
Performance Comparison of Two Deep Learning Algorithms in Detecting Similarities

Between Manual Integration Test Cases

Cristina Landin˚;, Leo Hatvani§, Sahar Tahvili:§, Hugo Haggren:, Martin Längkvist;, Amy Loutfi;, Anne Håkansson¶
˚ Product Development Unit Radio, Production Test Development, Ericsson AB, Kumla, Sweden

cristina.landin@ericsson.com
:Global Artificial Intelligence Accelerator (GAIA), Ericsson AB, Stockholm, Sweden

{sahar.tahvili, hugo.haggren}@ericsson.com
;School of Science and Technology, Örebro University, Örebro, Sweden

{cristina.landin, martin.langkvist, amy.loutfi}@oru.se
§School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden

leo.hatvani@mdh.se
¶School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

annehak@kth.se

Abstract—Software testing is still heavily dependent on human
judgment since a large portion of testing artifacts, such as
requirements and test cases are written in a natural text by
experts. Identifying and classifying relevant test cases in large test
suites is a challenging and also time-consuming task. Moreover,
to optimize the testing process test cases should be distinguished
based on their properties, such as their dependencies and simi-
larities. Knowing the mentioned properties at an early stage of
the testing process can be utilized for several test optimization
purposes, such as test case selection, prioritization, scheduling,
and also parallel test execution. In this paper, we apply, evaluate,
and compare the performance of two deep learning algorithms
to detect the similarities between manual integration test cases.
The feasibility of the mentioned algorithms is later examined
in a Telecom domain by analyzing the test specifications of five
different products in the product development unit at Ericsson AB
in Sweden. The empirical evaluation indicates that utilizing deep
learning algorithms for finding the similarities between manual
integration test cases can lead to outstanding results.

Keywords–Natural Language Processing; Deep Learning; Soft-
ware Testing; Semantic Analysis; Test Optimization

I. INTRODUCTION

Employing Artificial Intelligence (AI) techniques for test
optimization purposes in the industry is regarded to be ben-
eficial due to their ability to analyze the complex software
model and a large amount of generated test data [1]. One
of the principal ideas behind test optimization is to test a
subset of the test cases (in any form of test case selec-
tion, prioritization, and test suite minimization) while still
covering the requirements [2]–[5]. Parallel test execution [6]
and test execution scheduling [7] can be also considered as
promising approaches to optimizing the testing process [8].
However, while employing the aforementioned approaches,
manual work, domain knowledge, and human judgment are
still required. Due to utilizing AI technologies, such as Natu-
ral Language Processing (NLP), machine learning and deep
learning can help to reduce human effort and improve the
performance of the optimization approaches. Additionally, test
optimization has been considered as a multi-criteria optimiza-
tion problem [3], where several criteria, such as dependency

and similarity between test cases, execution time, and re-
quirement coverage are recognized as critical elements for
selecting, ranking, scheduling, or removing any test case in
the testing cycle. As stated earlier, in manual test execution,
test cases are designed and created manually, which may
result in having similar test cases that are just designed or
written differently. Finding the similarities between test cases
opens the possibility to apply the aforementioned optimization
approaches, such as parallel test execution. In fact, similar
test cases can be clustered together and executed at the same
time, in parallel with other test cases. Knowing the similarities
between test cases at an early stage of a testing process can
help us execute test cases more efficiently and directly, thus
reducing costs and time [6] [9]. In this paper, we apply two
deep learning algorithms for finding the similarities between
manual integration test cases that are designed for testing five
different products at Ericsson AB. Later, similar test cases are
clustered and proposed for execution in parallel. This paper
makes the following contribution:

‚ Applying and comparing the performance of two deep
learning algorithms, finding the similarities between
manual integration test cases against labeled data con-
ducted from the so-called subject matter experts (SME).

‚ Clustering similar test cases and scheduling them for
parallel test execution.

Moreover, the proposed approach in this paper is utilized to
develop our previous work [6], for the similarity threshold cal-
culation. The organization of this paper is as follows: Section II
provides a background and problem statement. Section III
presents an overview of research on NLP in the testing domain.
Section IV describes the proposed approach in this paper. An
industrial case study laid out in Section V. Section VI analyzes
the performance between the utilized deep learning algorithms
is compared against the labeled data. Threats to validity
and delimitations are discussed in Section VII. Section VIII
clarifies some points of future directions of the present work
and finally, Section IX concludes the paper.

90Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

TABLE I. TWO EXAMPLES OF SIMILAR AND NON-SIMILAR TEST CASES. TCi,j , WHERE TC STANDS FOR A TEST CASE, i IS THE TEST CASE NUMBER AND j
IS THE PRODUCT NAME. THE HIGHLIGHTED WORDS ARE IMPORTANT WORDS FOR COMPARISON BETWEEN TEXTS.

