
An Architectural Smell Evaluation in an Industrial Context

Francesca Arcelli Fontana
University of Milano-Bicocca

Milano, Italy
email: arcelli@disco.unimib.it

Federico Locatelli
Anoki

Milano, Italy
email: f.locatelli@anoki.it

Ilaria Pigazzini
University of Milano-Bicocca

Milano, Italy
email: i.pigazzini@campus.unimib.it

Paolo Mereghetti
Anoki

Milano, Italy
email: p.mereghetti@anoki.it

Abstract—A known symptom of architectural erosion is the
presence of architectural smells in software systems. They are
the result of design decisions which negatively impact on software
quality, and may lead to what is called Architectural Technical
Debt. When such problems arise, developers feel difficulties in
maintaining and evolving their architectures. Some tools have
been developed to automatically identify architectural smells and
in this study we propose the evaluation of architecture erosion
in an industrial context through Arcan, an analysis tool able to
identify eight architectural smells. In particular, we report the
results of an industrial case study born from the collaboration
between a Laboratory of the University of Milano-Bicocca and
an italian company active in the software consulting field. The
study has been structured as a survey on the architectural smells
detected by the tool, from which we collected the feedback and
opinions of the three projects’ developers. Developers learned
about architectural smells and became aware of the fact that
their project had additional problems with respect to what they
knew. We propose this work as a pilot for future works on the
perception of AS in industrial context.

Keywords–Architectural Smells; Architectural Debt; Industrial
study; Refactoring; Criticality.

I. INTRODUCTION
Architectural Smells (AS) are design decision which neg-

atively impact on software quality. They represent the main
source of investigation in order to evaluate and manage archi-
tectural debt [1][2]. While code smells [3], in particular some
of them (such as Large Class, Long Methods, Duplicate Code)
are all well known from the developer/practitioner perspective,
architectural smells are not so well known. Developers are
often unaware of these smells, and they focus their attention
on short term tasks, such as bug fixing and other code level
issues. They are not aware of the possible accumulating debt
due to the presence of architectural smells in their projects.

In order to better investigate how architectural smells
are perceived by the developers, we describe in this work
an evaluation we performed in an industrial context on the
detection and perception of architectural smells by the develop-
ers/practitioners. With this purpose, we started a collaboration
between the Evolution of Software Systems and Reverse
Engineering Laboratory (ESSeRE Lab) of the University of
Milano Bicocca [4] and the Anoki company in Milano [5].
The architectural smells considered in this evaluation are those
currently recognized by the Arcan tool [6] developed by the
ESSeRE Lab. The developers of the company received ma-
terial and explanations on the considered architectural smells.
Then we proposed a survey with different questions that they
had to answer related to each instance of the inspected smells.

Through this study we aim to answer the following Re-
search Questions:

RQ1: How are architectural smells perceived in an indus-
trial context? With the answer to this question we aim to
investigate whether the concept of AS is known and whether
developers perceive them as problems with some kind of
impact on software quality attributes. We are also interested
in exploring other possible smells/problems present in the
analyzed project considered harmful by developers, in order
to improve the Arcan tool with new detectors.
RQ2: What practitioners suggest according to the refac-
toring of the smells? The effort required to fix AS, such as
Cyclic Dependency, is higher than fixing a code smell [3],
because it implies to move/modify both methods and classes
of a system [7]. For this reason, we aim to investigate the
opinion of the developers about the possible actions to be taken
regarding the refactoring of the AS.
RQ3: Which are the most critical smells according to
the practitioners perception? We aim to identify the smells
perceived as most critical according to the evaluation of the
interviewees. This information could be useful during software
development by trying to avoid them and remove them first,
since the most critical smells could lead to a progressive
architecture degradation.

Moreover, with our study we aimed to reach further goals
related to the validation of the Arcan tool, namely: The eval-
uation of 8 different types of architectural smells detected by
Arcan through the feedback of the developers of the company,
which could provide also useful hints to enhance the AS
detection strategies and the possible definitions of new metrics
(severities) able to discriminate the different smells by their
criticality and Additional feedback on the possible usefulness
of architectural smell detection, as the one outlined by the
practitioners, related to the migration towards a microservice
architecture.

The paper is organized through the following sections: in
Section 2 we describe some related work, in Section 3 we
introduce the AS considered during this evaluation, in Section
4 we describe the study design and the different questions
used in the survey, in Section 5 we outline the main results,
in Section 6 the lessons learned and in Section 7 the threats
to validity. Finally, in Section 8 we report the answers to our
RQ, the conclusions and future developments.

