ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Feature-Oriented Component-Based Development of Software

Product Families: A Case Study

Chen Qian and Kung-Kiu Lau

School of Computer Science
The University of Manchester
Kilburn Building, Oxford Road, Manchester, United Kingdom, M13 9PL
Email: chen.gian, kung-kiu.lau@manchester.ac.uk

Abstract—Feature-Oriented Software Development (FOSD) is
widely used in Software Product Line Engineering (SPLE). FOSD
constructs product families by incremental feature implementa-
tions. In this paper, we introduce a feature-oriented component-
based approach, which implements features as an encapsulated
components for further family modelling. A case study of elevator
systems is also presented to describe the use of our approach.

Keywords—SPLE; FOSD; CBD; Enumerative variability.

I. INTRODUCTION

Software Product Line Engineering (SPLE) traditionally
proceeds in two phases: domain engineering and (ii) applica-
tion engineering [1]. In the domain engineering phase, existing
SPLE approaches (i) usually use a feature model to specify
variability, and (ii) from these, identifies and implements
domain artefacts, e.g., a code base [2]. In the application
engineering phase, SPLE (i) creates product configurations,
and (ii) assembles one product at a time from the domain
artefacts based on its configuration [3].

The key abstraction of Feature-Oriented Software Devel-
opment (FOSD) is a feature, which represents a logical unit
of behaviour specified by a set of functional requirements
[4]. FOSD aims at constructing software product families by
incremental feature implementations [5]. Thus, variability can
be traced from features directly to the domain artefacts, which
promises the manageability and maintainability of product
families.

In this paper, we present a feature-oriented approach to
construct product families in a component-based manner, i.e.,
following a component model [6]. In [7], we elaborated
the principles of our component model and discussed the
feasibility of using it in SPLE. Hence, this paper discusses
the concrete details. In Section II, we show the essential
background knowledge and related work. In Section III, we
present a case study to exemplify how to construct a software
product family step-by-step from scratch by our approach and
tool. Finally, in Section IV, we finish the paper by conclusion
of our work and discussion of the future work.

II. BACKGROUND AND RELATED WORK

The essence of FOSD is to model and implement variable
domain artefacts, and each of them must be mapped onto a
non-mandatory feature. In general, three main categories of
variability mechanisms are adopted in FOSD approaches and

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

tools [8]: (i) annotative, e.g., CIDE [2], FORM’s macro lan-
guage [9] (ii) compositional, e.g., AHEAD [10], FeatureC++
[11] and (iii) transformational, e.g., A-MontiArc [12], Delta-
Oriented Programming (DOP) [13].

Annotative approaches usually build a single, superimposed
model, namely 150% model, to represent all product variants.
The variable features are implemented as code fragments with
annotations, i.e., boolean feature expressions. Subsequently,
in order to generate a product, code fragments correspond-
ing to unselected features have to be removed according to
the product configuration. By comparison, compositional and
transformational approaches develop code fragments isolated
from the base programs. Compositional approaches add the
fragments correlating with the selected features to the base
program for product generation. In regard to transformational
approaches, fragments are not only added to the base model,
but also modified the existing code under some circumstances.

There are two kinds of variability in current FOSD ap-
proaches, as known as negative and positive variability [14].
The former is adopted by annotative approaches, whereas
the latter is used by compositional approaches. But both of
them are used in transformational approaches. However, no
matter negative or positive, we consider such a variability as
a parametric variability, due to it is parameterised on the
presence or absence of features in a single product. Thus, SPLE
approaches using parametric variability can only generate one
product at a time. On contrary, enumerative variability includes
all valid variants directly [7]. For example, in the problem
space, feature model defines enumerative variability, while
a configuration model defines parametric variability. In this
paper, our approach construct enumerative variability in the
solution space, which results in a whole product family and
therefore all products can be generated in one go.

Another area where our approach could bring advantages
is feature mapping. The early work on SPLE, such as FODA
[15], did not represent features explicitly, instead build n-to-m
mappings between features and domain artefacts, which causes
severe tangling and scattering in the code base eventually.
Hence, the construction of product families are infeasible.
FOSD have made a great progress by bringing a distinguishing
property that aims at 1-to-n feature mappings. However, it
becomes obvious that the ideal mapping is 1-to-1 [16], but
it is difficult to be achieved in current FOSD approaches,
mostly because of the cross-cutting concern of features. Our
approach is capable to build 1-to-1 mappings between features

144

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

and components. In this paper, we show how to deal with the
cross-cutting problem in the case study.

Regarding to the outstanding maintainability and reusabil-
ity, component-based development (CBD) is another paradigm
that seems suitable for SPLE. But earlier researches certified
that constructing product families only using CBD is barely
feasible, due to features often do not align well with the
decomposition imposed by component models [5]. Some re-
searches [17], [18] try to integrate CBD and FOSD in order
to obtain both their advantages in SPLE, but problems still
occurs. In this paper, our approach adopts a state-of-the-art
component model that partners FOSD very well.

