The template
parameters TRestoreThreshold and TDefaultValue
of ProtectedAttribute are also used for error han-
dling. These error handling concepts are discussed sep-
arately in section III-D. The template TFirstAC in
ProtectedAttribute refers to the template parameter
employed to specify the types of error detection mecha-
nisms used by ProtectedAttribute. Figure 3 shows the
variant for a single error detection mechanism. Variants of
ProtectedAttribute that include more error detection
mechanisms would employ more template parameters that
specify the type of one error detection mechanism each. In that
case there may be a TSecondAC or even a TThirdAC as ad-
ditional template parameters for the ProtectedAttribute
class.

The remaining template parameters of
ProtectedAttribute specify an error identifier string
(TErrIdLen), the data type of the protected variable
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(TVar), as well as the length of the array used to store
replicas of the protected variable (TNrReplicas). These
replicas may either be used as part of an error detection check,
e.g., as part of an M-out-of-N check (<<MNCheck>>),
or they may be used as additional copies of the protected
variable for error correction in case the original fails the
error detection check. For example, the <<CRCCheck>>,
which uses a CRC checksum, does not require any replicas
of the protected variable for error detection. However, such
a replica may still be included within the wrapper class
(ProtectedAttribute), as the replica may be used
for error correction by restoring the value of the protected
variable to the value of the replica [8].

C. Discussion of Design Choices
This section describes some design choices made in the

development of the software architecture described in Sec-
tion III-B. The basic concept presented in Section III-A shows
the use of a CRC-based checksum in Figure 2 to protect a
variable. While this is sufficient to explain the concept of
transparency, safety standards recommend a wide variety of
error detection mechanisms, which is also captured in the
UML profile presented in Section II. Thus, it is necessary that
the wrapper class introduced in Section III-A is part of an
architecture that enables the use of different error detection
mechanisms.

In order to enable the usage of different error detection
mechanisms, we introduce an interface (AttributeCheck
in Figure 3). This interface must contain methods for perform-
ing the error detection check and for updating any mechanism-
specific redundancy (check() and update() methods in
AttributeCheck). For example, a CRC-based checksum
mechanism realizes this interface by providing a method that
calculates a new checksum whenever the protected variable is
updated, as well as a method that checks the current checksum
for correctness whenever the protected variable is accessed.
Several versions of the wrapper class may be implemented,
each instantiating a different number of interface realizations.
This way, there is no unnecessary memory overhead for instan-
tiating more interface realizations than required. In order to still
provide transparency, the specific types of the interface real-
izations may be passed as template parameters to the wrapper
class (cf. template parameters of ProtectedAttribute in
Figure 3). Due to the use of template parameters, the source
code of the wrapper class is independent of any specific error
detection mechanism. Furthermore, as the specific types are
known at compile-time, no dynamic memory allocation is
required. This is an important requirement in safety-critical
embedded systems [9].

There is another design challenge that is due to the
possibility of using several error detection mechanisms for
the same variable. Different error detection mechanisms may
require the same type of information, e.g., the value of
the protected variable (cf. variable toProtect in class
ProtectedAttribute in Figure 3), or the values of any
replicas of the protected variable (cf. variable replicas in
class ProtectedAttribute in Figure 3). Thus, values that
may be used by several error detection mechanisms should
be located inside the wrapper class in order to avoid un-
necessary memory redundancy. Other values, that are specific
to a certain error detection mechanism, should be located in

the interface realizations of AttributeCheck in order to
maintain the independence of the wrapper class of any specific
mechanism. Examples for this are the template parameters of
the AttributeCheck interface realizations in Figure 3. A
specific example is the location of the checksum variable
within the CRCCheck class, as no other error detection
mechanism in our architecture employs CRC checksums.

D. Error Handling
The main purpose of this paper is to introduce an approach

for the automatic generation of error detection mechanisms
via MDD. However, once an error has been detected, the next
step is to determine how such an error should be handled.
We identify two categories for the error handling alternatives:
those that are application independent (e.g., restoring from
replicas) and those that are application specific (cf. Section IV
for an example). Within the context of our approach, the main
challenge is how such error handling mechanisms may be
executed transparently during runtime.