II. RELATED WORK
Several works have been done on the evaluation of code

smells or other kind of code violations in collaboration with
practitioners, such as for example a survey on code smells
performed by Yamashita et al. [8] which outlines that a large
proportion of developers did not know about code smells.
A study of Soh et al. [9] where professionals were hired

68Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

to perform maintenance tasks in order to assess whether
code smells affect maintenance activities. Palomba et al. [10]
conducted a study on developer’s perception of the nature and
severity of code smells. Tahir et al. [11] investigated how
developers discuss code smells and anti-patterns across three
technical Stack Exchange sites.

Few works focused on the evaluation of AS, in particular
in an industrial context through the feedback of the devel-
opers/practitioners. Arcelli et al. [6] evaluate the precision
of the detection results provided by the Arcan tool on the
detection of three smells in two industrial projects. Wu et al.
[12] present their experience in using a software architecture
measurement standard through a collaboration with a company
to evaluate, measure, and improve the architectures of their
software products. Mo et al. [13] report their experiences of
applying three complementary automated software architecture
analysis techniques, in some industrial projects. Pigazzini et
al. [14] describe an approach based on AS detection and topic
detection for the migration towards a microservice architecture
in an industrial case study, where the developer provided also
several feedbacks on the usefulness of the AS detection during
the migration steps.

In a previous study [2], we conducted an in-depth investi-
gation on the identification and prioritization of architectural
debt in an industrial context through a survey, interviews and
inspection of the code with the practitioners of an industry in
Sweden. With respect to this work, in this study we consider
a larger number of smells, eight smells instead of three,
the developers evaluated a higher number of instances of
smells, the previous detection rules of the three smells have
been improved and the survey has been changed through the
introduction of new questions.

III. ARCHITECTURAL SMELLS
We consider eight AS, which correspond to the currently

detected smells by the Arcan tool [6] on Java components i.e.
classes and/or packages:
Cyclic Dependency (CD): refers to a component that is
involved in a chain of relations that break the desirable acyclic
nature of a component dependency structure. Arcan detects this
smell on classes (CD-C) and packages (CD-P) and according
to different shapes as those described by Al-Mutawa et al.
[15].
Hub-Like Dependency (HL): occurs when a component has
(outgoing and ingoing) dependencies with a large number of
other components [7]. This smell is detected on both classes
(HL-C) and packages (HL-P).
Unstable Dependency (UD): describes a component that
depends on other components that are less stable than itself,
with a possible ripple effect of changes in the system [16].
This smell is detected on packages.
God Component (GC): occurs when a component is exces-
sively large either in terms of Lines Of Code (LOC) or number
of classes [17]. This smell is detected on packages.
Dense Structure (DS): arises when components in a project
have excessive and dense dependencies without any particular
structure i.e. without following a specific architectural design
[18]. This smell is detected on the entire project under analysis
and occurs when the density (the ratio of dependencies over the

components) of the project is high. Hence, only one instance
can be detected per single project.
Feature Concentration (FC): occurs when an architectural
component implements different functionalities in a single
design construct [19]. This smell is detected on packages.
Insufficient Package Cohesion (IPC): occurs when an archi-
tectural component has low internal cohesion [18]. This smell
is detected on packages.
Scattered Functionality (SF): describes a system where mul-
tiple components are responsible for realizing the same high-
level concern and, additionally, some of those components
are responsible for orthogonal concerns [20]. For concern,
we mean a software system’s role, responsibility, concept, or
purpose [21]. This smell is detected on packages.

We considered the above AS because they violate different
design principles, so that we can ask for developer feedback
on different kinds of architectural problems. In particular, CD,
HL, UD and DS are based on dependency issues: depen-
dencies are of great importance in software architecture and
components that are highly coupled and with a high number
of dependencies are considered more critical, since they have
higher maintenance costs. GC and IPC smell violate the
modularity principle; finally FC and SF violate the separation
of concerns principle [21].

Arcan bases all its computations on the dependency graph
which is the representation of the project under analysis in
form of a directed graph. The basic nodes represent the
system entities, such as Java classes, packages and methods.
Edges represent the relationships among the various entities.
We exploit the graph to detect all the smells which affect
the dependencies, e.g., Cyclic Dependency smell, which is
caused by the presence of circular dependencies in the graph.
However, some smells need other kinds of information in
order to be detected, for instance the Feature Concentration
and Scattered Functionality smells regard how system features
are organized inside a project. Hence, Arcan is also able to
generate the feature graph, whose aim is to represent the
features (as synonym of concerns) that can be associated to
the different parts of the system architecture. The feature graph
associates a name in natural language to a set of project files,
enabling developers to read how features are disposed across
the project. Both Arcan graphs can be stored in the Neo4j [22]
graph database, which we exploit also to visualize them.