III. A CASE STUDY

We have developed a web-based graphical tool that imple-
ments our component model and constructs product families
[19]. The graphical user interface (GUI) is realised using
HTMLS and CSS3, whereas the functionality is implemented
using JavaScript. In particular, we adopt the latest edition of
ECMAScript as JavaScript specification since its significant
new syntax, including classes and modules, supports com-
plex applications. Additionally, we import jQuery, the most
widely deployed JavaScript library, to improve code quality
and enhance system extensibility. For the purpose of user-
friendliness, all building blocks, including constraints and
interaction, can be easily added through buttons and dialogue
boxes.

In this section, we use an example of the elevator product
family, which originates from [20], developed by Feature-
Oriented Programming (FOP) in FeatureIDE [21]. The elevator
contains a control logic mode that can be either Sabbath or
FIFO, and an optional feature called Service. In Sabbath
mode, the elevator reaches all levels periodically without user
input, whereas in FIFO mode, the elevator moves to specific
floors in turns according to the requests. The Service is
special, it allows authorised persons to send the elevator to the
lowest floor. Notably, Service is a cross-cutting feature, as
its implementation scatters across other features’ (Sabbath
and FIFO) implementations. Consequently, the behaviour of
Service can be triggered at any time, and on any mode,
during elevator running period.

We will implement the elevator family in our tool, by
extending it with the 3 features one at a time. Notably, for
the clarification, we omit data channels in the figures in this
paper. The design and implementation process is identical to
the original example. Therefore, we can evaluate our approach
based on the scientific control.

A. Adding Feature “Sabbath” to the Elevator Product Line

We add Sabbath as an optional child feature of the root,
as shown in Figure 1. Then we need to implement a component
for it. It is worth noting the underlying component model is
already described in [6] and [7].

According to the requirement analysis of Sabbath, we
can identify 3 behaviours behind it. Figure 2 shows the
composite component composed by several atomic components
and composition connectors. For example, MovingUp controls
the elevator to move one floor up and returns the next direction,
while MovingDown makes the opposite move. Contrariwise,
Flooring leaves the elevator in the current floor. The selector

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

Elevator

l Sabbath I

Figure 1. Adding Sabbath to the feature model.

SELs define branching depending on selection conditions,
whereas the sequencer SEQ defines sequencing sequentially.
As a result, the elevator changes direction when it reaches
bottom floor and top floor.

SEQJ_ currentFloor
0 1 1 0
1§ nextFloor
i
SEL1 o
nextDirection
(Flooring)5an. l_rh-'s. direction=="up"_| this direct un——"ﬂ%
0 i
SEL3 SEL2
rrentFloor<this maxFlaor irrentFloor<=this minFioor

this.currentFloor>=i this.currentFloor=thes

(MovingUp)Sab_ul

(MovingDown)Sab_d1 (MovingDown)Sab_d2

Figure 2. Component Sabbath.

After all, the elevator moves one floor up or down for
each execution of Sabbath. In order to keep the elevator
running, we only need to apply an adaptor, called loop, to
repeat the control to this component (not discussed in detail
here). Figure 3 shows the transition systems of the Sabbath
component within the elevator product, which gives us a clear
vision of the behaviour. So far no cross-cutting occurs, due to
only one product exists.

o Sabbath 9

up_direction @ !top_floor/MovingUp 4

top_floor/MovingDown

Flooring
bottom_floor/MovingUp

3

down_direction \3/!bottom_floor/MovingDown

Figure 3. Transition systems of Elevator and Sabbath.

B. Adding Feature “Service” to the Elevator Product Line

Now, we add Service feature to the elevator product
family. As this feature has no functional dependencies with
Sabbath, we put it under the root. In addition, Service
feature is not always required by every product, thus we set it
optional. Figure 4 shows the change of the feature model.

We can reuse two components implemented before: Mov-
ingDown and Flooring. But in order to construct Service
component, we need to implement another, namely StopSer-
vice, which allows the authorised persons to deactivate the

145

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Elevator

OHr1 >

| Sabbath I

Figure 4. Adding Service to the feature model.

[Sabbath] [Service]

Service functionality after the elevator reaches the bottom
floor. Figure 5 shows the construction of Service component.

SEL1 currentFloor
this.currentFloor<=this.minFloor | this.currentFloorsthis.minFloor .
[nextFloor
SEQ1 inService

[i] i
(MovingDown)Ser_d

(Flooring)Ser_f (StopService)Ser_s

Figure 5. Component Service.