Annotation Test case specification
Similar TC1,A: This test case will measure the current value of LED 1. Start by supplying 2.4 V into Pin 2 to the FPGA G1 and read the output of Pin 5. Pass

criteria is 10 mA. Save the result in database 1.
TC2,B : Measure the current across LED 2. Supply 2.4 V into Pin 2 to the FPGA G2 and read the output of Pin 5. Pass criteria is 15 mA. Save the result
in db 2.

Non-Similar TC1,A: This test case will measure the current value of LED 1. Start by supplying 2.4 V into Pin 2 to the FPGA G1 and read the output of Pin 5. Pass
criteria is 10 mA. Save the result in database 1.
TC3,B : This test case will measure the voltage of LED 1. Supply 10 V to the input T1 and measure the voltage in T2. Compare the results with the
calculated and save the result in database 1.

II. BACKGROUND

Ericsson AB is one of the leading providers of Information
and Communication Technology (ICT) and has, among many
units, a business unit network, which produces the latest
technology in Radio Base Stations (RBS). An RBS is a radio
transceiver used in wireless communication. Figure 1 shows a
block diagram of an RBS, where the transmitter and receiver
are the radio parts and the digital control supplies and receives
the digital signals to both transmitter and receiver.

Transmitter

Receiver

Power supply
and digital control

Circulator

Antenna

öööö
2n:i/o ports

Radio Base Station (RBS)

Figure 1. A block diagram of a simplified version of a Radio Base Station 2n

is the number of ports.

The power supply powers the RBS and its specification
depends on the target market (e.g., USA, Europe, and Asia).
Because both receiver and transmitter contain analog devices,
these parts must be calibrated and tested at the device level and
unit level together with the antenna. The number of ports to be
tested in production is 2n, pn “ 1, 2, 3, ...q and each port may
be tested separately. A circulator is a simplified version of the
design, which only allows the signal to go one direction and
not vice versa to protect the internal components. Among all
faced challenges the new generation of RBSs are bringing into
test and production, the test capacity and the long run-time of
each test process can be considered as the main two challenges.
The increase in functionality and the number of features (e.g.,
emerging technologies) that the new generation of products
needs to cover aggravate the complexity of the RBS design.
Although the design is more complex, the RBS still has to
be tested to follow international standards, e.g., 3GPP, FCC,
IEC, UL. These standards specify the technical protocols and
requirements for mobile communication systems. The above-
mentioned factors have resulted in the more complex testing
process which increases the required number of test cases that
need to be tested. Executing all generated test cases for testing
an RBS without any specific order could lead to the waste

of testing resources and time. Equation (1) indicates the total
testing time, T , when the test cases are executed sequentially.
Because of the RBS complex design, such as the number of
ports, 2n, and the number of technologies to cover, h, the total
test time increases exponentially and linearly respectively. ti
represents the test time to run each test case and m is the total
number of test cases.

T “ h ˚ 2n ˚
m
ÿ

i“1

ti (1)

Hereof parallel test execution has been considered as a po-
tential solution to optimize the integration testing process at
Ericsson. Moreover, the saving time (ST) using parallel test
execution for similar test cases can be calculated as:

ST “
pnp´ 1q

np
ˆ 100 (2)

where np is the number of test cases with the same system
setup. We define the concept of two similar test cases in this
paper as:

Definition 1. Test case TC1 and TC2 are similar if only if
they are designed to test the same functionality or they have
the same preconditions, execution requirements (installation),
system setup.

In other words, if two or more test cases are semantically
similar, they might be designed to test the same functionality
or require the same system setup or pre-condition. Examples
of similar and non-similar test cases are shown in Table I,
where LED is Light Emitting Diode and FPGA stands for
Field-Programmable Gate Array. They give a glimpse of how
the test cases are described in natural language and their
pre-requisites. Although parallel test execution is a promising
approach for time and resource-saving, however, there are
some assumptions that need to be satisfied. For instance,
there are no dependencies between test cases and there are
enough available test stations to execute test cases simul-
taneously. In fact, utilizing (2) (in one example scenario)
means that the system setup or installation effort needs to
be performed once for product A where np ´ 1 products
can be executed after product A on the same test station.
Since the designed test cases for testing RBSs are written in a
non-formal language, employing NLP techniques for semantic
analysis might provide some clues to detecting the similarities
between test cases. Furthermore, similar test cases can be
grouped into several clusters based on their semantic text
similarities. On the other hand, finding the similarities between
text cases manually requires human work where the testers
need to go through the test case descriptions and comparing

91Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

them with each other. However, analyzing a large number of
test cases manually is a time-consuming process and suffers
from ambiguity and uncertainty. Consequently, employing AI
algorithms with a combination of human supervision can be
considered as a promising approach, where the knowledge of
the testers can be captured during the learning process. In
addition, the use of NLP techniques can help test engineers to
extract relevant information in a large document automatically
and thereby distinguishing test cases from each other. Usually,
test engineers use different terminologies and the quality of
a test case specification is dependent on the test engineers’
knowledge, experience, and skill. Therefore, it is crucial to
find a proper NLP algorithm to meet the goal. In this regard,
we decide to compare the performance of two deep learning
algorithms to detect the similarities between test cases and
comparing the performance of them against the labeled data
conducted by SMEs at Ericsson. Deep learning algorithms for
NLP have a high tolerance to noisy data and they are able
to classify patterns on which they have not been trained [10],
[11].

