
An Enhanced Fault Prediction Model for Embedded Software based on Code Churn,

Complexity Metrics, and Static Analysis Results

Safa Omri

Karlsruhe Institute
of Technology

Germany
Email: safa.omri@kit.edu

Carsten Sinz

Karlsruhe Institute
of Technology

Germany
Email: carsten.sinz@kit.edu

Pascal Montag

Daimler AG
Boeblingen
Germany

Email: pascal.montag@daimler.com

Abstract—Software systems evolve over time because of function-
ality extensions, changes in requirements, optimization of code,
fixes for security and reliability bugs, etc., and it is commonly
known that software quality assurance is thus a continuous issue
and is often extremely time-consuming. Therefore, techniques to
obtain early estimates of fault-proneness can help in increasing
the efficiency and effectiveness of software quality assurance. The
ability to predict which components in a large software system
are most likely to contain the largest numbers of faults in the next
release helps to better manage projects, including early estimation
of possible release delays, and affordably guide corrective actions
to the quality of the software. This paper extends our previous
work, where we demonstrated that the combination of code
complexity metrics together with static analysis results allows
accurate prediction of fault density and to build classifiers
discriminating faulty from non-faulty components. The extension
presented in this paper augments our predictor and classifier
with code churn metrics. We applied our methodology to C++
projects from Daimler’s head unit development. In experiments
to separate fault-prone from non-fault-prone components, our
new approach achieved a classification accuracy of 89%, and
the regressor predicted the fault density with an accuracy of
85.7%. This is an improvement of 7.5% with respect to the
accuracy of fault density prediction, and an improvement of 10%
to the accuracy of fault classification compared to our previous
approach that did not take code churn metrics into account.

Keywords–Software defects mining; static analysis tools; statis-
tical methods; complexity metrics; churn metrics; fault proneness.

I. INTRODUCTION

Software plays an important role in automotive product
development and in embedded systems in general. As such
software is often safety-critical, considerable efforts have to
be put into quality assurance. Increasing the effectiveness
and efficiency of this effort hence becomes more and more
essential.

It is generally acknowledged that software quality assur-
ance is a pressing concern for embedded software development
[1]. Given the size, complexity, time and cost pressure in
automotive development projects, efficiency is of prime im-
portance. Nowadays, quality assurance is overall the most ex-
pensive activity for nearly all software developing companies,
since team members need to spend a significant amount of
their time inspecting the entire software in detail rather than,
for example, implementing new features. If bugs are detected,
the fixing of those consumes further development time.

Numerous research studies have analyzed code churn as a
variable for predicting faults in large software systems [2], [3],
[4]. Code churn is a measure of the quantity of code modifi-
cation occurring within a software component gradually. But
not only code churn is an indicator of problematic code. In our
previous work [5], we investigated whether defects detected by
static analysis tools combined with code complexity metrics
can be used as software quality indicators and employed these
measures to build pre-release fault prediction models. We
showed in a case study from the automotive domain that the
combination of these two measures can be used to predict the
pre-release fault density with an accuracy of 78.3%. We have
also shown that this combination can be used to separate high
and low-quality components with a classification accuracy of
79%.

High churn is typically related to more faults showing up in
code that has actually been changed frequently. And studying
these changes that take place during software evolution via
code churn is also important. We thus make use of code churn
to predict the fault density in software components. We have
mined the version control database of a large software system
to collect code churn variables. We create as well as validate
a collection of relative churn variables as early indicators of
software fault density. Relative churn variables are normalized
values of the numerous measures acquired throughout the
churn procedure [4].

In this article, we develop a prediction model based on
the following hypothesis: the history of code changes between
different releases (code churn) when combined with our two
previous measures can improve the prediction accuracy of
software faults density. Another contribution is to apply our
prediction model to automotive software, where we obtain
improved results compared to our previous approach.

The organization of the paper is as follows. After dis-
cussing the state of the art in Section II, we describe the design
of our approach in Section III. Our results are reported and
discussed in Section IV. Section V concludes and discusses
future work.

