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Abstract— Many researchers are investigating deep learning 

because it can recognize pedestrians for automatic driving 

and/or criminals to prevent crimes on the street. A promising 

device for such tasks in deep learning is a Field Programmable 

Gate Array (FPGA). However, the conventional manual FPGA 

programming and optimizations are complicated and take a 

long time. Thus, FPGA development time needs to be 

decreased. In this paper, we propose an OpenCL-generated 

optimizing compiler based on the ROSE Compiler 

Infrastructure. OpenCL is a C-extended programming 

language for heterogeneous computing, such as an FPGA and 

a Central Processing Unit (CPU). We add simple pragmas to 

the C program, and our compiler generates the optimized 

OpenCL program for FPGA. The preliminary evaluation using 

the deep learning framework Caffe shows that our compiler 

decreases to about 1/16 of the conventional development time. 
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I.  INTRODUCTION 

Many researchers are investigating deep learning because 
it can recognize pedestrians for automatic driving [1][2] 
and/or criminals to prevent crimes on the street [3]. However, 
deep learning takes a long time to learn data. For example, 
training large data may take a week or more. Shortening this 
long training time can help make deep learning more 
practical and make its hyper-parameters easier to tune. 

A Field Programmable Gate Array (FPGA) is a promising 

device for deep learning because it does not have unused 

circuits to be connected and consumes low power. The 

conventional development process of the FPGA involves 

the use of Hardware Description Languages (HDLs), such 

as Verilog HDL and/or VHDL, which are strongly 

hardware-dependent programming languages. Thus, 

development steps, such as writing and optimizing the 

FPGA programs, incur high cost. To address this problem, a 

new programming language called Open Computing 

Language (OpenCLTM) [4] has been developed for FPGAs 

[5][6]. 

OpenCL is an extended C-style language that can be used 

to write host (Central Processing Unit (CPU)) and device  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  ROSE compiler infrastructure overview. 

(FPGA) programs. Thus, programmers can write and 

optimize C-style OpenCL more easily than HDLs. However, 

they must write the communications between the host 

program and the device program manually. Some examples 

are data transfer function calls between a CPU and an FPGA. 

Sometimes they have a few hundred lines. In addition, 

programmers have to optimize the device program for the 

FPGA manually, which is a hard task. 
In this paper, we propose an OpenCL-generated 

optimizing compiler from the C program with specific 
pragmas based on the ROSE Compiler Infrastructure. This 
is a preliminary study. However, no other compiler 
generates the optimized OpenCL program for FPGA. 

The rest of the paper is organized as follows: In Section 
II, we review related study. In Section III, we describe 
ROSE Compiler Infrastructure. In Section IV, we explain 
how to modify ROSE for FPGA. We show the preliminary 
evaluation results in Section V. In Section VI, we discuss 
OpenCL optimization candidates for FPGAs, followed by 
conclusion and future study in Section VII. 

 

II. RELATED WORK 

ROSE Compiler Infrastructure [8][9] was developed by 

the Lawrence Livermore National Laboratory. Its input is 

C/C++ with the original pragmas, and its output is OpenCL. 

RoseACC [10] is an extended module of ROSE and can 

compile C program with OpenACC pragmas to the OpenCL. 

OpenARC Compiler [11][12] is developed by the 

Oakridge National Laboratory on the basis of the Cetus 
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Parallelizing Compiler [13]. Its input is C/C++ with 

OpenACC pragmas, and its output is OpenCL or CUDA. 

IPMACC [14] compiles C program with OpenACC 

pragmas into the OpenCL program. The status of 

optimization implementation is unknown. 

Grewe et al. [15] complied C program with OpenMP 

pragmas into a multiversion program using OpenMP and 

OpenCL. Memory access optimizations, such as register 

promotion for CPU are implemented. 

MATISSE [16] compiles a MATLAB program with the 

original pragmas into OpenCL program. Type inference 

optimization and variable shape inference optimization are 

implemented. 

Habanero-Java [17] compiles an extended Java program 

into OpenCL program. To treat Java’s exception handling 

functions, two versions of the program are generated. 

Gaspard2 [19] compiles UML into OpenCL. The 

communication optimization which removes unnecessary 

data transfer between CPU and GPU is implemented. 