III. RELATED WORK

There have been several techniques proposed for the cru-
cial step of test optimization. The proposed strategies vary
depending on the industrial product, development method,
complexity of the models, and data availability and reliability
[12]. The overall aim of test optimization is to minimize the
required testing time by detecting failed test cases as early as
possible. Since the duration and relevancy vary between test
cases, the testing time can be reduced by test case selection,
prioritization, minimization, and test execution scheduling. The
proposed test case prioritization by Nardo et al. [13] uses
a coverage-based method that prioritizes test cases with the
most recent code changes. This strategy is suitable for software
development practice, such as Continuous Integration (CI) [14]
[15] [9] where the components are regularly implemented and
tested during the development process. Fowler and Foem-
mel [16] propose an information retrieval approach for detect-
ing code changes that are used for regression test prioritization.
For full system testing [17] or when tracking of code changes is
unavailable, history-based test prioritization has been proposed
by several researchers [18], [19] for prioritizing test cases that
have failed more frequently in the past. Spieker et al. [20] pro-
pose an adaptive reinforcement learning approach for history-
based test case prioritization and selection that learns to rank
test cases based on their duration, previous last execution,
and failure history. One of the disadvantages of learning-
based approaches is that it requires a history of executed test
cases and the learning process needs to be repeated for any
new product. Test case selection and prioritization based on
human-designed test cases have the advantage of evaluating
the test cases before they are even executed. Previously [6]
used the Levenshtein distance to detect the similarity between
each pair of test cases (which were designed to test five
different products at Ericsson AB) to detect the similarities
between them. The test case pairs were clustered into four
groups (identical, very similar, similar, and partially similar)
ranked for parallel test execution. The threshold for each of
the mentioned groups in [6] is assigned manually using the
subject matter expert (SME) experience. The NLP technique
that was used in [6] did not take into account the order of

the words in a test specification, which can be a disadvantage,
considering how specific a procedure of each test case must
be implemented. Using NLP techniques has received a great
deal of attention in different domains, such as social network
analysis [21]. NLP has also been studied to find sentiment
analysis [22] and to find semantic and syntactic similarities
in large context [23], where the training complexity can be
considered as an important aspect. Moreover, using deep learn-
ing for natural language analysis has been a focus since the
year 2000. Young et.al [24] discuss the recent trends in deep
learning on NLP tasks. For learning word representations, Le
and Mikolov [25] introduced a new method called Word2vec
that finds semantic similarities between paragraphs taking into
account the order and semantic context of the vectors (not
only limited to a sentence or a fixed length of text), in order
to predict words based on the content of the paragraphs.
Patil et al. [26] use the Word2vec algorithm as inputs to
the Convolutional Neural Network (CNN) to classify binary
and multi-class document categorization. Although CNN is
effective in finding semantic similarities, it has problems to
preserve sequential order and model long-distance dependen-
cies. Moreover, Tahvili et al. [27] [28] employed the Doc2vec
algorithm (which is an extension of Word2vec) for finding the
functional dependencies between manual integration test cases
at Bombardier transportation.
In the present study, we aim to compare the performance
of two well-known deep learning algorithms, Doc2vec and
Sentence Bidirectional Encoder Representations from Trans-
formers (SBERT), in a set of labeled data from five RBSs
from Ericsson AB. Moreover, the similarity threshold which
has been assumed manually in [6] can now be automatically
computed though comparing the utilized edit distance approach
with the deep learning algorithms.

IV. PROPOSED APPROACH

The proposed approach in this paper is mirrored in Fig-
ure 2. The manual test cases are the input to our model. In step
1 (Similarity Analysis) in Figure 2, the similarities between
test cases are detected by employing deep learning algorithms,
such as Doc2vec and SBERT. Applying deep learning models
for semantic analysis provides a set of high dimensional
vectors, where each vector represents a test case. To split
test cases (step 2 in Figure 2) a clustering algorithm needs
to be utilized which can handle high dimensional data points.
Finally, since the main application of the proposed approach in
Figure 2 is to test efficiency, similar test cases can be scheduled
for test execution, e.g., parallel test execution. We need to
consider that, the proposed approach in Figure 2 is not just
limited to the mentioned algorithms, where other approaches,
such as edit distance, string matching, and text classification
can be utilized as well. Later in this paper, we provide
more information regarding employing other techniques for
both Similarity Analysis and Splitting Test Cases steps in
Figure 2. Furthermore, in the upcoming subsections, more
details are provided for the utilized algorithms for each step.