II. RELATED WORK

This section discusses the state of the art and the research
results in software fault prediction techniques:

177Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

A. Faults, Bugs and Failures
In this work, we use the term fault to refer to a bug (an

error) in the source code. A bug is a fault in a program which
causes it to behave abruptly. We refer to an observable error
at program run-time as failure. That is, every failure can be
traced back to a fault, but a fault does not necessarily result in a
failure. In recent years, researchers have learned to exploit the
vast amount of data that is contained in software repositories
such as version and bug databases [4], [6], [7], [8]. The key
idea is that one can map problems (in the bug database) to
fixes (in the version database) and thus to those locations in
the code that caused the problem [9], [10], [11]. The focus of
this work is these faults to obtain an early estimate of software
component’s fault-proneness in order to guide software quality
assurance towards inspecting testing the components most
likely to contain faults. Fault-proneness is defined as the
probability of the presence of faults in the software. Past
research on fault-proneness has focused on (i) the definition of
code complexity and testing thoroughness metrics, and (ii) the
definition and experimentation of models relating metrics with
fault-proneness. Moreover, extracting data when mining the
software repositories help to better identify the fault-proneness
of software components.

B. Mining Software Repositories
Mining software repositories allows researchers to analyze

the information produced throughout the software develop-
ment process, such as source code, version control system’s
metadata, as well as issue reports [12], [13], [14]. With such
evaluation, researches can empirically examine, understand,
and also discover valuable and also actionable insights for
software engineering. The extracted data when mining the
software repositories help to understand the impact of code
smells [15], [16], explore exactly how developers are doing
code reviews [17], [18], [19], [20] as well as which testing
practices they comply with [21]. Furthermore, historical infor-
mation extracted from software repositories allows researchers
to predict classes that are more susceptible to defects [11],
[22], [23], [24], and also determining the core developers
of a software team, e.g., to transfer knowledge [25]. Our
basic hypothesis is that while these works used only the
change and historical information from the source code, it is
highly likely that these detected information from software
repositories, combined with code complexity metrics and with
static analysis faults would be a good indicator of the overall
code quality, and help to enhance the fault prediction model
presented in our previous work [5].

C. Fault Prediction
Fault prediction is an active research area in the field of

software engineering. Many techniques and metrics have been
developed to improve fault prediction performance.

Object-oriented metrics were initially suggested by Chi-
damber and Kemerer [26]. Basili et al. [27] and Briand et al.
[28] were among the first to use such metrics to validate and
evaluate fault-proneness. Subramanyam and Krishnan [29] and
Tang et al. [30] showed that these metrics can be used as early
indicators of externally visible software quality. D’Ambros
et al. have compared popular fault prediction approaches for
software systems [31], namely, process metrics [32], previous
faults [33] and source code metrics [27]. Nagappan et al. [34]

presented empirical evidence that code complexity metrics can
predict post-release faults. They found that sets of complexity
metrics are correlated with post-release defects using five
major Microsoft products, including Internet Explorer 6.

Omri et al.’s work [5] builds on the study of Nagappan
et al. [34] and focuses on pre-release faults while taking into
consideration not only the code complexity metrics but also
the faults detected by static analysis tools to build accurate
pre-release fault predictors [5].

Furthermore, faults are closely related to changes made in
the software systems and studying the changes that take place
during software evolution via code churn is also important.
Khoshgoftaar et al. [2] were among the first to use past changes
for bug prediction. Their objective was to classify the modules
as fault-prone or not. Therefore, they identified modules where
debug code churn exceeded a threshold. They showed, by
studying the change history of two consecutive releases of
a large legacy software system of telecommunications, that
a high code churn, i.e., a high amount of lines added and
removed, is a good indicator of fault-prone modules. The
system studied contain over 38,000 procedures in 171 modules.
Ohlsson et al. [35], Graves et al. [3] studied the evolution
of changes in the software systems to understand their re-
lationship with software quality. Based on a study on eight
large-scale open source systems (Eclipse, Postgres, KOFFICE,
gcc, Gimp, JBOSS, JEdit and Python), Zimmermann et al. [8]
mined the version histories and predicted the location of future
changes in systems with an accuracy of 70%. Closely related
to our study is the work performed by Nagappan and Ball [4]
on predicting defect density in software systems using relative
code churn metrics, i.e., code churn weighted by lines of code.
They analyze different code churn measures in isolation, and
show that relative code churn is better than absolute code
churn values to predict defects at statistically significant levels.
Their approach is similar to ours in the sense that we are also
considering relative churn variables to predict fault potential.
However, we focus on predicting fault density on an extended
number of variables including code complexity metrics and the
faults detected by static analysis tools.