PyOpenCL [20] compiles Python program into OpenCL 

program. CU2CL [18] and Swan [21] compiles CUDA 

program into OpenCL program. Firepile [7] compiles Scala 

program into OpenCL program. They do not optimize the 

output OpenCL program. 

In addition, the target device of all the compilers 

described above is GPU. FPGA-specific code generation and 

optimizations are not implemented yet. Our compiler 

generates and optimizes the OpenCL device program for 

FPGA. 

III. ROSE COMPILER INFRASTRUCTURE 

In this section, we give an overview of the ROSE 
Compiler Infrastructure [8][9]. It is an open-source tool for 
analyses and source-to-source program transformations 
developed by the Lawrence Livermore National Laboratory. 
Its characteristics are as follows: 

(i) Its input is C/C++ programs with TileK pragmas.  

(ii) ROSE transforms the input program into the 

OpenCL host and device program for Graphics 

Processing Unit (GPU). 

(iii) The generated OpenCL device program is not 

optimized. 
Figure 1 shows the overview of the ROSE Compiler 

Infrastructure. C program with TileK pragmas is inputted to 
the ROSE, and it outputs the OpenCL host program and 
device program. Gcc compiles the OpenCL host program 
and generates a.out. The OpenCL compiler for a GPU 
compiles the OpenCL device program and outputs the GPU 
program. Then, a.out calls the GPU program. 

Figure 2 shows a TileK pragma example. TileK is a ROSE 

original pragma manually inserted in front of the target loop. 

The target loop is offloaded to the GPU if the pragma exists. 
 

 

Figure 2.  TileK pragma example. 

The clause of the pragma, such as data(x[0:N]), means that 

the array x[0]...x[N-1] is sent to the GPU just before GPU 

offloading and sent back to the CPU just after GPU 

offloading. 
 

IV. OUR PROPOSAL TO MODIFY ROSE FOR FPGA 

In this section, we point out the problems of the ROSE 
Compiler Infrastructure when it is applied to the FPGA, and 
propose new functionalities for it. The current ROSE 
Compiler Infrastructure is not appropriate for the FPGA. 
Among its characteristics described in Section III, (i) and (ii) 
indicate that it can output the OpenCL host and device 
programs from the input C/C++ program. However, (ii) 
states that its target device is a GPU, not an FPGA. In 
addition, (iii) shows that the output OpenCL device program 
is not optimized. Thus, the current output OpenCL device 
program may run on an FPGA but are not optimized for the 
FPGA. We thus have to modify the ROSE Compiler 
Infrastructure for FPGA. 

 
 

 
 

Figure 3.  Modified ROSE compiler infrastructure. 

 

Figure 4.  Algorithm of inserting loop unrolling pragma. 
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Figure 5.  Example of generated loop with unrolling pragma. 

First, we create a new environment variable 
ROSE_OPENCL_PLATFORM. It uses a device name as a 
clause. This environment variable selects appropriate 
OpenCL functions for the device. For example, for an FPGA, 
the host program calls the clCreateProgramWithBinary 
function, instead of clCreateProgramWithSource for GPU. 

Second, we add a new FPGA optimization function to the 

ROSE. The new optimization is loop unrolling because it 

increases the parallelism of the OpenCL device program for 

FPGA. Thus, it can decrease the execution time on an FPGA 

if the OpenCL compiler for FPGA can utilize the parallelism. 

In this case, we automatically insert the loop unrolling 

pragma to the innermost loops of the OpenCL device 

program for FPGA.  

Figure 3 depicts the modified ROSE Compiler 

Infrastructure. The ROSE outputs the OpenCL host program 

and the optimized OpenCL device program for FPGA. In 

addition, a.out calls FPGA, instead of GPU. 

Figure 4 shows the loop unrolling algorithm. It traverses 

loopnests and find if the loopnest is offloaded by the TileK 

pragma. If so, it gets the innermost loop of the loopnest and 

inserts the loop unrolling pragma in front of the innermost 

loop. 
Figure 5 shows an example of the output OpenCL device 

program that is inserted in the loop unrolling pragma. Intel 
FPGA SDK for OpenCL Compiler [5] and Xilinx SDAccel 
Compiler [6] support similar pragmas for FPGA. 

