
An Empirical Study of Mutation-Based Test Case Clustering Prioritization and
Reduction Technique

Longbo Li∗, Yanhui Zhou∗, Yong Yu∗, Feiyan Zhao∗, Shenghua Wu† and Zhe Yang†
∗Department of Computer and Information Science

Southwest University
Chongqing, China

E-mail: {lilongbo iyuyong zfy201809}@email.swu.edu.cn, xiaohui@swu.edu.cn
†Meiyun Zhi Number Technology Co., Ltd.

Guangdong,China
E-mail: {wush18 yangzhe1}@meicloud.com.

Abstract—Regression testing is an important activity to ensure
software quality throughout the software life-cycle. However,
due to the expansion of the software scale, a large number of
test cases are generated in the regression test. In the actual
regression test process, it is impossible for us to execute all the
test cases. In order to save time and improve efficiency, we need
to prioritize and reduce the test cases. In this paper, we propose
a new concept mutation program unit priority that works well
in the prioritization and reduction of test cases. To evaluate our
approach, we designed the experiment and validated it using the
Defects4J data set, which contains the real fault programs. We
experimented with 350 real faults and 550254 developer-written
test cases for Defects4J. The average reduction rate for test
cases is 40%, and the fault detection capability is only reduced
by 1.38%. The results show that the mutation-based test case
prioritization and reduction method improves the effectiveness
of test case prioritization and reduction technique.

Keywords–test case prioritization; regression test; clustering
algorithms.

I. INTRODUCTION

A large number of test cases need to be executed during
the regression test, which makes the regression test process
take a long time. For example, in the era when the application
software version is updated frequently, we urgently hope
that the regression testing can be executed quickly. A recent
study shows that for Apache Geode Test takes 14 hours [1].
Many test case prioritization techniques have been empirically
studied [2][3]. Researchers have created a variety of regression
testing techniques. These include test case selection [4], test
suite minimization [5] and test case prioritization [3].

Most of the existing test cases prioritization technology
mainly depends on the code coverage information, code com-
plexity metrics and expert knowledge. In a lot of empirical
research, based on the code coverage information measurement
was proved to be effective [6]. Using branch, statement, and
mutation programs to study the effectiveness of test case priori-
tization techniques, they found that test case prioritization tech-
niques based on mutation program have the best results [3][6].
We know that the use of hierarchical clustering algorithm
(HCA) to cluster test cases based on code coverage information
has achieved great results in test case prioritization [7]. Thus,
we apply HCA to mutation-based test case prioritization and
reduction.

In this paper, we use HCA to prioritize and reduce test
cases, focusing on mutation program unit priorities and real
fault programs. We believe that the priority of the mutation

program unit in the test case prioritization is different. We
propose the novel concept of the priority of the mutation
program unit and give the calculation method. Based on the
result of the mutation test, we generate the mutation program
unit kill & priority matrix.

To verify the validity of our method, we use the Defects4J
benchmark data set [8], which contains a large number of test
cases written by developers, and Defects4J also contains real
fault programs. The Defects4J data set [8] is widely used by
many researchers in mutation testing, so we use it for our
experiments. Our results show that the mutation-based test case
prioritization and reduction, and use HCA can improve the
effectiveness of test case prioritization and reduction technique.

The empirical research contributions of this paper are as
follows:

• We proposed the novel concept of mutation program
unit priority. For a large number of mutation programs
that has many diverse attributes, and each correspond-
ing mutation program has different priorities.

• Combining prioritization and reduction techniques, we
experimented with 350 real fault programs and 550254
developer-written test cases in Defects4J. The test
cases after prioritization and reduction are 330166.
The average reduction rate for test cases is 40%, and
the fault detection capability only lost by 1.38%.

The rest of the paper is organized as follows. Section II
provides background for mutation-based test case prioritization
and reduction technique. Section III presents a novel definition
of the mutation program unit priority and test case prioritiza-
tion evaluation method. Section IV describes the design of our
empirical evaluation. Section V introduces the results of which
are presented and analysed. Section VI discusses conclusion
and future work.

II. BACKGROUND

In this section, we will introduce the test case prioritization
and test case reduction, and use formally language to describe
the problem of research.