To the best of our Knowledge, this work is the first to
combine code churn metrics with code complexity metrics and
with static analysis results to predict software defect density.

III. APPROACH

Our approach, represented in Figure 1, can be summarized
in the following two steps:

A. Data Pre-Proprocessing
First, we collect the data required to train and test the fault

prediction models (the regressor and the classifier) out of a git
versioned software project. Git versioning allows us to capture
the required data for all software releases. The data required
to train our fault prediction models is:

1) Independent variables: The independent variables
are the input variables to the prediction models.
(a) Static analysis faults: we execute static code
analysis on each component for each release. We
define the static analysis fault density of a software
component as the number of faults found by static
analysis tools, per KLOC (thousand lines of code).

178Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

(b) Code complexity metrics: we compute different
code complexity metrics for each of the components
and for each release as describes in Table I. (c)
Code churn metrics: we mine the git repositories
databases to extract several code churn metrics (e.g,
added LOC, removed LOC, etc., see Table I) for each
release.

2) Dependent variable: The dependent variable is the
output that will be predicted by our prediction mod-
els. We mine the git repositories using natural lan-
guage processing techniques to parse and analyze
commit messages mentioning bug fixes keywords
(e.g, bug fix, bug fixing, etc.). Such bug fix commits
are the indicator of the true known fault density of
the software components for each release.

B. Model Training
We train different machine learning models to learn the

fault densities of each software component based on the
independent variables: (a) static analysis faults densities, (b)
code complexity metrics, and (c) code churn metrics.

We split our data into two parts: (1) train data which
accounts for 3 successive releases of all software components,
and (2) test data representing the fourth release (the last
release).

Figure 1. Overview of the fault prediction process

IV. EMPERICAL STUDY

In this section, we present the empirical study that we
performed to investigate the hypotheses stated in Section I.
In this section, we discuss the dataset, the statistical methods
and machine learning algorithms we used, and report on the
results and findings of the experiments. The experiment was
carried out using 70 components of an automotive head unit
control system (Audio, Navigation, Phone, etc.). The size of
the code base analyzed is 28.71 MLOC (2, 871 KLOC). All
repositories use the object oriented language C++.

A. Data Preparation
The goal of this work is to come up with fault predictors

that evaluate our hypothesis and enhance our prediction model
built in our previous study [5]. The data required to build our
fault predictors are:

1) Faults Data: We are interested, in this work, in faults
that have been detected during the development and mentioned
as bugfixes in git commits. For each component, we extracted
all detected bugs through mining the git repositories. The
extracted faults are then used to compute the fault density.

2) Static Analysis Fault Density: Moreover, we executed
static analysis tools on each component and extracted the
identified faults. These faults were then used to compute
the static analysis fault density. We used commercial non-
verifying static analysis tools in this study.

3) Code Complexity Metrics: We compute several code
complexity metrics for each of the components. The code
complexity metrics are represented in Table I. We limit our
study to a set of selected metrics that have shown to provide
significant quality indicators over a long period of time. Code
complexity metrics have been shown to correlate with fault
density in several case studies [28], [29], [30], and they have
been proposed in different case studies to assess software
quality [1], [34].

4) Code Churn Metrics: Software repositories contain his-
toric information regarding the overall development of soft-
ware program systems. Mining software databases is nowa-
days considered one of the most intriguing expanding areas
within software engineering. Different recent works have used
past changes as indicators for faults because faults that are
introduced by recent changes and the more changes are done
to a part of the source code the more likely it will contain
faults[36]. Thus, we mine the software repositories databases
to extract the churn metrics. We use these code churn metrics,
as described in Table I to predict software fault density. This
study builds on our work [5] and goes for faults collected
through mining the git repositories of all software components,
and takes into consideration not only the static faults and the
code complexity metrics but also the code churn metrics to
build accurate fault predictors.