Next, we need to apply variation generators to the compo-
nents, which are mapped onto the variation points specified in
the feature model (Figure 4). A variation generator generates
multiple variants: it takes (a set of) sets of components as
input and produces (a set of) permuted sets of components,
i.e., variants. We have implemented variation generators for
the full range of standard variation points, viz. optional,
alternative and or (respectively OPT, ALT and OR. Notably, the
components are algebraic and hierarchical at this level, which
means the variation generator can be nested.

i i
F-LOP currentFloor
this.running==true i
maxFloor
i
F-SEL i
this.inService==false l this.inService==true minFicer
a a e

inService

(Sabbath)sab (Service)ser

Figure 6. Elevator product family with Service.

At the next level of composition in our component model,
family composition takes place, by means of family compo-
sition operators, also defined as connectors. A family compo-
sition operator is applied to multiple input component sets to
yield a set of product variants, i.e., a (sub)family of products.
These operators are defined in terms of the component com-
position operators: a family composition connector forms the
Cartesian product of its input sets, and composes components
in each element of the Cartesian product using the corre-
sponding component composition connector. For example, in
Figure 6, the family composition connector F-SEL applies
the corresponding component composition connector SEL to
components in each element of the Cartesian product, as well

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

as the F-LOP indicates LOP (loop). The result of a family
composition is thus also a family, so this level of composition
is also algebraic.

The choice of family composition connectors is a design
decision that only depends on the functional requirements,
however it will not affect the total number of products in the
(sub)families. Figure 6 shows the elevator family with two
optional features. Derived from the family model in Figure 6,
Figure 7 shows a featured transition system (FTS) [22] of the
family, which depicts the cross-cutting feature Service takes
part in family behaviour, e.g., 1-2-3-1 workflow.

$1 Sabbath _/;2\ Service é
Service

!bottom_floor/MovingDown @

bottom_floor/Flooring @ StopService @
&/

Figure 7. FTS of Elevator and Service.

At present, the elevator family generates 3 products, as
shown in the product explorer in Figure 8. The product
explorer enumerates all valid products in the form of variability
resulting from each variation generator at any level of nesting.
For each product, the user can examine its structure and
built-in components, and hence compare this product with the
corresponding variant derived from the feature model.

Elevator: 3 products

Product 1: LOOP(SEL(sab, ser))
Product 2: LOOP(sab)
Product 3: LOOP(ser)

Figure 8. Product explorer (3 products).

C. Adding Feature “FIFO” to the Elevator Product Line

FIFO (first in, first out) is another control logic of the
elevator. As the name suggests, if more than one floor requests
exist, the oldest request is handled first, i.e., the elevator
directly move to the required floor. By contrast with the feature
Service, FIFO is an alternative to the already existing
Sabbath mode. Therefore, we reform the feature model by
adding features and modifying variation points, as Figure 9
shows.

Elevator

Elevator

—

ALT1 ATl

Service

[Sabbath] [Service]

FIFO Sabbath

Figure 9. Adding FIFO to the feature model.

Likewise, we implement a component FIFO for feature
FIFO. Figure 10 shows the architecture of the component,

146

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

which is a composition of four sub-components. Two of them
are newly prepared: FloorQueue and RemoveRequest. The
former appends an incoming floor request to the end of the
request queue, while the latter removes the first floor request
from the queue.

i

nextFloor currentFloor

queus_out minFloor

i

maxFloor

SEQ2

this.requestFloor==this.currentr| 1is. requestFloor!=this.currentFloor

(FloorQueue)FIFO_fq sEQ1 SEL1

waffloor>this. currentFloor

(MovingDown)FIFO_d
(MovingUp)FIFO_u

(Flooring)FIFO_f
(RemoveRequest)FIFO_rr

Figure 10. Component FIFO.

i i
F-LOP currentFloor
this.running==true i
minFloor
i
F-SEL 1
maxF loor

this inService==true

®
@@

(FIFO)fifo (Sabbath)sab (Service)ser inservice

this.inService==false l

nextDirection

’,
o
TILL

Figure 11. Elevator product family with FIFO.

After all leaf features are realised, now we can construct the
new elevator product family. Since we have already presented
variation generators and family composition connectors in
Section III-B, the details of family construction are no longer
described here. Figure 11 shows the latest elevator product
family, which contains 4 valid products. The behaviour of
the family is illustrated in Figure 12, in which we can see
Service remains cross-cutting relationships with both FIFO
and Sabbath. Finally, the products are enumerated in the
product explorer in Figure 13.

Sabbath =\ Service
2
Service
1 ' 4
© /
FIFO 2/ Service

Figure 12. FTS of Elevator family.