A. Test Case Prioritization
The goal of test case prioritization is to find an ideal test

case execution order that exposes faults as early as possible.
The test case prioritization approach was first mentioned by
[9]. Subsequently, many researchers have carried out related

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

research [2][3][10][11]. The test case prioritization problem
was formally defined by [3].

Definition 1: Test case prioritization problem
Given:
a test suite,TS
the set of permutations of TS, PTS

a function that gives a numerical score for T ′ ∈ PTS,f
Problem:
find T ′ ∈ PTS such that
(∀T ′′)(T ′′ ∈ PTS)(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)]

In Definition 1, PTS represents all possible orderings of
the given test case in TS, and f represents an evaluation func-
tion that calculates an award value for an ordering T ′ ∈ PTS.
Since we can’t get the fault message during the regression
testing progress, we usually need to consider a surrogate for
fault detection based on the historical information of the test
case. Hoping that early maximization of a certain chosen
surrogate property will result in maximization of earlier fault
detection. In a controlled-regression-testing environment, the
result of prioritization can be evaluated by executing test cases
according to the fault-detection rate [6].

The code coverage information, such as statement coverage
and branch coverage are one of used surrogates in test case
prioritization [3][12]. For example, a test case covering more
statements has higher priority. The mutants are also used
as another surrogate for test case prioritization [13][14]. For
instance, the work in [3] consider the fault expose potential
(FEP)-total approach that prioritize test cases according to the
number of mutants killed by individual test cases, they find
mutation-based test case prioritization techniques work better.
In the process of mutation testing, a large number of mutants
were generated. Donghwan et al. consider that these mutation
programs have diverse attributes [15]. Based on this research,
we propose a novel concept mutation program unit priority.
For more details, we will discuss in Section III.

B. Test Case Reduction
The test case reduction is primarily to remove redundant

test cases from the test case set, which usually do not change
the mutation score in mutation-based test case reduction. For
test case reduction problem, we can’t reduce a test case set to
a minimum set of test cases. The test case set minimization
problem is an NP-complete problem. We try to reduce the test
case set as much as possible without affecting the mutation
score. Mike et al. introduces the relationship between the
mutation score and real faults [16]. They believe that achieving
higher mutation scores improves significantly the fault detec-
tion. Since the redundant mutation program problem is another
area beyond the scope of this paper, we will not explain it in
follow sections.

More formally, we consider the test suite reduction problem
is defined as follows [6]:

Definition 1: Test suite reduction problem
Given:
a test suite, T , a set of test requirements r1, . . . , rn, which

must be satisfied to provide the desired adequate testing of the
program, and subsets of T, T1, . . . , Tn, one associated with

each of the ris such that any one of the test case tj belong to
Ti can be used to achieve requirement ri.

Problem:
Find a representative set, T ′, of test cases from T that

satisfies all ris.
A number of test suite reduction approaches have been

proposed in the literature [17]-[19]. Many researchers let
statement coverage be the kind of test requirement considered,
a reduced test suite that covers the same statements as the
original test suite. Recently, a clustering test case reduction
approach was proposed that reduced test suites only partially
preserve the test requirement of the original test suites [20].
They empirically evaluate this methods that define guidelines
for these to get trade-offs between reductions of in test suite
size and losses of fault-detection capability. They mainly are
concerned with the level of code coverage. In this paper, we
use HCA to prioritize and reduce the test cases. We mainly
focus on the level of program mutation.

III. EMPIRICAL EVALUATION AND MUTATION PROGRAM
UNIT PRIORITY

In this section, we introduce the novel concept of mutation
program unit priority, mutation program unit kill & priority
matrix, test case prioritization evaluation index and HCA.