5) Relative Code Churn Metrics: For each of the compo-
nent, we compute a number of relative code churn metrics, as
described in Table I. We show in this paper that using relative
code churn as fault predictor is better than using (absolute)
code churn predictors. Furthermore, combining relative code
churn metrics with code complexity metrics and static analysis
faults can accurately predict the fault density with a high
degree of sensitivity. Our metric suite in this work is able
to discriminate between fault and not fault-prone components
with an accuracy of 89.0 percent.

B. Model Fitting and Regression Analysis
In this section we compare predictive models built using the

different metrics presented in Table I in order to find the best
model for accurate fault prediction. We fit several models to the
absolute code churn data as well as the relative code churn data
separately as predictors, with the fault density as the dependent
variable. We tested our data on the four main regression models
families (Generalized Linear models, Deep Learning Models,
Random Forest Models and Boosted Models). The experiment

179Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

TABLE I. METRICS USED FOR THE STUDY

Metrics Description

Static Analysis Fault Density # faults found by static analysis tools
per KLOC (thousand lines of code).

Code Churn Metrics
Added LOC # lines of code added
Removed LOC # lines of code deleted
Modified Files # files modified
Files count # files compiled to create a software component
Developers # developers

Relative Code Churn Metrics

Added LOC / Relevant LOC

We expect the larger the proportion of
added code to the Relevant LOC,
the higher is the probability of the
presence of faults in the software component.

Removed LOC / Relevant LOC

We expect the larger the proportion of
removed code to the Relevant LOC,
the higher is the probability of the
presence of faults in the software component.

Modified Files / Files count

We expect the larger the proportion of
files in a component that get modified,
the higher is the probability of these
files introducing faults.

Code Complexity Metrics

Relevant LOC # relevant LOCs without comments,
blanks, expansions, etc.

Complexity cyclomatic complexity of a method
Nesting # nesting levels in a method
Statements # statements in a method
Paths # non-cyclic paths in a method
Parameters # function parameters in a method

shows that boosted models are showing the best fitting and
generalized accuracy. This result can be explained by the fact
that the relation between the independent variables is highly
non-linear. The boosted models include RGBoost (also known
as regularized gradient boosting), Distributed Random Forests
(DRF) as well as Gradient Boosting Machines (GBM). We
will shortly explain the model that we used in this study to
predict the fault density. RGBoost is a supervised learning
algorithm that implements a process called boosting to yield
accurate models [37]. Boosting refers to the ensemble learning
technique of building many models sequentially, with each
new model attempting to correct for the deficiencies in the
previous model [38]. In tree boosting, each new model that is
added to the ensemble is a decision tree. RGBoost provides
parallel tree boosting that solves many data science problems
in a fast and accurate way. For many problems, RGBoost
is one of the best gradient boosting machine frameworks
today [37]. Both RGBoost and GBM follows the principle
of gradient boosting. There are, however, differences in mod-
eling details. Specifically, RGBoost uses a more regularized
model formalization to control over-fitting, which gives it
better performance, especially when the correlation between
the independent variables is non-linear. Distributed Random
Forest (DRF) is a powerful classification and regression tool.
When given a set of data, DRF generates a forest of classi-
fication or regression trees, rather than a single classification
or regression tree [39]. As a measure of the regression fits,
we compute R2. R2 measures the variance in the predicted
variable that is accounted by the regression built using the
predictors. As a measure of the unbiased error estimate of the
error variance, we use the mean squared error (MSE). The
regression model fit for absolute code churn metrics has an
R2 value of 0.473, an MSE value of 0.235. Nevertheless,
using the relative code churn metrics as fault predictors shows
a better fit; the R2 value increases to 0.730, the MSE

TABLE II. REGRESSION FITS

RGBoost DRF GBM
R2 MSE R2 MSE R2 MSE

Pr
ed

ic
to

rs

Absolute Code
Churn Metrics
alone

0.473 0.235 0.325 0.337 0.592 0.195

Relative Code
Churn Metrics
alone

0.730 0.113 0.651 0.267 0.694 0.221

Relative Code
Churn Metrics
Combined With
Code Complexity
Metrics
and Static Analysis
Fault Density