A. Doc2vec

Deep learning algorithms use representation learning to
learn the data representation instead of using manually hand-
crafted features [29]. Doc2vec is a deep neural networks-based

92Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Test Cases Deep Learning Clustering Scheduling test cases
for parallel test execution

Inputs Similarity Analysis1 Splitting Test Cases2 Outputs

Figure 2. The block diagram of the proposed approach.

algorithm that generates a vector representation for a word,
paragraph, or document [25]. Doc2vec represents a non-fixed
length document into a vector. Besides, it concatenates each
word of the document. Figure 3 shows a representation of the
structure of the Doc2vec algorithm to predict the next word.
For instance, W3 based on the sentence rW1`W2s. Producing
in this way two vectors, one vector for the document, called D
and one vector for the words called W . One important facility
of this algorithm is to keep the words’ properties and the
relations between words and semantics of the whole document.

On

D W1 W2 W3

Classifier

Concatenate

Paragraph vector Word vector

Figure 3. A representation of the Doc2vec algorithm to predict a word, based
on the semantics of the sentence.

In fact, each paragraph will have an ID represented in
paragraph vector D, and the words are represented in the word
vector W . They will concatenate to predict the next word of
the sentence.

B. SBERT

SBERT is an algorithm in the domain of NLP, which is
designed to pre-train deep bidirectional representations from
an unlabeled text [30]. SBERT is a modified version of BERT
[31] that jointly conditions on both left and right context in
all the layers. Reimers and Gurevych [32] developed sentence
embedding based on Euclidian distance which allows finding
semantic similarities in sentences and is suitable for clustering
and information retrieval purposes. Furthermore, SBERT is
computationally more efficient than the heavy and complex
BERT. Figure 4 shows the structure of SBERT to compute
similarity scores. SBERT adds a pooling operation to the
output of BERT and computes the cosine-similarity between
sentence embeddings u and v. The pooling operation is to
derive a fixed-sized sentence embedding.

The pooling operation is added after BERT to give the same
size to the sentence embeddings, u, and v. After this step, the
similarities are computed using cosine-distance.

C. HDBSCAN

For the clustering part of the proposed approach in this pa-
per, we propose to use the Hierarchical Density-Based Spatial

u

pooling

BERT

v

pooling

BERT

cosine-sim (u,v)

1 . . . 1

Sentence A Sentence B

Figure 4. The architecture of the SBERT algorithm which is designed to
compute similarity scores between sentences.

Clustering of Applications with Noise (HDBSCAN), which
is a density-based clustering algorithm based on a hierarchi-
cal density estimate [33]. HDBSCAN generates a simplified
hierarchy and extracts the most significant clusters. Using
HDBSCAN has two main advantages: 1-HDBSCAN is able
to clusters the high dimensional data point without employing
any dimension reduction technique (e.g., Principal Component
Analysis (PCA)), 2-HDBSCAN provides a cluster of non-
clusterable data points which can be interpreted as noises,
outliers or anomalies. In this paper, the non-clusterable data
points are considered as non-similar test cases. However, if
the high dimensional data is projected onto a lower dimension
space (using a technique like PCA), other standard clustering
techniques can be employed instead of HDBSCAN.

V. INDUSTRIAL CASE STUDY

The provided industrial case study in this work follows the
proposed guidelines for conducting and reporting case study
research in software engineering by Runeson and Höst [34] and
specifically the way guidelines are followed in [35] and [3],
[36]. Hereof, five multi-standard RBSs compatible with their
respective number of test cases are utilized as a case under
study.

A. Unit of analysis and procedure

The test specifications of five products of the 4th Generation
(4G) RBS are our dataset, which includes 444 test cases in
total. The utilized test cases are written in natural language
text and by the SME at Ericsson. As illustrated in Figure 2
our approach aims to cluster similar test cases and also
provide a cluster of non-similar test cases. Table I provides
two real industrial examples of similar and non-similar test
cases. However, using human knowledge and judgment for the
similarity analysis is a time and resource-consuming process

93Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

(a) The clustered test case using the generated vectors by the SBERT. (b) The clustered test case using the generated vectors by the Doc2vec.

Figure 5. The clustered test cases using HDBSCAN algorithm on the generated vectors by two deep learning algorithms. There are 75 and 76 clusters plotted
in different colors for SBERT and Doc2vec respectively. The outliers are shown in gray.

and it might suffer from ambiguity and uncertainty. Therefore,
employing AI techniques for similarity analysis and thereby
clustering purposes is critical in large industries.

B. Experimental Setup

SBERT provides the option to train a new model or to use
a pre-trained model to convert test cases to feature vectors.
As our dataset is rather small and built out of test cases
written in English, we are able to use a pre-made BERT-
base model with mean-tokens pooling, bert-base-nli-mean-
tokens, obtainable from the SBERT repository [37]. We have
not made any customizations to the code and thus the result
is a feature vector with 768 features for each of the 444
observed test cases. The employed implementation of the
SBERT produces consistent results between different runs. For
the Doc2vec approach to feature vector generation, we have
used the Gensim [38] implementation. For this approach, we
have used the following parameters: feature vector size of 100,
min word count for dictionary inclusion of 1, and 100 training
epochs. Gensim approach is based on training a new neural
network every iteration and thus can produce various results
depending on the input parameters and a random initial value.
To estimate the impact of these parameters, we varied them
within reasonable ranges across 150 iterations and found that
the largest standard deviation from the results presented in this
paper is 0.08 across all of the measures presented in Table III.