A. Mutation Program Unit Kill Matrix
In the study of existing mutation-based test case prioriti-

zation problems, all mutation programs are considered to be
equally important in test case prioritization process and no
analysis of the priority of mutants. The minimum mutation
program unit is usually called a mutant. For the mutants
generated by the same mutation operator, we call a large
mutation program unit. Due to the limited space of the paper,
we only discuss the minimum mutation program unit in this
paper. In the future work, we analyze and explain the whole
mutation program unit theory in detail. Recently, The diversity-
aware mutation-based techniques was proposed by [15][21].
They believe that many mutation programs are diverse and
require more test cases to distinguish mutation programs,
which aims to distinguish one mutant’s behaviour from an-
other mutation programs. Obviously, mutation programs have
diverse attributes, and each mutation program has different
priorities. When perform mutation analysis, the test case is
executed into the mutation program unit, it is marked as 1
if the test case kills the mutation program, otherwise it is
marked as 0. For example, Table I show mutation program
unit kill matrix. m0 · · ·m7 show mutation program unit name
and T0 · · ·T4 show test case name.

TABLE I. MUTATION PROGRAM UNIT KILL MATRIX

Test Case Mutation Program Unit (MPU)
Name m0 m1 m2 m3 m4 m5 m6 m7

T0 1 0 1 0 0 1 0 0
T1 1 1 1 0 1 0 0 0
T2 0 1 1 1 1 1 0 0
T3 0 0 1 0 0 0 1 1
T4 0 0 0 0 0 0 0 0

In general, in mutation analysis, we estimate the fault
detection capability of test cases as measured by how many

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

mutation programs are killed. In test case prioritization pro-
cess, we might find such a set of sequences using greedy
algorithm, for instance T2−T1−T0−T3. Because T2 kills the
most mutation programs, it is chosen first. T4 did not kill any
of the mutants, we removed them in the reduction of the test
case. However, we find that m2 is killed by all test case. No
matter how we prioritize it, m2 will be killed when the first
test case is executed. So, only the T3 is in the first executed
in the prioritization, the m6,m7 mutation program units are
killed. In the prioritization process, mutation program units
have different priorities. We should pay attention to mutation
programs that are killed by very few test case. This mutation
program is more difficult to kill.

TABLE II. MUTATION PROGRAM UNIT PRIORITY MATRIX

Test Case Mutation Program Unit(MPU)
Name m0 m1 m2 m3 m4 m5 m6 m7

T0 0.5 0 0 0 0 0.5 0 0
T1 0.5 0.5 0 0 0.5 0 0 0
T2 0 0.5 0 0.75 0.5 0.5 0 0
T3 0 0 0 0 0 0 0.75 0.75

B. Mutation Program Unit Priority
Given a program under test (PUT), after mutation testing,

generated m mutation program units, n test cases, we define an
m×n mutation program unit kill matrix H that represents the
kill information of the mutation program unit. Hij indicates
whether the test case j killed the mutation program unit i.
We formally define this mutation program unit priority weight
Wi(0 < Wi < 1).

Wi = −
∑n

j=1 Hij

n
+ 1 (1)

As for (1) the value of Wi cannot be taken as 0 and 1
because in the prioritization and reduction we removed the
mutation program unit with a value of 0 and 1. We updates
mutation program unit kill matrix, Table II show mutation
program unit priority matrix and m2 is a redundant mutants
by optimizing the weight calculation. Because m2 will must
be killed no matter how we prioritization. For example, we
might find such a set of sequences using greedy algorithm in
test case prioritization, T2 − T3 − T1 − T0. Similarly, in Table
I, we remove T4 from the mutation program unit kill matrix
because it has no ability to kill all mutants.

C. Average Percentage of Fault-Detection
We usually use the Average Percentage of Fault-Detection

(APFD) metric results in test case prioritization [22]. Higher
APFD values confirm faster fault-detection rates. It is simply
and accurately formalized as follows:

APFD = 1− TF1 + · · ·+ TFn

nm
+

1

2n
(2)

where TFi is the first test case position in test case prioriti-
zation among n test cases which detects the ith fault among
m faults. According to mutation program unit priority weight,
we formally define the Average Percentage of Weight Fault-
Detection (APWFD) as follows:

APWFD = 1− W1 × TF1 + · · ·+Wn × TFn∑n
j=1 Wi × n

+
1

2n
(3)

where Wi is a weight as mutation program unit mi. In order to
better help readers understand, we using Table I and II results
to clearly and accurately calculate APFD and APWFD. We use
greedy algorithm to prioritize test case and based on killed the
most mutation program. For example, T2 − T1 − T0 − T3 as
for Table I and APFD is 0.5625. T2 − T3 − T1 − T0 as for
Table II and APWFD is 0.7279. Only from the value of the
result we have at least improved about 16.54%. Because we
do not only consider the most mutants that is killed, but also
consider the mutants that is hard to kill.