0.857 0.015 0.683 0.103 0.784 0.067

decreases to 0.113. We then combined relative code churn
metrics with code complexity metrics and with static analysis
fault density as predictors for the fault density. Table II shows
that when using the combination relative code churn metrics
with code complexity metrics and with static analysis fault
density as fault predictors, we obtain the best fit using the
Regularized Gradient Boosting (RGBoost) model; the R2 value
increases to 0.857, the MSE decreases to 0.015. Therefore,
we conclude that it is more beneficial to combine relative code
churn metrics with code complexity metrics and static analysis
fault density to explain software faults. The validation of the
model goodness is repeated 10 times using the 10-fold cross-
validation technique. A benefit of using ensembles of decision
tree methods like regularized gradient boosting is that they can
automatically provide estimates of feature importance from a
trained predictive model, as presented in Figure 2.

Figure 2. Variable Importances

C. Fault-Proneness Analysis
In order to classify software components into fault-prone

and not fault-prone components, we applied several statistical
classification techniques. The classification techniques include
the same techniques that we considered for the regression;
RGBoost, DRF and GBM. The independent variables for
the classifiers are the relative code churn metrics combined
with the code complexity metrics and the static analysis fault
density. The dependent variable is the result of binarizing (i.e.,
fault-prone vs. not fault-prone) the fault density. A confusion
matrix, as defined in Table III, is used to store the correct
and incorrect decisions made by a classification model. For
instance, if a component is classified as fault-prone when it
is truly fault-prone, the classification is true positive (tp). If
the component is classified as fault-prone when it is actually

180Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

TABLE III. COMPARING OBSERVED AND PREDICTED COMPONENT
CLASSES IN A CONFUSION MATRIX. USED TO COMPUTE

PRECISION AND RECALL VALUES OF CLASSIFICATION MODEL

Observed class
fault prone non-fault prone

Pr
ed

ic
te

d
cl

as
s

fa
ul

tp
ro

ne True negative
(TN)

False negative
(FN)

no
n-

fa
ul

tp
ro

ne

False positive
(FP)

True positive
(TP)

clean (not fault-prone), then the classification is a false positive
(fp). If the file is classified as clean when it is in fact fault-
prone, the classification is a false negative (fn). Finally, if
the issue is classified as clean and it is, in fact, clean, the
classification is true negative (tn). In order to compare the
actual observed and predicted classes for each component, we
categorized each predicted class into four individual categories
as shown in Table III. As evaluation measures, we compute
precision, recall, and F-measure defined as:

• Precision: how many of the components classified by
our classifiers as fault-prone are actually fault-prone.

precision = tp
tp+fp

• Recall: how many fault-prone components our classi-
fiers were able to identify correctly as fault-prone.

recall = tp
tp+fn

• F-measure: measures the weighted harmonic mean of
the precision and recall.

F -measure = 2 ⇤ precision⇤recall
precision+recall

All two measures are values between zero and one. A
precision of one indicates that the classification model does
not report any false positives. A recall of one implies that the
model does not report any false negatives. The F-measure can
be interpreted as a weighted average of the precision and recall,
where an F-measure reaches its best value at one and worst
at zero. Furthermore, we investigate the use of the area under
the receiver operating characteristic (ROC) curve (AUC) as a
performance measure for approach. The area under the ROC
curve (AUC) equals the probability that the classifiers predict a
randomly chosen true positive higher than a randomly chosen
false negative. The larger the AUC, the more accurate is the
classification model. As shown in Figure 3, the classification
model which uses RGBoost as the classifier produced an im-
pressive result with all four performance indicators (Precision,
Recall, F-measure and AUC) being well above 0.9. Using
DRF or GBM achieved very high recall, but at the same
time it appeared to produce many false positives, and thus
their precision is much lower than the precision produced by
RGBoost. All studied classifiers achieved an AUC well above
the 0.5 threshold; 0.89 for RGBoost, 0.6 for DRF and 0.73
for GBM.