The generated feature vectors are then clustered using the
standard implementation of the HDBSCAN algorithm using
the default clustering values with distances being computed
as cosine distances between feature vectors. Pairs of test
cases from the labeled data are then compared against the
clusters to obtain the confusion matrix from which precision,
recall, and F1 score are calculated. Further details about the
implementation of the HDBSCAN algorithm are available at
[39].

VI. RESULT

Figure 5 shows the clustered test cases using the HDB-
SCAN, each color represents a unique cluster of test cases
which are being considered as semantic similar by Doc2vec
and SBERT algorithms. Figure 5a illustrates the obtained
clusters using the provided vectors by SBERT, where the
number of obtained clusters is equal to 75. Figure 5b shows the
clusters where HDBSCAN used the generated vectors provided
by Doc2vec, the number of obtained clusters is equal to 76.
The t-SNE is used to plot the results after the clustering
done by HDBSCAN. Both results are expected due to the
properties of the dataset and resemble the SME’s criteria. We
need to consider that the size of each cluster is different for
the Doc2vec and SBERT. Moreover, using HDBSCAN can
help us to have a cluster of non-clusterable data points, which
indicates to non-similar test cases in this study.

A. Model Performance Evaluation

Table II summarizes the cluster size and the obtained non-
clusterable data points. The entire results and implementation
source are available at [40]. In order to compare the perfor-
mance of the employed deep learning algorithms against the
labeled data, 402 out of 444 test cases manually labeled by the
SME at Ericsson, wherein in total we received labels for 211
similar and 191 non-similar test cases. Test cases similarity
detection might suffer the class imbalance problem when the
class distributions (similar and non-similar) are imbalanced.
Therefore, selecting a suitable performance metrics is critical
and also influences the measured performance of a model [41].
To evaluate the performance of the proposed approach in this
paper, precision, recall, and F1 score are measured instead of
accuracy. F1 score conveys the balance between the precision
and the recall, which is a suitable metric for the imbalance
problems, shown in (3).

F1 score “ 2ˆ
PrecisionˆRecall

Precision`Recall
(3)

94Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

TABLE II. THE NUMBER OF CLUSTERS, CLUSTER SIZE, AND THE NUM-
BER OF NON-CLUSTERABLE DATA POINTS USING DOC2VEC, SBERT, AND
HDBSCAN.

Cluster Size

Cluster Number Doc2vec SBERT

Cluster 1 5 3
Cluster 2 5 5
Cluster 3 7 3

...
Cluster 75 3 2
Cluster 76 5 0
Non-clusterable 132 133

Table III summarizes the evaluation of the obtained results,
using precision, recall, and F1 score.

TABLE III. THE PERFORMANCE COMPARISON OF DOC2VEC AND SBERT
AGAINST THE LABELED DATA PROVIDED BY THE SME.

Similar Non-similar

Algorithm Precision Recall F1 score Precision Recall F1 score

Doc2vec 0.952 0.943 0.947 0.937 0.947 0.942
SBERT 0.946 0.834 0.886 0.837 0.947 0.889

As can be seen in Table III, the F1 score for Doc2vec is
0.947 and 0.942 for similar and non-similar, respectively. The
obtained F1 score for SBERT is about 0.89, which indicates
a good overall performance as well but not as good as that
of Doc2vec. Moreover, the presented clusters in Figure 5 and
Table II can be utilized for parallel test execution and also test
suite reduction. For parallel test execution, each cluster (which
contains several test cases) can be scheduled for execution
simultaneously. As mentioned before, if two test cases are
similar in their test specifications they might be designed
for testing the same functionality or they required the same
precondition, i.e. in system setup. Using the presented results
in Table II for instance for the Doc2vec algorithm, we have 5
test cases (distributed between five different products) which
are grouped into cluster 1. There are two different scenarios
in this case. 1-The mentioned five test cases are designed to
test a common function between five different products. In
this scenario, executing all five mentioned test cases leads to
this function will be tested fully before we are scheduling
another function for the testing. All other presented clusters
in Table II can be executed parallel on the other test stations,
while cluster 1 is executed completely. 2-The mentioned five
test cases in cluster 1 are required the same installation effort.
Thus the testing environment needs to be configured once
for just one test case inside of cluster 1 and all other four
test cases can be executed after each other on the same test
station. Using 2 can help us to measure the saving time for this
scenario. On the other hand, selecting just one test candidate
from each cluster for execution can be utilized for the test
suite reduction purposes. Furthermore, the non-clusterable data
points presented in Table II indicate the non-similar test cases
which can be executed sequentially before or after other similar
test cases.