D. Hierarchical Clustering Algorithm
The clustering algorithm is an unsupervised learning al-

gorithm that reveals the intrinsic properties and law of data.
We obtain mutation analysis kill information by mutation
analysis tool Major [23] and use Algorithm 1 (shown in Figure
2) generate mutation program unit kill & priority matrix.
Cluster analysis was performed on the generated mutation
program unit kill matrix and priority matrix, and the test
case prioritization and reduction results were evaluated use
APFD and APWFD. After configure data set Defects4J [8], we
firstly checkout our every project program and compile fixed
program. Thus, we use test execution framework and mutation
analysis our fixed program. In Algorithm 1 (shown in Figure
2), T is contain developer-written test case set. The algorithm
takes a developer-written test case set T , a mutation analysis
result set of mutantlog, testMap, killMap, triggerbug as in-
put, and returns a mutation program unit kill & priority matrix.
In Algorithm 1 (shown in Figure 2), killMap represents the
mutation analysis tool kill information. The value of testMap
contain test case ID and name. Matrix information can be
generated by use both information, and test cases that trigger
faults can also be statistically analyzed. But we not conducted
relevant research in this paper.

Figure 1. Hierarchical clustering tree.

Similarly, we choose a HCA, which can well control the
size of clusters after clustering. HCA has achieved great test
case prioritization results in terms of code coverage and expert
knowledge [24][25]. Figure.1 shows the hierarchical clustering

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

tree generated by HCA. The x coordinate represents the name
of the test case, and the y coordinate represents the average
Euclidean distance between test cases. We can easily control
the size of the cluster generated by the HCA, according
to the size of the test case set. Each vertical represents a
cluster. The k is the size of the clusters. We use fast cluster
function and improve prioritization and reduction strategy [26].
Recently, in the clustering prioritization and reduction of test
cases based on code coverage, Carmen et al.[20] studied the
effects of different clustering calculation methods on the test
case prioritization and reduction, and found that clustering
results are obviously different. Based on their research, our
first research question in the experiment explores the impact
of different computational methods on mutation-based test case
prioritization and reduction.

Figure 2. Algorithm for mutation program unit kill & priority matrix.

IV. EXPERIMENTAL DESIGN

In this section, we conduct empirical evaluation and de-
sign experiment that use developer-fixed program, developer-
written tests, and real faults. As for empirical evaluation, we
investigate the following two main research problems:

• RQ1: Is the different distance calculation methods
have different effects on test case prioritization and
reduction?

• RQ2: Is the test case prioritization and reduction
techniques that outperforms in terms of trade-off be-

tween reductions in test suite size and losses in fault-
detection capability?

We use benchmark data sets Defects4J [8] that include
mutation analysis tool Major [23], developer-fixed program,
manually-verified real fault and developer-written test case.
Figure 3 shows the overall flow of our experiment. We will
introduce our experiment in detail.

Figure 3. Experiment setup.

A. Experimental Tool
a) Defects4J database: We mainly use test execution

framework in Defects4J that contains 438 bugs from the
open-source projects. We consider five open-source projects
(JFreeChart, Closure compiler, Apache commons-lang, Joda-
Time and Apache commons-math) and 350 fixed programs.
Because some fixed programs includes seldom developer-
written test cases. Therefore we delete some fixed program. For
example, fixed program Chart-23 only include five developer-
written test cases. One of our goals is to provide a method for
prioritization and reduction for a large number of test cases,
helping to improve the efficiency of test engineers in regression
testing.

b) Major: As for mutation kill information, we use
Major mutation analysis tool for generating and executing
all mutants to the developer-written test case for each fixed-
program. Major includes a set of commonly used muta-
tion operator [27]. For example, Binary operator replacement
(BOR), Unary operator replacement (UOR), Constant value
replacement (CVR), Branch condition manipulation (BCM),
Logical operator replacement, and Statement deletion (STD).
Because different mutation operators produce different muta-
tion programs. Therefore, we applied all the mutation operators
in mutation analysis.