IV. CASE STUDY DESIGN
In this study, a survey with different questions was given

to the practitioners in order to obtain meaningful data on the
AS listed in Section III. The practitioners were three and they
were all developers belonging to the team that was working on
the analyzed project at the time the survey was proposed. The
first one was a junior developer with 4 years of experience
working on the project analysed in this study. The second one
was a middle developer with 9 and a half years of experience
of which 1 year and a half spent working on the project. The
third one, the team leader, was a senior developer with almost
15 years of experience working on the project for 2 years. We
now describe the steps followed in the case study:
1) During a meeting at the company, one of the author
introduced the practitioners to the notion of AS by explaining
them what they are and why it is important to identify and

69Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

refactor them. In the same meeting, Arcan and its principal
functionalities have been introduced.
2) We then sent them a document containing the detailed
descriptions of all the AS detected by Arcan, including a
description on how Arcan detects them, the metric thresholds
and formulas used for the detection. We gave them a week to
read (during their normal work at the company) the document
and study the AS meaning and relevance.
3) After that time, we instructed them on how to properly
answer the questions of the survey, by briefly explaining the
different categories and meaning of the questions.
4) We exploited the Google Form tool to create the survey.
We provided the URLs to access it and we assigned 15 days
to answer all the questions.

The survey contains 12 questions that the three practi-
tioners had to answer individually for each AS instance. In
particular, 19 AS instances were presented. For each instance,
we provided the description of the smell type it refers to
and we contextualized it by reporting all classes/packages
affected by the smell. We also attached a visual representation
of the smell with the dependency graph thanks to the Neo4j
graph visualizer used by Arcan[23]. We presented 19 instances
because we selected for each type of AS the ones that, in
our opinion, were the most interesting, trying also to include
instances with different granularity (for CD and HL) and
different characteristics (for IPC, FC and GC). We call smell
characteristics the smell properties that can be measured by a
metric. For IPC we measure the Lack of Component Cohesion
(LCC) [24], which is a metric ranging in (0, 1], where 1
corresponds to packages with a complete lack of cohesion. For
SF and FC we consider the number of features inside packages.
For GC we compute the number of classes in a package and
the LCC metric.

We assume that according to the different characteristics,
AS can have different criticalities intended as the severity and
effort needed to remove them: in this paper we also study if the
perceived AS severity has a relation with such characteristics.
Table III in Section V contains all the instances considered
for each AS. We decided to analyse a greater number of
instances for the new smells that we did not evaluate in
previous works [6][25].

A. Analyzed Project
The analyzed project is a Business Management System

written in Java with a monolithic architecture, but the devel-
opers are interested in a migration towards a microservices
one. Table I reports the project’s metrics and the number of
AS instances detected by Arcan on it. The analyzed project

TABLE I. ANALYZED PROJECTS METRICS AND ARCHITECTURAL
SMELLS

metrics architectural smells

NOC NOP #CD
(classes)

#CD
(package)

#HL
(classes)

#HL
(package) #UD #GC #DS #IPC #FC #SF

1343 112 135 5 3 3 19 10 1 107 4 81

is 10 years old and can be considered a medium-large project
with 1343 classes and 112 packages. Arcan detected a total of
367 smell instances of which mostly are Cyclic Dependency

between classes (135), Insufficient Package Cohesion (107)
and Scattered Functionality (81), while smells like Hub-Like
(3) and Feature Concentration (4) are much less present.

B. Data Collection through the Survey
The questions asked to the developers in the survey are

reported in Table II. Each question aims to gather the devel-
oper’s evaluation on specific aspects of the analyzed AS, that is
particularly valuable considering their deep knowledge on the
project. The proposed questions can be grouped by category:
AS detection and awareness [Q1 − Q3, Q12]: this set of
questions aim to evaluate the precision of the Arcan detection
strategies and investigate the awareness of the developers on
the presence of the smells.
AS impact[Q5−Q6]: these questions aim to collect information
about the perceived impact of AS on different software quality
attributes.
AS refactoring[Q7 − Q9]: such questions gather information
about whether refactoring activities, in the opinion of the
developers, should be conducted and the type of refactoring
needed to remove the smell.
AS severity, refactoring effort and priority[Q4, Q10 − Q11]:
these questions aim to evaluate the effort/time needed to apply
the refactoring and understand whether the smells can be
ranked depending on their criticality (severity), i.e. if it is
possible to quantify the smell impact thanks to the evaluation
of specific smell characteristics, e.g., smell size (the number
of affected classes/packages). To evaluate the answers of
these questions, we define and compute three metrics (see
section 5 for more details on the metrics computation), namely
Average Severity of the smells, i.e., the average criticality that
developers’ associate to the smells, the Average Effort needed
to refactor the smells and the Average Priority of refactoring
that can be associated to the smells, i.e., the ordering of the
smells depending on which should be refactored first. We
chose to compute these values in order to summarize the
collected data and be able to compare them.

The proposed questions are of three types: binary ques-
tions, where the possible answers are Yes or No; closed-
ended questions, with multiple possible answers and open-
ended questions, which were optional because we did not want
to force the practitioners to spend too much time on them and,
in some cases, no answer was needed, e.g., Q3 if the smell
instance is considered as a problem by the practitioner. In this
way we were able to collect both quantitative and qualitative
answers, in particular the latter allowed us to gain insights
about the concrete opinions of the practitioners.