Our approach detects errors when a protected variable is
accessed. Therefore, a transparent approach requires that the
protected variable is returned in any case, regardless whether
an error has been detected. Thus, it is paramount that the
system is in a safe state when the protected variable is returned.
For this, our approach provides an iterative recovery process.

In the first stage, application independent recovery mech-
anisms are executed. For example, in case the error detec-
tion mechanism specifies replicas of the protected variable,
these may be used to restore the protected variable to a
safe value. Alternatively, the protected variable may be re-
stored to a safe default value. The specific usage of these
application independent recovery mechanisms is given via
the tagged values shown in the profile described in Sec-
tion II. The <<AttributeCheck>> stereotype contains the
“nrReplicas” tagged value, that allow developers to include
a number of replicas of the protected variable within the
wrapper class ProtectedAttribute. The “restoreThresh-
old” tagged value may be used to specify how many of
these replicas need to agree with each other in case of an
error to restore the protected variable to the value of these
replicas. A common example is that there are a total of three
replicas. In case at least two of these replicas agree with each
other, then the protected variable is restored to this value. The
“safeDefaultValue” tagged value may be used to specify a safe
default value for the protected variable.

At the code level, these tagged values are used
to set the values for the template parameters of the
ProtectedAttribute class (cf. Figure 3 in Section III-C).
The “nrReplicas” and “restoreThreshold” tagged values cor-
respond to the TNrReplicas and TRestoreThreshold
template parameters, whereas the “safeDefaultValue” tagged
value corresponds to the TDefaultValue template parame-
ter. In case the application independent recovery mechanisms
are not desired, developers may prevent their automatic code
generation by not specifying any value for the relevant tagged
values.

In case the application independent recovery mech-
anisms are not specified or their execution was un-
successful, the ErrorHandler singleton (cf. Figure 3)
is called. It is provided the information of the error
identifier and the ACStatus enumeration value of the
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ProtectedAttribute instance that failed the check (cf.
Figure 3). Our approach assumes that this code, manu-
ally written by developers, returns the system to a safe
state and returns a valid value for the protected variable in
ProtectedAttribute. In a worst-case scenario the system
may need to be shut-down in systems where fail-stop behavior
is acceptable.

E. Transparent Model Transformations
Section III-A describes the basic concept for the model

transformations that generate error detection mechanisms in
a transparent way. For this, a primitive variable is replaced
with a wrapper class that contains the required error detection
mechanisms. This section describes the required model trans-
formations for this approach in more detail. The class names
used in this section refer to the elements from Figure 3.

• Action 1: At the beginning of the model transfor-
mations, each attribute in a UML class diagram is
checked regarding whether a stereotype from the
profile presented in Section II is applied. For each
attribute where this is the case, the information of
the tagged values of these stereotypes are parsed and
stored temporarily.

• Action 2: After parsing the stereotype information, a
getter and setter with default method declaration for
the respective attribute are created in the containing
class.

• Action 3: Besides adding getters and setters, it
is also necessary to include the dependencies
to the utilized classes, such as to the wrap-
per class (ProtectedAttribute). Furthermore,
ContainingClass must contain a constructor for
initializing the value of the protected variable inside
the instance of the wrapper class.

• Action 4: In this step, the stereotyped attribute is
deleted from the containing class. The information
from the tagged values of the stereotype is still ac-
cessible due to action 1.

• Action 5: An instance of the wrapper class is added
to the containing class, with the same name as the
attribute that was deleted in action 4. The template
parameters of the instance declaration may be inferred
from the tagged values of the stereotype stored in
action 1.

• Action 6: The constructor of the containing class is
updated by calling the init() method of the created
ProtectedAttribute instance. Here, the initial
value of the protected variable is set, as well as the
error identifier. The call of the init() method is
prepended to the method body of the constructor. For
this, we assume that the behavior of the method is
supplied in textual form within the model. This may be
achieved by employing the opaque behavior property
of operations in UML.

• Action 7: The opaque behavior of the getter and setter
created in action 2 is modified to return the results of
getProtected() and setProtected() of the
ProtectedAttribute instance created in action
5 respectively.

We implemented the automatic execution of these model-
to-model transformations within the MDD tool IBM Rational
Rhapsody [10], as well as the open source tool Papyrus [11].
Due to space constraints we do not discuss implementation
details. However, we illustrate the application of these model
transformations within Rhaposdy in Section IV.