B. Design Review
We configure Defects4J in Ubuntu18.04 LTS (intel i7-7700

cpu, RAM 8G). For more detailed configuration information,
please refer to Defects4J official webpage at [28]. To configure
Defacts4J on the Ubuntu18.04 system, we firstly perform
“checkout” on all the programs, and then compile. If the test
command is executed at this time, the test case written by the
tester included in the test case Defects4J is used. Secondly,
we use Major to perform mutation analysis on all “checkout”
programs. The time of mutation analysis is controlled within
one hour, and the program that exceeds the time is deleted.
Finally, we use algorithm to generate mutation program unit
kill and priority matrix for mutation analysis results, cluster
the mutation program unit kill matrix and priority matrix, and
use APFD and APWFD to evaluate test case prioritization and

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

TABLE III. CALCULATION STRATEGY STATISTICAL
ANALYSIS.

Program
Calculation method

Jaccard Hamming Euclidean Cosine

Chart 20.4816 21.0925 21.0862 20.0210
Closure 127.2672 128.9538 128.9563 123.9185

Lang 52.9445 56.8870 56.8507 47.6511
Math 90.8519 93.7491 93.3974 91.4900
Time 26.4618 26.4767 26.4825 25.5815

Average 0.9085 0.9347 0.9336 0.8819

reduction results. Similarly, we can also use the automatic
generation tools that generate a large number of test cases.
Exploring the impact of different types of test case sets on
test case prioritization and reduction is beyond the scope of
this paper. We can delve into this issue in future research work.

V. RESULT AND ANALYSIS

In this section, we discuss the experiment obtained results
and answer Section IV two questions.

A. RQ1: Is the different distance calculation methods have
different effects on test case prioritization and reduction?

RQ1 explores the impact of different computational s-
trategies on clustering results. Because of different clustering
results have an impact on code coverage-based test case priori-
tization. Carmen et al. used code coverage information to study
different computational strategies for hierarchical clustering
[20]. They point out cluster test case, the use of the cosine
and Jaccard-based dissimilarities seems to be more promising
than the use of the Euclidean and Hamming.

We use mutation-based information to study different com-
putational strategies for hierarchical clustering. We use four
calculation methods(Jaccard, Hamming, Euclidean, Cosine) to
conduct experiments. In order to control the experiment, only
the calculation method is different, and the other experimental
factors are all the same. Figure 4 shows that the x coordinate is
the number of each program, and the y coordinate is the value
of APFD, and four calculation strategies curve trend results
are almost the same on the 350 real fault programs.

Different computing strategies maybe have different clus-
tering effects on mutation-based test case prioritization. We
can conclude that in the mutation-based test case prioritization
in Figure 4, this strategy has no significant different. We
also counted the average of four calculation strategies. Table
III shows that cosine similarity method is lower than the
other three calculation methods. However the difference is
not obvious, the highest to the lowest is only 5.28%. Each
column of data is the sum of real fault programs’ APFD. For
example, the 20.4816 of the Chart program is the sum of
the APFD values of all Chart programs. Our experimental
results show that there is no significant difference between test
case prioritization based on mutation analysis using different
calculation strategies for HCA.

B. RQ2: Is the test case prioritization and reduction tech-
niques that outperforms in terms of trade-off between reduc-
tions in test suite size and losses of fault-detection capability?

RQ2 mainly explores test case reduction and loss of fault
detection capabilities. In order to control the experiment, we

TABLE IV. TEST CASE PRIORITIZATION AND REDUCTION STATISTICAL
ANALYSIS

Program
Analysis index Analysis index

APFD Cluster time(s) Test case APWFD Cluster time(s) Test case

Chart 20.0210 2.0764 5693 18.7334 0.1189 3577
Closure 123.9185 1649.2548 440296 123.1317 758.1702 182155

Lang 47.6511 10.0078 11338 48.4177 1.5700 6480
Math 91.4900 165.7274 22688 88.2791 63.9586 9941
Time 25.5815 122.3370 70239 25.2988 71.4638 17935

Average 0.8819 5.5697 - 0.8681 2.5579 -

use the Cosine dissimilarity distance calculation method. We
use the prioritization and reduction strategy to calculate the
value of APWFD in this paper. We used the value of APFD
in one of the evaluation indicators in the control experiment.