V. RESULTS
After an accurate analysis of the answers submitted by the

practitioners, significant results were extracted and reported
in Table III and Table IV. The collected data reported in this
section will be exploited to answer the RQs.

A. AS detection and awareness
One of the information we aimed to obtain from this case

study was the classification of each AS instance in true positive
or false positive. A smell instance discovered by Arcan was
classified as true positive if most of the developers asserted
that it is an actual issue/problem in the system, otherwise, it

70Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

TABLE II. PROPOSED QUESTIONS

ID Question Possible Choices

Q1 Does the reported smell represent a problem in the
system? Yes or No

Q2 Were you aware of the presence of this smell in the
system? Yes or No

Q3
If it’s not a problem, do you think that this could
be a case of false positive AS? Or an AS not
critical? For which reasons?

N/A (open-response)

Q4 How significant are the negative impacts caused by
the smell in your opinion?

0 - Not a problem
1 - Low severity
2 - Mid-Low severity
3 - Mid-High severity
4 - High severity

Q5
If it has negative impacts, which of the following
software internal qualities has this type of smell an
impact on?

• Reliability (R)
• Efficiency (E)
• Security (S)
• Maintainability (M)
• Other

Q6 If not removed, the impact of this type of smell get
worse as time passes

0 - Disagree
1 - Somewhat Disagree
2 - Somewhat Agree
3 - Agree

Q7

What refactoring would you suggest to conduct?
(e.g. move class, extract class, extract components,
extract layers, etc.. Take in consideration your
best option only)

N/A (open-response)

Q8
Do you think that conducting the refactoring would
create negative side-effects? If yes which
ones?

N/A (open-response)

Q9 If no refactoring should be conducted, which is the
reasons?

• Not a real AS
(false positive)
• The smell does not
represent a problem
because there is not a
better solution
• The removal of this
smell is too expensive
• Other

Q10 How much effort/time can be required to refactor
the smell?

0 - No refactoring needed
1 - Low (< 8 h)
2 - Mid-Low (8-50 h)
3 - Mid-High (50-100 h)
4 - High (>100 h)

Q11 What do you think is the overall priority of
refactoring this smell?

0 - No refactoring needed
1 - Low priority
2 - Mid-Low priority
3 - Mid-High priority
4 - High priority

Q12
There is any architectural issue that you know is
present in the system, but was not treated in this
survey? If there is, describe it briefly

N/A (open-response)

was classified as false positive. The related questions are Q1
and Q3, but in some cases the answers given by a developer
to these questions were incoherent, so we considered as more
relevant answer the one provided for Q3 because it is an open
answer question. Among all the 19 AS instances presented
in this survey, only 6 were classified as false positives, for
an overall precision equals to 70%. The AS with the higher
rate of false positives are the HL on Package with 1/1 and
SF with 2/3, while only 2/4 of GC and 1/4 of IPC are false
positives. All the other AS instances have been indicated as
true positives.

The developers explained also why some instances were
false positives, i.e., real smells present in the code which do not
represent a problem, in their opinion. For example, some false

positives are special cases: the Hub-Like Dependency on Pack-
ages instance was detected on a package that contains utility
classes which “are supposed to be used by classes of any kind”,
as stated by the developers; one of the God Component was
detected on a package that contains many classes hierarchically
organized in that package to avoid boilerplate code (sections
of code that have to be included in many places with little or
no alteration [26]) as declared by the practitioners. Regarding
Scattered Functionality, only one of them was considered a
true positive: this kind of smell is meant to point out defects
in a package-by-feature [27] organization which is desirable
in some cases, but not when the actual design is layered, as
the project analyzed in this study. Developers got aware of
that and signaled it to us, except for the case they considered
true. Consequently, they also indicated this type of smell as
the less critical, meaning that on their architecture the detected
instances do not cause harm.

Another information we acknowledged from the answers to
question Q2 was the awareness of the developers regarding
the considered AS. One developer declared that he/she was
already aware of the presence of 15 out of 19 (78%) smell
instances, while the others 8 out of 19 (42%) and 5 out of 19
(26%). This information points out that the analysis with Arcan
allowed them to discover some smells they were not aware of.
Finally, we asked them to list smells or other problems that
they knew were present in the system, but not included in
the list of smells detected by Arcan in order to identify other
possible problems/smells to consider for future extension of
the tool detection strategies (Q12). However, no problem has
been outlined by the developers in answering this question, so
we could not extract useful information in this regard.