V. PRELIMINARY EVALUATION 

In this section, we evaluate the validity of our proposal. 
First, we interviewed skilled HDL programmers about how 
long they take to make the HDL program for FPGA 
manually. Second, we manually made an OpenCL host and 
device program and measured how long it took. Third, we 

 

 
 

Figure 6.  Comparison of development time. 

used TileK pragma and generated the OpenCL host program 
and optimized device program for FPGA automatically. 
Thus, we compared the development times among manual 
HDL, manual OpenCL, and ROSE-Generated OpenCL. 

The example application program is Caffe, a deep 
learning framework written in C++ and developed by the 
Berkeley Artificial Intelligence Research at the University of 
California, Berkeley. It has many layers for deep learning, 
and we use the pooling layer for the development time 
evaluation because it is one of the most widely used and one 
of the most time-consuming layers in deep learning. 

Figure 6 compares development times. In manual HDL, 
both the investigation of the program (pooling layer) and the 
HDL programming for an FPGA take about two months. 
Thus, the development takes about four months. In manual 
OpenCL, both the investigation and the OpenCL 
programming are reduced to one week each. Thus, the 
development takes about two weeks. In ROSE-Generated 
OpenCL, the investigation takes seven days and TileK 
programming and automatic OpenCL generation takes one. 
Thus, development time is only about eight days. Thus, the 
OpenCL-generated optimizing compiler reduces the 
development time of Caffe’s pooling layer for FPGA to 1/16 
of the conventional HDL development time. 

Caffe’s pooling layer has 6 multiple loop nest. Using our 
optimization, the loop unrolling pragma is inserted to the 
innermost loop automatically. Thus, the maximum FPGA 
pipeline pitch predicted by the FPGA compiler (Altera® 
SDK for OpenCLTM v15.0.0) decreases from 487 cycles to 1 
cycle. It suggests that the optimized pooling layer may run 
much faster on FPGA. Execution time, accuracy, and power 
consumption comparison among other devices (CPU, GPU) 
will be a future study. 

VI. DISCUSSION 

In this section, we discuss the OpenCL optimization 
candidates for FPGA. Besides the loop unrolling we 
implemented, there are several optimization candidates 
suitable for FPGA. One is the use of the OpenCL’s vector 
type. OpenCL has original vector types, such as float2, float4, 
float8, and float16. For example, a variable with type float4 
is processed in a group of four in parallel. These types are 
useful in parallel processing for FPGA. 

Another optimization candidate is to copy the global 
memory data to the local memory. An FPGA has two kinds 
of memory: global (DRAM) and local (SRAM). The global 
memory has large capacity but large latency, whereas the 
local memory has small capacity but small latency. In 
addition, we have to use the global memory to store the 
CPU’s main memory data via a PCI Express(R) between the 
CPU and FPGA. If there are multiple global memory 
accesses for the same variable, the performance might 
degrade. Thus, the global memory data should be copied to 
the local memory. 

The other optimization candidate is to align the data to 
the 4-byte boundary. If the data in FPGA is not aligned to the 
4-byte boundary, the OpenCL compiler for FPGA may 
generate a low-speed program [5]. Thus, we will insert the 
padding to the data to align it to the 4-byte boundary. 
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Our loop unrolling in this paper is the first step to 

implement the OpenCL optimizations for the FPGA. 

 

VII. CONCLUSION 

To reduce the development time of the OpenCL host and 

device program, we developed an OpenCL-generated 

optimizing compiler on the basis of the ROSE Compiler 

Infrastructure. 

Our compiler compiles a C/C++ program with TileK 

pragmas into the OpenCL host program and the OpenCL 

optimized device program with loop unrolling pragmas 

automatically. Preliminary evaluation shows that our 

compiler decreases the development time of the OpenCL host 

and device program to 1/16 of the conventional development 

time with manual HDL. 

In the future, we will implement other optimizations to our 

compiler to generate more optimized OpenCL device 

programs for FPGA easily and evaluate the execution time, 

accuracy, and power consumption compared to CPU and 

GPU. 
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