B. The Similarity Threshold Calculation

Previously [6], the test cases were classified into several
classes (e.g., identical, very similar, similar) based on their
Levenshtein distance and the similarity threshold, which was
set manually using the SME’s experience. In this regard, the
similarity threshold is selected as 0.8 ď LD ď 1, where 0.8
is the desired lower limit for the similarity of two test cases.
Moreover, a Levenshtein distance equal to 1 represents two
identical test cases and a Levenshtein distance lower than 0.8
represents non-similar test cases. Finding an optimal similarity
threshold is beneficial in terms of reducing human judgment.
It can also be utilized for identifying the first distance that test
cases are started to be similar to each other. In this study,
an automatic threshold detection approach (see Threshold
Detection21 in Figure 6) is applied through measuring the
Levenshtein distance between the vectors (which belong to
the same cluster) generated by the deep learning models. The
second contribution of this paper is to find the similarity
threshold to delimit between similar and non-similar test cases
using The Levenshtein distance in our previous work [6].
The Levenshtein distance is measured between all test cases
that have been clustered as similar by HDBSCAN. Table IV
presents The sum of the averages Levenshtein distance per
cluster. In fact, the Levenshtein distance between each test
case, which ended up into the same clustered, is measured. As
can be seen, the mean value of the Levenshtein distances is
equal to 0.69 and 0.64 for Doc2vec and SBERT respectively.

TABLE IV. THE SIMILARITY THRESHOLD CALCULATION USING DEEP
LEARNING ALGORITHMS (DOC2VEC AND SBERT) AND CLUSTERED RE-
SULTS (HDBSCAN) BASED ON LEVENSHTEIN DISTANCE.

Algorithm Doc2vec SBERT
Number of clusters 76 75

The sum of the averages Levenshtein distance per cluster 0.69 0.64

This result indicates that test cases can already be consid-
ered similar if their Levenshtein distance is equal or greater
than 0.64 for SBERT and 0.68 for Doc2vec respectively. This
improves the results found in [6], where the lowest boundary of
similarity was assumed 0.8 in close consultation with SMEs at
Ericsson. Moreover, these performance measures in this study
are an improvement to the edit distance approach which used
by us previously [6]. The F1 score of 0.61 using Levenshtein
distance obtained utilizing the same dataset. According to the
presented result in Table III, Doc2vec has a better performance
compared to both SBERT and significantly better than Leven-
shtein distance on this application.

VII. THREATS TO VALIDITY

There are some risks in applying the proposed approaches
in this paper. Infrastructure, enough available testing stations,
and resource limitation can be considered as the major con-
struct validity threat to the parallel test execution. For applying
the proposed approach in this study, we need to have several
available test stations for testing each product parallel with
others. The coming technologies as 5G will only enlarge those
challenges due to the increase in the number of elements i.e.
the number of ports, making this solution a necessity. Using
the test specifications for finding the similarities between test

95Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Test Cases Deep Learning Clustering Scheduling test cases
for parallel test execution

Edit Distance Classification

Inputs Similarity Analysis1 Splitting Test Cases2 Outputs

Threshold Detection21

Figure 6. The similarity threshold calculation for the Edit distance approach using the clustering results. The lower part of the diagram shows the approach used
previously in [6].

cases might be sensitive in terms of changing a single character
in the test. For instance, TC1,A in Table I, the change of
only one character in the pass criteria from 10mA to 100mA
could affect much in the measurement results of a LED,
which could result in a broken component. However, deep
learning algorithms are more stable to the character changing
compare to the edit distance and string matching approaches.
The proposed approach in this paper has been applied on just
one industrial testing project in the Telecom domain, however,
it should be applicable to other similar contexts in other testing
domains. Nevertheless, we cannot claim that the proposed
approach in this paper works well in all fields where precision
is a very important variable, e.g., medicine, chemistry, and
electronics. Furthermore, the labeled data, which has been used
for the performance evaluation was conducted manually by the
testing expert at Ericsson and it might suffer from uncertainty.
Therefore, another type of ground truth needs to be conducted
in order to generalize the proposed approach in this study.
Finally despite deep learning and word embedding approaches
being interesting, one cannot exclude that traditional rule-
based methods may also be applicable and sometimes result
in better performance than the latest deep learning methods,
which depend on the application. In our case, rules are given
by the specialist in the area which could give more importance
to specific sections on the test case description to find better
insights and extract relevant features before clustering.

VIII. DISCUSSION AND FUTURE WORK

The main goal of this study is to compare the performance
of two deep learning algorithms on an industrial case study. To
this end, we make the following contributions: 1-Doc2vec and
SBERT have been employed to detect the similarities between
manual integration test cases automatically. The similarities
have been extracted by analyzing test case specifications
written in a non-formal natural language. 2-The evaluation
of the proposed algorithms was performed by conducting an
industrial testing project in the Telecom domain at Ericsson in
Sweden. 3-The performance of the Doc2vec and SBERT was
compared against the labeled data using SME knowledge at Er-
icsson. The obtained results show the outstanding performance
of the mentioned deep learning algorithms on the conducted
industrial case study. 4-The performance of the Doc2vec and
SBERT was compared against our previous work [6] where the
Levenshtein distance was utilized for the similarity detection
on the same dataset. The obtained results indicate that the
lowest boundary of similarity using Levenshtein distance can
go down to 0.64 compared to 0.8, which was the empirical
value used previously in [6] by the SME.