B. AS impact
Questions Q5 and Q6 had the purpose of gathering data

about which software attributes each smell instance affects and
if this negative effect of the smell will get worse as time passes.
In question Q5, each developer could select more than one
software attribute between Maintainability, Efficiency, Security
and Reliability and suggest others ones that were not present
among the possible choices. On the other hand, by answering
question Q6, they could specify how much they agree with the
statement “If not removed, the impact of this type of smell
get worse as time passes”. This information is summed up
in Table III: for each AS instance (first column), the number
of practitioners that selected each quality attribute is reported
next to the letter indicating the attribute (second column), the
Agreement on Q6 answer (third column) was computed by
assigning a value (from 0 to 3, see Table II) to each possible
choice of question Q6 and summing these values based on the
answers of the developers. The higher this sum, the higher the
agreement.

One relevant observation is that all the smells were
considered affecting maintainability by at least one devel-
oper. For one smell instance, God Component A, a developer
suggested an additional aspect, that “they affect the domain
structure” i.e. how the domain model is organized across the
different packages. For what concerns smells that get worse
as time passes, we discovered that the developers found
Hub-Like on Classes and Feature Concentration the most
problematic in these terms. Even if we sum up the agreement
for each type of smell and normalize respect to the number of

71Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

TABLE III. RESULTS FOR EACH ARCHITECTURAL SMELL
INSTANCE

Architectural Smell Instance Affected Software Aspects Agreement
on Q6

Cyclic Dependency on Classes M(3), E(2) 6

Cyclic Dependency on Packages M(3), E(1), R(1) 6

Hub-Like Dependency on Classes M(3), E(2), R(1) 8

Hub-Like Dependency on Packages false positive −

Unstable Dependency M(3), E(1), R(1), S(1) 5

God Component A
M(1), E(1),

Domain structure/feature
concentration(1)

4

God Component B M(3), E(1), S(1) 7
God Component C false positive −
God Component D false positive −

Insufficient Package Cohesion A false positive −
Insufficient Package Cohesion B M(2), E(1), R(1) 3
Insufficient Package Cohesion C M(3), E(1), R(1) 3
Insufficient Package Cohesion D M(3), E(1), R(1) 6

Feature Concentration A M(2), E(1), R(1) 3
Feature Concentration B M(3), E(1), R(1), S(1) 8

Scattered Functionality A M(1), R(1) 3
Scattered Functionality B false positive −
Scattered Functionality C false positive −

Dense Structure M(1), E(1), R(1), S(1) 5

Key: M: Maintainability, E: Efficiency, R: Reliability, S: Security

instances, the smell which get worse the most is still Hub Like
Dependency on classes.

C. AS refactoring
We also asked various questions (Q7, Q8, Q9) regarding

the possible refactoring of each smell. Answering two of these
questions (Q7,Q8) was optional since they are open-ended
questions, thus we collected a limited number of answers.
However, the few data helped us in confirming a specific
aspect: smells like Scattered Functionality, Insufficient
Package Cohesion and Feature Concentration are meant to
point out defects in a package-by-feature [27] organization
which is desirable in some cases, but not when the actual
design is layered. These smells are detected by Arcan to pro-
vide also a microservice migration support, where a package-
by-feature organization is preferable and more useful [14].
Hence, the refactoring of these smells is effective with the
aim of reorganizing the project as package-by-feature i.e.
transforming the layers into microservices.

Instead, with the answer to Q9, developers provided the
reason why they would not refactor the smells instances which
they indicated as true positive. In particular, there was a similar
response for all CD-P, HL-C, UD and FC asserting that they
should not be refactored because “their refactoring would be
too expensive”. For the FC instance, there was also another
answer declaring that “it should not be refactored because
there is not a better solution”. The same answer was given
for one GC instance, all the SF and all the IPC. In brief,
developers reported that no refactoring should be conducted
on the detected smells because the refactoring activity is
too expensive and because sometimes the smell presence is

unavoidable. We suggested to the developers that a possible
solution to avoid the too expensive smells is to periodically
run Arcan on the system and remove smells as soon as they
appear. Moreover, their new knowledge about AS can help
them in avoiding their introduction in the first place.

D. AS severity, refactoring effort and priority
Other useful data collected for each AS are the perceived

severity (Q4), refactoring effort (Q10) and refactoring priority
(Q11), which we summarize through the metrics introduced in
Section IV-B: the Average Severity, the Average Effort needed
to refactor the smell and its Average Priority of refactoring.
They are computed by assigning a score to each possible
choice the developers could pick to answer questions Q4,
Q10 and Q11, then calculating, for each smell instance, the
sum of the scores indicated by the developers and eventually
computing the average sum for each AS. The maximum
reachable value is 12, which happens if all developers agree on
answering “High”. We found out that the metrics values for all
the AS are very close to each other, meaning that developers
perceive these three metrics as linearly dependent. The only
smells for which one of the three metrics mentioned above
has a value that is much higher than the other two metrics
are 1) the Cyclic Dependency smells, which have an Average
Priority of refactoring of 8, while the other metrics are equal
to 5 and 2) Dense Structure, which has an Average Effort of 8
and an Average Severity of 5. If we consider the percentages
computed on all the smells of the answers regarding Severity,
Effort and Priority, we find out that the majority of the smells
have been classified as having Medium-Low Severity (35%),
Effort (33%) and Priority (25%).