IV. USE CASE

This section shows how our approach may be applied in
the development of a safety-critical fire detection system. This
system is conceptually similar to smoke detectors that are used
in private households. However, in contrast to smoke detec-
tors, fire detection systems employ multiple types of sensor
information to determine whether a fire has been detected.
In this specific application, we use temperature, humidity and
infrared sensors besides the usual carbon monoxide sensors.
This variety of sensors decreases the likelihood for a false
alarm (e.g., due to smoke from burnt cooking), and also pro-
vides intentional redundancy, so that the fire detector remains
partially operational in case a sensor malfunctions.

A. Safety Requirements

This section presents some selected safety requirements of
the fire detection system which we will use to demonstrate
our approach. The safety standard IEC-61508 [1] defines four
Safety Integrity Levels (SIL), which mandate an increasing
number of safety measures for each level. These measures aim
to ensure the availability and reliability constraints associated
with each SIL. According to [12], [13] a fire detection system
may be classified as a SIL 2 system. For SIL 2 systems, IEC-
61508 part 3, table A.2 recommends fault detection and diag-
nosis for software and hardware faults (e.g., a malfunctioning
sensor).

This fault detection, among others, may be performed in
the value and time domain. These fault detection checks cor-
respond to the <<RangeCheck>> and <<UpdateCheck>>
described in Section II. The fault detection may also be
performed in the logical domain via error detecting codes, e.g.,
to detect soft errors (spontaneous bit flips). This corresponds
to the <<CRCCheck>> described in Section II. While the
complete fire detection system has to satisfy further safety
requirements, the above requirements are sufficient to demon-
strate our approach.

B. Hardware Level

This section presents the hardware elements used for our
realization of the fire detection system. A Raspberry Pi 4B
is used as the basis of the system and to process the sensor
information. While the use of a Raspberry Pi may not be a cost-
efficient solution for commercial fire detection systems, the
application of our concept remains the same when applied to
a lower-priced microcontroller. The Raspberry Pi is connected
to several sensors: a gas sensor to detect carbon monoxide,
an infrared sensor that may detect flames and a humidity
and temperature sensor, that measure the respective values.
Furthermore, the Raspberry Pi is connected to a buzzer that
sounds an alarm when a fire has been detected. A button
element deactivates the alarm when it is pressed.
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Figure 4. UML 2.5 class diagram showing the classes of the fire detection
application that are relevant for the demonstration of the approach presented

in this paper.

C. Functional Model of the Software
This section describes the software implementation of

the fire detection system. From a high-level perspective, the
implementation is a single program that runs as a background
task on the Raspberry Pi that is automatically started when the
Pi is booted. The program checks the measured values of the
sensors every second. These values are each compared to a
predefined threshold. If two or more sensor values are above
the threshold for five seconds or more, the buzzer is used to
sound an alarm.

Figure 4 shows a UML class diagram of the most important
classes of the application. It is a screenshot from the MDD
tool IBM Rational Rhapsody [10], i.e., the class diagram
also contains implementation details from which the code
for the application is generated automatically. The classes
GasSensor, IRSensor and HumTempSensor represent
the hardware sensors and contain methods that return the cur-
rently measured value of the sensors. Instances of these classes
execute concurrently and update the member variables with
the last measured value. The update frequency is one second
(1000ms). These instances are created by the FireDetector
class, which concurrently checks the member variables repre-
senting the sensor values (method detectFire()). These
values are compared to their respective thresholds, which are
also defined in the FireDetector class. If two or more
sensor values exceed their respective threshold for five seconds
in a row, an instance of the Buzzer class is used to activate
the acoustic alarm (method playAlarm()). During each call
of detectFire() the status of the Button instance is
checked. In case the button is pressed, the alarm is turned
off.

D. Applying Safety Stereotypes to the Functional Model
This section describes how the approach presented in Sec-

tion III is applied to the functional application model presented
in Section IV-C to fulfill the safety requirements described in
Section IV-A. The approach is applied to a number of member
variables within Figure 4. To each member variable that
represents a measured sensor value, the <<RangeCheck>>
and <<UpdateCheck>> stereotypes are applied.