From Table IV, it results that we used the proposed method
to reduce and prioritize 550254 test cases. The number of test
cases after prioritization and reduction is 330166. The average
reduction rate for test cases is 40%. We also analyze the aver-
age reduction rate of each program. For example, the average
fault reduction rate for the Chart, Closure, Lang,Math,
and Time programs are 62.82%,41.37%,57.15%,43.81% and
25.53% respectively. We use test case prioritization and re-
duction methods to make a large number of reductions to test
cases. However the fault detection capability is only reduced
by 1.38%. The average clustering time for each program
is 2.5579s. Clustering time after prioritization and reduction
reduced by 45.92%. This is a very interesting discovery, then
software test engineers can use the test case prioritization and
reduction techniques of clustering method to better manage and
optimize regression testing activity. For example, a corporation
does not have enough time to run all the test cases, and they
still have a better chance of capturing faults.

Our experimental results show that the proposed prioritiza-
tion and reduction strategy has good consequents in terms of
reduction in number, time reduction and fault detection. Test
case prioritization and reduction techniques ideal goal mainly
is a higher test case reduction rate and a lower fault loss rate.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new concept mutation program unit
priority. We use mutation-based test case prioritization and
reduction strategies to prioritize and reduce test cases combine
with mutation program unit priority. In the empirical evalua-
tion, we used four different clustering calculation strategies
to study the effects of different computing strategies on the
results of prioritization test cases. The results show that the
computational strategy has little effect on the results after
clustering. We also present an empirical study comparing test
case prioritization and reduction methods in terms of test case
reduction in number and fault detection capability. Our method
can reduce the number of test cases by 40%, and the loss of
fault detection capability is only 1.38%.

In the future, we will continue to study the impact of
different clustering numbers in test case prioritization and
reduction. Similarly, we also noticed that there is no empirical
analysis of the test cases that triggered the faults in the
prioritization and reduction methods. We will analyze and
explain the whole mutation program unit theory in detail.

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Figure 4. Calculation strategy.

REFERENCES

[1] Apache Geode Nightly Test Report.(2018).https://builds.apache.org/view/
E-G/view/Geode/job/Geode-release/lastCompletedBuild/testReport/

[2] H. Do, G. Rothermel and A. Kinneer, “Prioritizing JUnit Test Cases: An
Empirical Assessment and Cost-Benefits Analysis,” Empirical software
engineering, vol. 11, no. 1, 2006, pp. 33-70.

[3] S. Elbaum, A. Malishevsky and G. Rothermel, “Prioritizing Test Cases
for Regression Testing,” IEEE Transactions on Software Engineering,
vol. 27, no. 10, 2001, pp. 924-948.

[4] M. J. Harrold, D. Rosenblum, G. Rothermel and E. Weyuker, “Empirical
studies of a prediction model for regression test selection,” IEEE
Transactions on Software Engineering, vol. 27, no. 3, 2001, pp. 248-
263.

[5] J. Jones and M. Harrold, “Test suite reduction and prioritization for
modified condition/decision coverage,” IEEE Transactions on Software
Engingeering, vol. 29, no. 3, 2003, pp. 193-209.

[6] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing,Verification and Reliability,
vol. 22, (2), 2012, pp. 67-120.

[7] R. Carlson, H. Do and A. Denton, “A clustering approach to improving
test case prioritization: An industrial case study,” IEEE International
Conference on Software Maintenance (ICSM), 2011, pp. 382-391.

[8] R. Just, D. Jalali and M.D. Ernst , “Defects4J: A database of existing
faults to enable controlled testing studies for Java programs,” In
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), 2014, pp. 437-440.

[9] W. Wong, J. Horgan, S. London and A. Mathur, “Effect of test set
minimization on fault detection effectiveness,” Software Practice and
Experience , 28(4), 1998, pp. 347-369.