Furthermore, we ranked the true positive AS depending
on the metrics’ values. We reported the most notable ones in
Table IV. As we previously mentioned the developers assigned
values very close to each other for every AS, so the logical
consequence is that the AS with the highest severity has
the highest priority of refactoring and requires the highest
effort to be removed too and vice-versa. In this scenario,
Hub-Like Dependency on Classes is the smell with the highest
values for all the metrics and Insufficient Package Cohesion
is the one with the lowest.

Moreover, we analyzed the possible correspondence be-
tween the severity of the AS as perceived by the developers
and the metrics used to detect the AS by Arcan, with the aim
of identifying a specific smell characteristic (see Section IV)
that may become a severity criterion. We checked the 1)
Insufficient Package Cohesion smell according to the Lack
of Component Cohesion (LCC)[24], 2) Feature Concentration
according to the number of features inside packages and 3)
God Component according to the number of classes in a
package and the LCC metric. We did not check smells with
only one true positive.

TABLE IV. RELEVANT SMELLS

Severity Effort Priority

AS Most
critical

Least
critical

Most
hard-to-remove

Least
hard-to-remove

Most
urgent-to-remove

Least
urgent-to-remove

HL-C X X X
IPC X X X

72Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

We observed that all the Insufficient Package Cohesion
instances have a severity of 3 except for one instance that
has a severity of 4: this is also the only one with a LCC
equals to 1, which indicates a complete lack of cohesion
among the classes belonging to the affected package. The
two instances of Feature Concentration have respectively a
severity of 4 and 7 and a number of features inside the
package of 14 and 28, so we think that this characteristic
may be linked to the severity of the smells. Finally, God
Component’s instances did not show a link between the
severity and the number of classes contained in the package
even considering only true positives instances, but we
identified a relationship between the developers’ severity
perception and the Lack Of Component Cohesion of the
affected package. The packages corresponding to the most
severe instances (severity=5) have also the highest values of
LCC (0.57 and 0.78), while the instance with a severity of 4
affects a package with a LCC of 0.45 and the package affected
by the least severe instance (severity=2) has a LCC inferior to
0.2: the higher the LCC of the package, the higher the severity
of the AS instance. In brief, we identified a link between:
1) the severity of the IPC instances and the LCC metric; 2)
the severity of the GC instances and the LCC metric; 3) the
severity of the FC instances and the number of features inside
the affected packages.

VI. LESSONS LEARNED
We briefly describe below the principal lessons learned

and feedback we obtained from the survey that we exploit
to answer the RQs in the next section.

Lesson learned for the Arcan tool developers First of all,
we received a feedback from project experts on the precision of
the results of the Arcan tool and their usefulness, in particular
we obtained feedback on how many detected AS were not
actual issues and, taking a closer look to these smells, we
can improve the tool in order to reduce the number of false
positives results. Secondly, we gathered useful data on how
critical each AS instance is, which software attributes it affects
and which AS’s characteristics may be linked to its criticality:
we can use this information to add new functionalities to
the tool, like assigning a severity value to each AS instance
in order to establish a priority ranking that can reduce the
developers’ overall refactoring effort. One remarkable example
is the severity of GC, which we hypothesised linked to the
progressive higher number of classes inside the package.
Actually, we found out that developers considered more critical
GC instances which have higher LCC: hence a large package
with a very low internal cohesion represents the worst possible
case that a developer can face.

Lesson learned for the developers/practitioners of the com-
pany The developers got useful feedback while examining the
smells we showed them through the survey. When we asked
them about what the survey taught them, they outlined that 1)
an analysis made through the support of a tool, like Arcan, can
bring up issues that the developers did not notice before: they
discovered new AS that they never considered as problems and
they will keep them in mind from now on to avoid falling into
the same mistakes. 2) They also learned that AS can become
relevant issues when working with a large system, because
coding can easily lead to the creation of several little smells
instances that become progressively greater as the project

grows. This aspect, in their opinion, can make the system hard
to maintain and understand, specially when trying to identify
and separate the system functionalities, such as for a possible
migration to a microservices architecture which requires to
identify, isolate and put in the same microservice all the classes
that work on the same functionality. 3) Finally, they also got
aware of the fact that the developer’s experience is important
in a perspective of knowledge of the project he/she’s working
on: the junior developer, thus the least experienced among the
three, was also the least aware of the reported smells even
though he/she has been working on the project for a longer
period (4 years vs 1.5/2 years) compared to the others.