D. Threats to Validity
The validity of credibility problems occur when there

are mistakes in measurement. This is negated to an extent

Figure 3. Classification performance of our approach

by the reality that the whole data collection procedure is
automated through the version control systems through mining
the git repositories. Nevertheless, the version control systems
only documents data upon developer check-out or check-in
of files. If a developer made several overlapping edits to
a file in a single check-out/check-in period then a certain
amount of changes will not be visible. Moreover, a developer
may have a file checked out for a very long period of time
throughout which few churns were made. These worries are
reduced somewhat by the cross-check among the measures to
recognize irregular values for any of the measures, as well as
the significant dimension and diversity of our dataset. In our
study, we give proof for utilizing all the relative code churn
metrics rather than a subset of values or principal components.
This study is particular and ought to be improved based upon
further result.

V. CONCLUSION AND FUTURE WORK

In this paper we verified the hypothesis that history of
code changes between different commits and releases (code
churn) when combined with static analysis fault density and
code complexity metrics are a good predictor of pre-release
fault density. Moreover, adding code churn metrics increases
the prediction accuracy.

For future work we plan to further validate our study
by analyzing additional software projects. Attributing fault
density to smaller units of code (e.g., files, functions), we
consider also an interesting direction of research. To achieve
that it might be needed to take additional features of the
source code, such as the abstract syntax tree (AST), control-
and dataflow into account. For this, we also plan to train deep
learning models to predict software faults not only on the
component level, but also on the method level. We also plan
the generalizability of the presented approach on different
open source projects.

ACKNOWLEDGEMENT

We would like to thank Steffen Görzig and Pascal Montag
from Daimler AG for their support and for providing the data
underlying our case study.

REFERENCES
[1] R. Rana, M. Staron, J. Hansson, and M. Nilsson, “Defect prediction

over software life cycle in automotive domain state of the art and
road map for future,” in 2014 9th International Conference on Software
Engineering and Applications (ICSOFT-EA), Aug 2014.

181Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

[2] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and J. McMullan,
“Detection of software modules with high debug code churn in a
very large legacy system,” in Proceedings of the The Seventh Inter-
national Symposium on Software Reliability Engineering, ser. ISSRE
’96. Washington, DC, USA: IEEE Computer Society, 1996, pp. 364–.

[3] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting
fault incidence using software change history,” IEEE Transactions on
Software Engineering, vol. 26, no. 7, July 2000, pp. 653–661.

[4] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proceedings of the 27th International
Conference on Software Engineering, ser. ICSE ’05. New York, NY,
USA: ACM, 2005, pp. 284–292.

[5] S. Omri, P. Montag, and C. Sinz, “Static analysis and code complexity
metrics as early indicators of software defects,” Journal of Software
Engineering and Applications, vol. 11, no. 4, april 2018.

[6] A. Mockus, P. Zhang, and P. L. Li, “Drivers for customer perceived
software quality,” in ICSE 2005, 2005.

[7] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location
and number of faults in large software systems,” IEEE Trans. Softw.
Eng., vol. 31, no. 4, Apr. 2005, pp. 340–355.

[8] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proceedings of the
26th International Conference on Software Engineering, ser. ICSE ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 563–572.

[9] D. Čubranić and G. C. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in Proceedings of the 25th International
Conference on Software Engineering, ser. ICSE ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 408–418.

[10] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Proceedings
of the International Conference on Software Maintenance, ser. ICSM
’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 23–.

[11] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proceedings of the 2005 International Workshop on Mining
Software Repositories, ser. MSR ’05. New York, NY, USA: ACM,
2005, pp. 1–5.

[12] K. K. Chaturvedi, V. B. Sing, and P. Singh, “Tools in mining software
repositories,” in Proceedings of the 2013 13th International Conference
on Computational Science and Its Applications, ser. ICCSA ’13. Wash-
ington, DC, USA: IEEE Computer Society, 2013, pp. 89–98.

[13] F. Z. Sokol, M. F. Aniche, and M. A. Gerosa, “Metricminer: Supporting
researchers in mining software repositories,” in 2013 IEEE 13th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), Sep. 2013, pp. 142–146.

[14] A. Zaidman, B. V. Rompaey, S. Demeyer, and A. v. Deursen, “Mining
software repositories to study co-evolution of production & test code,”
in Proceedings of the 2008 International Conference on Software
Testing, Verification, and Validation, ser. ICST ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 220–229.