A. Future Work

The main future direction of this paper is employing other
text analysis approaches such as edit distance and string match-
ing for similarity detection. In fact, the mentioned approaches
in Figure 6 can be extended to all existing text mining methods.
Other clustering and classification algorithms can be adopted to
Figure 6. As stated earlier, using data dimensionality reduction
techniques, e.g., random forests, PCA and thereby applying
other standard clustering techniques (e.g., k-means) might
provide better results compared to HDBSCAN. Moreover,
conducting a larger case study and comparing the performance
of all text mining methods, which are applicable for similarity
analysis, can provide a clue for finding the best method in
terms of accuracy and execution time. Generally, running
a deep learning or neural network algorithm requires more
time compared to the other text-mining algorithm, which has
a less complex structure. Developing the utilized algorithms
of this study as a tool that can handle even larger sets of
test specifications is one of the future directions. Despite the
fact that the results found in this paper using deep learning
algorithms are promising, they are entirely based on one
dataset within a specific domain i.e. five fourth-generation
(4G) RBSs. We aim to test this approach in other datasets and
domains thus, in this way it can be generalized and transfer to
other products, e.g., fifth-generation (5G) RBSs or even future
generations of RBSs. Furthermore, we are aiming to verify
the robustness of the tool. For this purpose, a long time study
is needed within production, which will secure this tool to
be scalable and compatible with different platforms proper
of old and new technologies. A question left to answer is
whether these deep learning approaches are better than the
traditional rule-based methods for this application. Usually,
the traditional rule-based methods are hand-crafted and require
field knowledge, which may not be a disadvantage in very
complicated industrial applications. Although we can see many
potential improvements to the traditional rule-based methods,
a formal comparison of those methods and deep learning
methods is worth investigating.

IX. CONCLUSION

Parallel test execution plays a vital role in test optimization
and can lead to saving time and cost in a testing process. In this
paper, two deep learning algorithms (Doc2vec and SBERT) are
applied and evaluated to find the semantic similarities between
manual integration test cases for test optimization. The ob-
tained results indicate that Doc2vec shows better performance
(F1 score=0.947 for the similar test cases and F1 score=0.942
for non-similar test cases) compare to SBERT (F1 score=0.886

96Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

for the similar test cases and F1 score=0.889) when it evaluated
against the labeled data. This conclusion opens possibilities to
use the method for parallel testing and test suite minimization.

ACKNOWLEDGMENT

This work has been supported by the Swedish Knowledge
Foundation (KKS) and VINNOVA through CoAIRob industrial
research school and the TESTOMAT project respectively.

REFERENCES

[1] S. Khan and T. Yairi, “A review on the application of deep learning in
system health management,” Mechanical Systems and Signal Process-
ing, vol. 107, pp. 241–265, 2018.

[2] R. Ducloux, L. Fourment, S. Marie, and D. Monnereau, “Automatic
optimization techniques applied to a large range of industrial test cases,”
Int. Journal of Material Forming, vol. 3, no. 1, pp. 53–56, 2010.

[3] S. Tahvili, “Multi-criteria optimization of system integration testing,”
Ph.D. dissertation, Mälardalen University, December 2018.

[4] S. Tahvili et al., “Dynamic Integration Test Selection Based on Test
Case Dependencies,” in The 11th Workshop on Testing: Academia-
Industry Collaboration, Practice and Research Techniques, 2016.

[5] S. Tahvili et al., “Towards earlier fault detection by value-driven
prioritization of test cases using fuzzy topsis,” in The 13th Int. Conf.
on Information Technology: New Generations, 2016, pp. 745–759.

[6] C. Landin et al., “Cluster-based parallel testing using semantic analysis,”
in 2020 IEEE International Conference on Artificial Intelligence Testing
(AITest), 2020, pp. 99–106.

[7] S. Tahvili et al., “sortes: A supportive tool for stochastic scheduling of
manual integration test cases,” Journal of IEEE Access, pp. 1–19, 2019.

[8] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case prioritiza-
tion: An empirical study,” in Proceedings IEEE International Confer-
ence on Software Maintenance-1999 (ICSM’99).’Software Maintenance
for Business Change’(Cat. No. 99CB36360). IEEE, 1999, pp. 179–188.

[9] S. Tahvili et al., “Cost-benefit analysis of using dependency knowledge
at integration testing,” in The 17th Int. Conf. On Product-Focused
Software Process Improvement, 2016, pp. 268–284.

[10] T. Khuat and B. Gabrys, “A comparative study of general fuzzy min-
max neural networks for pattern classification problems,” Neurocom-
puting, vol. 386, pp. 110 – 125, 2020.