VII. THREATS TO VALIDITY
As for construct validity, there is a possibility that the

practitioners misinterpreted what the AS represent or what
we asked in the questionnaire. However, we mitigated this
threat by explaining each type of smell and also each smell
instance with a detailed description and the support of a
graph visualization. As for internal validity, it is unlikely
that the opinions on the negative impact of the smells on
the project quality reported by the practitioners would be
affected by factors that are not related to the AS, since we
explained and contextualized each smell in the survey in detail
and practitioners were careful to inquire the main causes of
the perceived negative impact inside the code. The threat to
external validity is due to the fact that the case-study has
been conducted in a single company and on a single project,
hence the results may not apply to other application domains.
The reason of such limited scope is due to the difficulties of
finding available industrial projects to analyze: in the future,
we aim to extend our work with more of them. Moreover, the
number of studied AS was limited and for some types, such
as Hub-Like Dependency on package, only one instance was
analyzed. However, we mitigate this aspect by interviewing
three developers with different skills and seniority and by
measuring their accordance. As for reliability, we identified
cases where the practitioners contradicted themselves, however
we mitigated this problem by proposing also open-ended
questions and collecting their concrete opinions. Even if the
study is replicable, the results are based on practitioners’
experience and perception, hence the real impact and severity
of the AS might differ from the one reported here. However,
we subjected the survey to the developers who are actively
working on the project and are directly interested by the
possible presence and impact of the AS, so their opinion is
the most valuable for validating the AS and Arcan.

VIII. CONCLUSION
In this paper, we described the evaluation of 8 AS through

the feedback of 3 developers on one industrial project. In
particular, we ran the AS detection tool Arcan on the project
and presented the results to the developers. Then, for each
analyzed instance of AS, we collected information about AS
impact, severity and its refactoring through a survey composed
of 12 questions. Every developer individually answered the
questions of the survey and on such data we build our study.
We now report the answers to our research questions, which
summarise the results of our study:

RQ1: How are architectural smells perceived in an indus-
trial context? Developers did not know about the concept of

73Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

AS, however they reported that they were aware of some of
them. They also confirmed that AS have a negative impact
on software internal qualities, in particular on maintainability.
They recognized the risk linked to the presence of AS in their
architecture and acknowledged the usefulness of automatic
tools, like Arcan, which can detect this kind of anomaly.

RQ2: What practitioners suggest according to the refac-
toring of the smells? We were not able to extract from the
survey answers, valuable suggestions concerning the refac-
toring of the smells. However, the few data pointed out that
developers would not refactor some of the detected instances
because the refactoring activities could be too expensive and
for some cases, the smell could represent the only possible
solution. A specific comment was made on the refactoring of
Feature Concentration, Scattered Functionality and Insufficient
Package Cohesion: the refactoring of such ASs is useful, when
the system architecture is layered, to prepare the migration
towards microservices, by structuring the packages by feature
and thus easing the identification of the candidate services.
This comment confirmed a result investigated in our previous
work, where we exploited Arcan to detect the candidate mi-
croservices of an industrial project and collected the developers
feedback on the proposed solution [14].

RQ3: Which are the most critical smells according to
the practitioners perception? The most critical smell, in the
context of this study and the developers’ opinion, is HL on
classes, which is also one of the smell which gets worse
the most, as time passes. Developers should pay attention to
this kind of AS and remove it as soon as it appears. On the
contrary, IPC is the least critical AS.

In the future, we aim to carry out more studies like the one
presented in this paper, on different projects of different ap-
plications domain and companies in order to better understand
how AS are perceived in an industrial context and improve the
AS detection support. We also aim to study how to prevent
the introduction of AS by leveraging on machine learning
techniques [28]: in this way practitioners could avoid the extra
costs due to the refactoring of the AS.

REFERENCES
[1] R. Verdecchia, “Architectural technical debt identification: Moving for-

ward,” in 2018 IEEE International Conference on Software Architecture
Companion, ICSA Companion 2018, Seattle, WA, USA, April 30 - May
4, 2018, pp. 43–44.

[2] A. Martini, F. Arcelli Fontana, A. Biaggi, and R. Roveda, “Identifying
and prioritizing architectural debt through architectural smells: a case
study in a large software company,” in Proc. of the European Conf. on
Software Architecture (ECSA). Madrid, Spain: Springer, Sep. 2018.

[3] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, USA: Addison-Wesley, 1999.

[4] E. Lab, Evolution of Software Systems and Reverse Engineering
Laboratory Official Website, 2020 (accessed August 2020). [Online].
Available: https://essere.disco.unimib.it/

[5] Anoki, Anoki s.r.l., 2020 (accessed August 2020). [Online]. Available:
https://www.anoki.it/

[6] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. A. Tamburri, M. Zanoni,
and E. D. Nitto, “Arcan: A tool for architectural smells detection,” in
Int’l Conf. Software Architecture (ICSA) Workshops, Gothenburg, Apr.
2017, pp. 282–285.