The tagged values of the <<RangeCheck>> correspond
to the upper and lower limit of the sensors’ range, i.e., the
check is failed in case a sensor returns a value outside of
its specification range. The <<UpdateCheck>> is configured
to report an error in case the sensor value has not been
updated within the last minute when the variable is accessed.
Both check types indicate that there is some kind of sensor
malfunction. The measureRate variable in each sensor is
not protected, as any errors related to this variable will be
detected by the respective <<UpdateCheck>> for the sensor.

A number of member variables contain the stereotype
<<CRCCheck>>. This stereotype is used to protect the vari-
ables from soft errors (i.e., spontaneous bit flips) that may oc-
cur in long lasting applications [6]. The protected variables are
chosen, because they represent safety-critical values (e.g., the
threshold for raising an alarm). Some variables, like the current
sensor values, do not contain this sort of memory protection,
as they are frequently overwritten and the likelihood for a soft
error is small. Other variables, like the alarmTone variable
in the Buzzer class, do not contain memory protection, as
they are not strictly safety-critical. In this case alarmTone
is not safety-critical, as it only contains the specific tone
played during an alarm - a bit flip that changes this tone
slightly is only a very minor issue from a safety perspective.
Only protecting those variables that require memory protection
from a safety perspective reduces the overhead of the safety
mechanisms on the whole application.

In case any of the ProtectedAttribute instances (cf.
Figure 2) report an error, the ErrorHandler singleton (not
shown in Figure 4, cf. Figure 3) is used to log the detected
error. Furthermore the singleton activates a maintenance tone
(method playMaintenance() in class Buzzer). This is
an acoustic warning, that the fire detection system provides
only a limited protection and should be checked by a profes-
sional.

E. Code Generation
The UML class diagram presented in Section IV-C was

created with the MDD tool IBM Rational Rhapsody [10]. It
allows to specify the source code of the operations within the
model and therefore enables code generation of the complete
source code. We modified this code generation process by
implementing a plugin that executes the model transformations
described in Section III-E automatically. The plugin executes
the model transformations each time source code is generated
from the class diagram. The developer model (the class dia-
gram shown in Figure 4) is not changed by the transformations.
Instead, the plugin creates an intermediate model with the
transformed model. In this transformed model, the member
variables that contain a stereotype from the profile shown in
Figure 1 have been replaced with a corresponding instance of
ProtectedAttribute (cf. Section III for details). After
the model transformations, the default code generation of
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Rhapsody is applied to the intermediate model. For debugging
purposes, developers have access to the intermediate model
within Rhapsody.

F. Discussion

This section discusses the application of our approach to
the use case presented in Section IV. As described in Sec-
tion IV-C and Section IV-D, our approach enables developers
to initially create a functional model of the application and
apply a number of safety mechanisms in a following step.
This approach has a number of advantages. First, developers
do not require specific knowledge of how a error detection
mechanism is implemented. The implementation is generated
automatically by the model transformations described in Sec-
tion III. Despite this automatic implementation, the tagged
values of the stereotypes still allow to change important con-
figuration parameters of the mechanisms. Another advantage
of our approach is the increase in developer productivity. The
implementation of the error detection mechanisms and the
model transformations is only required once. Afterwards, both
are reusable similar to an application programming interface
(API). The automatic code generation of the error detection
mechanisms also reduces the likelihood of bugs that may
be produced by developers during manual implementation of
the mechanisms. Additionally, our approach models the error
detection mechanisms clearly visible within the UML model
of the application, instead of hiding it in between other source
code or sub-layers of the models.

While our approach enables these advantages, it also faces
some limitations. These include the higher runtime and mem-
ory overhead associated with generic approaches, as opposed
to implementations created explicitly for a specific applica-
tion and hardware platform. Care is also required when our
approach is used in systems with hard real-time requirements.
While the runtime overhead of the error detection mechanisms
is constant, it still has to be taken into account during timing
analysis of the system.

The approach presented in this paper is extensible, i.e.,
other error detection mechanisms that work at the variable level
may be included. For this, three steps are required:

1) A UML stereotype has to be designed that contains
all the configuration parameters of the error detection
mechanism as tagged values. This stereotype should
inherit from <<AttributeCheck>> (cf. Figure 1 in
Section II).

2) A dedicated class for the error detection mechanism
needs to be implemented. This class has to realize
the AttributeCheck interface (cf. Figure 3 in
Section III-C).