[15] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, “Are all code smells
harmful? a study of god classes and brain classes in the evolution
of three open source systems,” in Proceedings of the 2010 IEEE
International Conference on Software Maintenance, ser. ICSM ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.

[16] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia,
“The scent of a smell: An extensive comparison between textual and
structural smells,” in Proceedings of the 40th International Conference
on Software Engineering, ser. ICSE ’18. New York, NY, USA: ACM,
2018, pp. 740–740.

[17] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 712–721.

[18] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: ACM, 2014,
pp. 202–211.

[19] V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli, “Will they like this?:
Evaluating code contributions with language models,” in Proceedings

of the 12th Working Conference on Mining Software Repositories, ser.
MSR ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 157–167.

[20] P. Thongtanunam, S. Mcintosh, A. E. Hassan, and H. Iida, “Review
participation in modern code review,” Empirical Softw. Engg., vol. 22,
no. 2, Apr. 2017, pp. 768–817.

[21] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli,
“When testing meets code review: Why and how developers review
tests,” in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: ACM, 2018, pp.
677–687.

[22] A. Bacchelli, M. D’Ambros, and M. Lanza, “Are popular classes more
defect prone?” in Proceedings of the 13th International Conference
on Fundamental Approaches to Software Engineering, ser. FASE’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 59–73.

[23] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of design
flaws on software defects,” in Proceedings of the 2010 10th International
Conference on Quality Software, ser. QSIC ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 23–31.

[24] L. Pascarella, F. Palomba, and A. Bacchelli, “Re-evaluating method-
level bug prediction,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), March
2018, pp. 592–601.

[25] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open
source software development: The apache server,” in Proceedings of
the 22Nd International Conference on Software Engineering, ser. ICSE
’00. New York, NY, USA: ACM, 2000, pp. 263–272.

[26] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, Jun. 1994.

[27] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Trans. Softw. Eng.,
vol. 22, no. 10, Oct. 1996, pp. 751–761.

[28] L. C. Briand, J. Wüst, S. V. Ikonomovski, and H. Lounis, “Investigating
quality factors in object-oriented designs: An industrial case study,” in
Proceedings of the 21st International Conference on Software Engineer-
ing, ser. ICSE ’99. New York, NY, USA: ACM, 1999.

[29] R. Subramanyam and M. S. Krishnan, “Empirical analysis of CK
metrics for object-oriented design complexity: Implications for software
defects,” IEEE Trans. Softw. Eng., vol. 29, no. 4, Apr. 2003.

[30] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on
object-oriented metrics,” in Proceedings of the 6th International Sym-
posium on Software Metrics, ser. METRICS ’99. Washington, DC,
USA: IEEE Computer Society, 1999.

[31] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: A benchmark and an extensive comparison,” Empirical
Softw. Engg., vol. 17, no. 4-5, Aug. 2012, pp. 531–577.

[32] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th International Conference on
Software Engineering, ser. ICSE ’08. New York, NY, USA: ACM,
2008, pp. 181–190.

[33] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting
faults from cached history,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 489–498.

[34] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict com-
ponent failures,” in Proceedings of the 28th International Conference
on Software Engineering, ser. ICSE ’06. New York, NY, USA: ACM,
2006.

[35] M. C. Ohlsson, A. von Mayrhauser, B. McGuire, and C. Wohlin, “Code
decay analysis of legacy software through successive releases,” in 1999
IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403), vol. 5,
March 1999, pp. 69–81 vol.5.

[36] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead, “Automatic
identification of bug-introducing changes,” in Proceedings of the 21st
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’06. Washington, DC, USA: IEEE Computer Society,
2006, pp. 81–90.

[37] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22Nd ACM SIGKDD International Conference

182Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

on Knowledge Discovery and Data Mining, ser. KDD ’16. New York,
NY, USA: ACM, 2016, pp. 785–794.

[38] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, 2000, pp. 1189–1232.

[39] M. Guillame-Bert and O. Teytaud, “Exact distributed training: Random
forest with billions of examples,” ArXiv, vol. abs/1804.06755, 2018.

183Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