[11] O. Engström, S. Tahvili, A. Muhammad, F. Yaghoubi, and L. Pel-
laco, “Performance analysis of deep anomaly detection algorithms for
commercial microwave link attenuation,” in The 2020 International
Conference on Advanced Computer Science and Information Systems,
October 2020.

[12] A. Petrenko, A. Dury, S. Ramesh, and S. Mohalik, “A method and
tool for test optimization for automotive controllers,” in 2013 IEEE
Sixth International Conference on Software Testing, Verification and
Validation Workshops, 2013, pp. 198–207.

[13] D. Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-
based regression test case selection, minimization and prioritization:
A case study on an industrial system,” Software Testing, Verification
and Reliability, vol. 25, no. 4, pp. 371–396, 2015.

[14] P. Duvall, S. Matyas, and A. Glover, Continuous integration: improving
software quality and reducing risk. Pearson Education, 2007.

[15] M. Fowler and M. Foemmel, “Continuous integration,” 2006, [Online].
Available from: https://martinfowler.com/articles/continuousIntegration/
2020.09.02.

[16] R. Saha, L. Zhang, S. Khurshid, and D. Perry, “An information retrieval
approach for regression test prioritization based on program changes,”
in IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, vol. 1, 2015, pp. 268–279.

[17] A. Dias, R. Subramanyan, M. Vieira, and G. Travassos, “A survey on
model-based testing approaches: a systematic review,” in Proceedings
of the int. work. on Empirical assessment of software engineering
languages and technologies, 2007, p. 31–36.

[18] J. Kim and A. Porter, “A history-based test prioritization technique for
regression testing in resource constrained environments,” in Proceedings
of Int. Conf. on Software Engineering, 2002, pp. 119–129.

[19] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for
continuous regression testing: An industrial case study,” in Int. Conf.
on Software Maintenance, 2013.

[20] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in Proceedings of Int. Symp. on Software Testing and
Analysis, 2017.

[21] A. Sarlan, C. Nadam, and S. Basri, “Twitter sentiment analysis,” in Int.
conf. on Information Technology and Multimedia, 2014.

[22] P. Sanguansat, “Paragraph2vec-based sentiment analysis on social media
for business in thailand,” in Int. Conf. on Knowledge and Smart
Technology (KST), 2016.

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013.

[24] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” 2017.

[25] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Int. conf. on machine learning, 2014.

[26] S. Patil, A. Gune, and M. Nene, “Convolutional neural networks for text
categorization with latent semantic analysis,” in Int. Conf. on Energy,
Communication, Data Analytics and Soft Computing, 2017.

[27] S. Tahvili, L. Hatvani, M. Felderer, W. Afzal, and M. Bohlin, “Au-
tomated functional dependency detection between test cases using
doc2vec and clustering,” in Int. Conf. On Artificial Intelligence Testing,
2019.

[28] S. Tahvili et al., “Cluster-based test scheduling strategies using semantic
relationships between test specifications,” in Int. Work. on Requirements
Engineering and Testing, 2018.

[29] D. Erhan et al., “Why does unsupervised pre-training help deep learn-
ing?” J. Mach. Learn. Res., vol. 11, p. 625–660, 2010.

[30] J. Lee et al., “BioBERT: a pre-trained biomedical language represen-
tation model for biomedical text mining,” Bioinformatics, no. 4, pp.
1234–1240, 2019.

[31] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Conf.
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2019.

[32] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Conf. on Empirical Methods in Natural
Language Processing, 2019.

[33] R. Campello, D. Moulavi, and J. Sander, “Density-based clustering
based on hierarchical density estimates,” in Advances in Knowledge
Discovery and Data Mining, 2013.

[34] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[35] E. Engström and P. Runeson, “Decision support for test management
and scope selection in a software product line context,” in Int. Conf. on
Software Testing, Verification and Validation Workshops, 2011.

[36] S. Tahvili, L. Hatvani, E. Ramentol, R. Pimentel, W. Afzal, and
F. Herrera, “A novel methodology to classify test cases using natural
language processing and imbalanced learning,” Engineering Applica-
tions of Artificial Intelligence, vol. 95, pp. 1–13, August 2020.

[37] “Sbert source code and model repository,” [Online]. Available from:
http://github.com/UKPLab/sentence-transformers/ 2020.09.01.

[38] R. Rehurek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in LREC Work. on New Challenges for NLP
Frameworks, 2010.

[39] “Hdbscan source code and model repository,” [Online]. Available from
github.com/scikit-learn-contrib/hdbscan/ 2020.09.01.

[40] “Model performance evaluation,” [Online]. Available from:
http://github.com/leohatvani/landin-performance-comparison/
2020.09.01.

[41] Z. Lipton, C. Elkan, and B. Naryanaswamy, “Optimal thresholding
of classifiers to maximize f1 measure,” in Machine Learning and
Knowledge Discovery in Databases, 2014.

97Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