3) Model transformations that parse the information
from the stereotypes and create the required instance
declarations for the class that implements the error
detection mechanism. The specific steps for this have
been described in Section III-E. These model trans-
formations may be applied to a number of MDD
tools. The only requirements are, that they allow
developers to create class diagrams and that these
diagrams may be modified via a tool specific API,
e.g., IBM Rational Rhapsody [10], or via dedicated
model-to-model transformations languages, e.g., Pa-

pyrus [11] in combination with the Epsilon frame-
work [14].

V. RELATED WORK

This section describes approaches that are related to ours.
The automatic generation of error detection mechanisms has
been proposed in a number of research approaches. How-
ever, they either do not consider the integration in an MDD
context [8], or they depend on domain-specific modeling
languages instead of building atop a wide-spread, standardized
modeling language, such as UML [15], [16]. This makes
integration into a wide variety of MDD tools more difficult,
as these often only support UML. Our approach, in contrast,
is entirely specified in UML on the modeling level. Another
category of approaches enables the model-driven generation of
structural model elements that represent safety features [17].
However, they depend on manual refinements of the model to
produce the dynamic behavior of the safety feature. Thus, this
approach is only semi-automatic.

UML-based approaches to model-driven code generation
for safety mechanisms have been presented in [4], [7], [18],
[19], [20]. The model representation presented in [7] is the
basis for the UML profile presented in Section II. The approach
in [4], on the other hand, describes a generic high-level work-
flow for generating code from UML safety stereotypes. We
adopted this approach in this paper to derive our results. The
approaches presented in [18], [19] describes model-driven code
generation for an error handling mechanism. Their approaches
may be used to automatically generate code for dealing with
the errors, that the approach presented in this paper is able
to detect. A model representation of selected safety design
patterns for the use of code generation has been proposed
in [20]. However, they provide only a model representation and
leave the actual code generation for future work. Our approach
may contribute to fill this gap.

Several other approaches combine selected safety aspects
with MDD [21], [22], [23]. However, they target other phases
of the development lifecycle rather than the actual realization
step of the system which is the focus of our approach. As
these phases are mostly located prior to the realization step,
their approaches may be used in a complimentary fashion to
ours.

The issue of error detection has also been targeted for
specific application scenarios. The issue of software-based
memory protection, which has been used as an example for an
application scenario in this paper, has also received research
attention, e.g., [8], [24]. However, they employ other tech-
niques than MDD for code generation. Additionally, they only
consider memory protection, while our approach is explicitly
designed to incorporate other error detection mechanisms, such
as sanity checking.

There is also some theoretical research regarding the au-
tomatic generation of fault-tolerance mechanisms, e.g., [25],
[26]. As these approaches take all possible system states for
the addition of fault tolerant mechanisms into consideration,
they are limited to small and medium-scale systems.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an extensible, generic software
architecture that enables the use of error detection mechanisms
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for primitive variables in safety-critical systems. We use a set
of UML stereotypes that model the desired error detection
mechanisms. These stereotypes may be applied to safety criti-
cal variables inside the UML class diagram of the application.
By parsing these stereotypes and performing model-to-model
transformations, we replace the stereotyped variable with a
suitable wrapper class that performs the error detection checks
during runtime before every access of the stereotyped variable.
The generation result is transparent with respect to the rest of
the application, i.e., no other parts of the application need to be
changed by the developer when our code generation is used.
The effectiveness of the approach is demonstrated by applying
it to the development of a safety-critical fire detection system.

For future work, we will evaluate the runtime and memory
overhead that the generated error detection mechanisms incur,
as well as the overhead of performing the model transforma-
tions during code generation. Furthermore, we aim to extend
our approach to a wide variety of safety mechanisms, thereby
creating a model-driven code generation framework for safety
mechanisms. We also aim to combine this approach with the
concept of safety assurance cases, in order to improve valida-
tion and traceability of the specific assurance cases. Besides
safety, we also aim to generalize our approach to include
runtime monitoring of other non-functional properties, such as
timing and energy. Finally, we want to extend the concept of
model-driven code generation for embedded systems to other
development issues, e.g., generating code for the low-level
hardware initialization of heterogeneous microcontrollers from
suitable model representations.
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