[7] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells: Managing Technical Debt, 1st ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2014.

[8] A. F. Yamashita and L. Moonen, “Surveying developer knowledge and
interest in code smells through online freelance marketplaces,” in USER
2013, San Francisco, CA, USA, May 26, 2013, pp. 5–8.

[9] Z. Soh, A. Yamashita, F. Khomh, and Y. Guéhéneuc, “Do code smells
impact the effort of different maintenance programming activities?” in
SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - vol. 1, pp.
393–402.

[10] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia, “Do
they really smell bad? A study on developers’ perception of bad code
smells,” in 30th IEEE ICSME, Victoria, BC, Canada, September 29 -
October 3, 2014, pp. 101–110.

[11] A. Tahir, J. Dietrich, S. Counsell, S. Licorish, and A. Yamashita, “A
large scale study on how developers discuss code smells and anti-pattern
in stack exchange sites,” Information and Software Technology, vol.
125, 2020, p. 106333.

[12] W. Wu, Y. Cai, R. Kazman, R. Mo, Z. Liu, R. Chen, Y. Ge, W. Liu,
and J. Zhang, “Software architecture measurement - experiences from
a multinational company,” in ECSA 2018, Madrid, Spain, September
24-28, 2018, Proc., pp. 303–319.

[13] R. Mo, W. Snipes, Y. Cai, S. Ramaswamy, R. Kazman, and M. Naedele,
“Experiences applying automated architecture analysis tool suites,”
in Proc. of the 33rd ACM/IEEE, ASE 2018, Montpellier, France,
September 3-7, 2018, pp. 779–789.

[14] I. Pigazzini, F. A. Fontana, and A. Maggioni, “Tool support for the
migration to microservice architecture: An industrial case study,” in
Software Architecture - 13th European Conference, ECSA 2019, Paris,
France, September 9-13, 2019, Proceedings, pp. 247–263.

[15] H. A. Al-Mutawa, J. Dietrich, S. Marsland, and C. McCartin, “On the
shape of circular dependencies in java programs,” in ASWEC 2014,
Milsons Point, Sydney, NSW, Australia, April 7-10, 2014. IEEE
Computer Society, 2014, pp. 48–57.

[16] R. Marinescu, “Assessing technical debt by identifying design flaws in
software systems,” IBM Journal of Research and Development, vol. 56,
no. 5, 2012, pp. 9:1–9:13.

[17] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, Apr. 2006.

[18] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the 13th International Conference on
Mining Software Repositories, ser. MSR ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 189–200.

[19] H. S. de Andrade, E. S. de Almeida, and I. Crnkovic, “Architectural
bad smells in software product lines: an exploratory study,” in Proc. of
the WICSA 2014 Companion Volume, Sydney, NSW, Australia, April
7-11, 2014. ACM, 2014, pp. 12:1–12:6.

[20] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying ar-
chitectural bad smells,” in 2009 13th CSMR, Kaiserslautern, Germany,
2009, pp. 255–258.

[21] E. W. Dijkstra, “On the role of scientific thought,” 01 1974.
[22] N. Inc., Neo4j, 2020 (accessed August 2020). [Online]. Available:

https://neo4j.com/
[23] ——, Neo4j graph visualization, 2020 (accessed August 2020).

[Online]. Available: https://neo4j.com/developer/graph-visualization/
[24] T. Sharma, P. Mishra, and R. Tiwari, “Designite: A software design

quality assessment tool,” in Proc. of the 1st Intern. Workshop on Bring-
ing Architectural Design Thinking into Developers’ Daily Activities,
ser. BRIDGE ’16. NY, USA: ACM, 2016, p. 1–4.

[25] F. Arcelli Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
detection of instability architectural smells,” in Proc. of the 32nd Intern.
Conf. on Software Maintenance and Evolution (ICSME 2016). Raleigh,
North Carolina, USA: IEEE.

[26] N. Mitchell and C. Runciman, “Uniform boilerplate and list processing,”
in Proc. of the ACM SIGPLAN Workshop on Haskell Workshop, ser.
Haskell ’07. NY, USA: ACM, 2007, p. 49–60.

[27] K. Lee, K. C. Kang, W. Chae, and B. W. Choi, “Feature-based approach
to object-oriented engineering of applications for reuse,” Software:
Practice and Experience, vol. 30, no. 9, 2000, pp. 1025–1046.

[28] F. A. Fontana, P. Avgeriou, I. Pigazzini, and R. Roveda, “A study
on architectural smells prediction,” in 45th Euromicro Conference
on Software Engineering and Advanced Applications, SEAA 2019,
Kallithea-Chalkidiki, Greece, August 28-30, 2019, pp. 333–337.

74Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