[10] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in de-
velopment environment,” Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), 2002, pp. 97-106.

[11] H. Do, G. Rothermel and A. Kinneer, “Empirical studies of test case
prioritization in a junit testing environment,” Proceedings of the 15th
International Symposium on Software Reliability Engineering (ISSRE),
2004, pp. 113-124.

[12] L. Zhang, D. Hao, L. Zhang, G. Rothermel and H. Mei, “Bridging the
gap between the total and additional test-case prioritization strategies,”
In Proceedings of the 2013 International Conference on Software
Engineering, 2013, pp. 192-201.

[13] H. Do and G. Rothermel, “On the use of mutation faults in empirical
assessments of test case prioritization techniques,” IEEE Transactions
on Software Engineering 2006, 32(9), pp. 733-752.

[14] Y. Lou, D. Hao and L. Zhang, “Mutation-based test-case prioritization
in software evolution,” In Proceedings of the 26th International Sym-
posium on Software Reliability Engineering (ISSRE), 2015, pp. 46-57.

[15] D. Shin, S. Yoo and D.H. Bae, “A Theoretical and Empirical Study of

Diversity-Aware Mutation Adequacy Criterion,” IEEE Transactions on
Software Engineering, vol. 44, (10), 2018, pp. 914-931.

[16] M. Papadakis, D. Shin, S. Yoo and D.H. Bae, “Are mutation scores
correlated with real fault detection? A large scale empirical study on the
relationship between mutants and real faults,” International Conference
on Software Engineering (ICSE), 2018, pp. 537-548.

[17] M. Jean Harrold, R. Gupta and M. Lou Soffa, “A Methodology for
Controlling the Size of a Test Suite,” ACM Transactions on Software
Engineering, 2, 1993, pp. 270-285.

[18] Z. Li, M. Harman and R. M. Hierons, “Search Algorithms for Re-
gression Test Case Prioritization,” IEEE Transactions on Software
Engineering. 33, 2007, pp. 225-237.

[19] L. Zhang, D. Marinov, L. Zhang and S. Khurshid, “An Empirical
Study of JUnit Test-Suite Reduction,” In Proceedings of International
Symposium on Software Reliability Engineering (ISSRE), IEEE, 2011
pp. 170-179.

[20] C. Coviello, S. Romano, G. Scanniello, A. Marchetto, G. Antoniol and
A. Corazza, “Clustering support for inadequate test suite reduction,” In
Proceedings of International Conference on Software Analysis,Volution
and Reengineering, Vol. 00, 2018, pp. 95-105.

[21] D. Shin, S. Yoo, M. Papadakis and D.H. Bae, “Empirical evaluation
of mutation-based test case prioritization techniques,” Software:testing
verification and reliability, Vol. 29, (1-2), 2019, e1695.

[22] S. Elbaum, A. Malishevsky and G. Rothermel, “Test case prioritiza-
tion: A family of empirical studies,” IEEE Transactions on Software
Engineering, 28(2), 2002, pp. 159-182.

[23] R. Just, “The Major mutation framework: Efficient and scalable muta-
tion analysis for Java,” In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), ACM, 2014, pp. 433-436.

[24] R. Carlson, H. Do and A. Denton, “A clustering approach to improving
test case prioritization: An industrial case study,” IEEE International
Conference on Software Maintenance (ICSM), 2011, pp. 382-391.

[25] S. Yoo, M. Harman, P. Tonella and A. Susi, “Clustering test cases to
achieve effective & scalable prioritisation incorporating expert knowl-
edge,” Proceedings of the International Symposium on Software Testing
and Analysis(ISSTA), 2009, pp. 201-211.

[26] D. Mllner, “fastcluster: Fast Hierarchical, Agglomerative Clustering
Routines for R and Python,” Journal of Statistical Software, 53, no.
9, 2013, pp. 1-18.

[27] A. S. Namin, J. H. Andrews and D. J. Murdoch, “Sufficient mutation
operators for measuring test effectiveness,” in Proceedings of the 30th
International Conference on Software Engineering (ICSE), 2008, pp.
351-360.

[28] Defects4J. https://github.com/rjust/defects4j. last accessed on 10/04/19.

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