D. Testing Elevator Product Line

Software product family testing comprises two related
testing activities: domain testing and application testing. The
former refers to domain engineering, whereas the latter refers
to application engineering. Figure 14 depicts a V-model that
describes the stages of domain engineering [23]. It involves 3

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

Elevator: 4 products

Product 1: LOOP(SEL(fifo, ser))
Product 2: LOOP (fifo)
Product 3: LOOP(SEL(sab, ser))
Product 4: LOOP(sab)
Figure 13. Product explorer (4 products).

different testing types, each of which tests a product line at a
specific level.

Domain
Analysis

Domain System
Testing
- Domain
Domain .
Integration
9 Testing
Domain Domain Unit
Implementation Testing

Figure 14. The V-Model for domain engineering.

.............. >

Domain unit testing is easy to be operated for a feature-
oriented architecture constructed in a component-based man-
ner. In our approach, every component can be invoked via
a provided service, which is a piece of behaviour (an input-
output function) implemented by its methods. Therefore, the
components, no matter atomic or composite, can be tested
by the traditional techniques, e.g., structural testing. Our tool
provides a workbench that all components can be executed
directly. For example, we test component MovingUp within a
simulation that controls an elevator to move from fifth floor to
seventh floor. The result is demonstrated in Figure 15.

Going up... VM197:8
Going up... VM197:8
VM197:19
(index) current next direction
=] 5 6 "up™
1 B 7 “up™

Figure 15. Unit testing result of MovingUp.

Domain integration testing focuses on the testing of
combinations of components. For most SPLE approaches,
variability handling is a huge challenge in the integration
testing phase, due to it heavily influences the components and
their interactions [24]. Briefly, a variation point in the feature
model may be modelled by multiple variation points scattered
across a number of components, which results in too many
component interactions for exhaustive testing. However, our
approach may copes with the problem.

Firstly, the variability in family model is embodied by
variation generators, which achieve a 1-to-1 mapping onto
variation points in feature model, as well as the 1-to-1 feature
mappings refers to the components. As we introduced earlier,
the variability is enumerative in the final product family archi-
tecture. Notably, the product family architecture is isomorphic
to the feature model. Thus, mismatched variability caused by
invalid component interactions can be easily spotted in product

147

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

explorer. For example, in Figure 11, if we misplace an OR
variation generator on the top of FIFO and Sabbath instead
of ALT variation generator, then we can observe 5 products
in the product explorer. That is obviously incorrect due to the
feature model only gives 4 product variants in total.

Secondly, the component model adopted in our approach
exposes a provided service, but no required service. Such
components are known as encapsulated components [6]. There
are no coupling between encapsulated components, i.e., they
do not call others. Instead, they are invoked by composition
connectors. Thereby, we do not need to worry about the faulty
component compounds, i.e., the incorrect bound interfaces.
Moreover, as we mentioned earlier, the level of family com-
position is algebraic, as it generates a set of encapsulated
components, which can be tested directly.

In conclusion, the distinguished property of our com-
ponent model makes domain integration testing convenient
and crystal, especially for the software product families of
non-trivial size. All we have to do is examining the 1-to-
1 mappings between (i) (leaf) features and components, (ii)
variation points and variation generators. The correctness of
behaviours between components will be tested at the next level.

Domain system testing evaluate all products’ compliance
with their requirements. It becomes obvious that verifying the
behaviour of each product individually is difficult due to an
exponential number of combinations of assets is unmanageable
[25]. Since by our approach, the control flows are clearly
coordinated by exogenous connectors and the components
are directly mapped onto features, every family model can
derive a family-based functional model that describes the
combined behaviour of an entire family, such as FTS [22] or
Featured Finite State Machine (FESM) [26]. In this section, we
have generated FTS diagrams for different elevator families
in Figure 7 and Figure 12. The FTS describes the overall
behaviour of family, and hence the behaviours of every product
within the family. For example, if we misplace a F-SEQ
(family sequencer) instead of F-SEL (family selector) in the
family model in Figure 11, then the derived FTS would not
show the 1-4 workflow as in Figure 12. Therefore, we can
detect the problems in family composition, due to the FTS
does not describe the required behaviour.

Family-based functional model can help us to verify the be-
haviour of component interactions, but it is not straightforward
to validate the execution results. However, we cannot order test
executions for every single product. Thus, we should execute
a test case in the whole product family, i.e., all configurations
of the family, without actually generating a concrete product.
In that case, a product line testing method, called Variability-
Aware Testing [27], is perfect for our family model. The key
step of variability-aware testing is to extract an abstract syntax
tree (AST) with explicit variability. In our approach, the final
family model has a tree structure with enumerative variability,
so it provides a seamless migration to the testing model.
The testing model of the elevator example is demonstrated in
Figure 16 (not discussed in detail here because of the limited
space).

E. Product Generation

In Section II, we have presented that our approach construct
enumerative variability in the solution space. In other words,
all valid products are defined during composition. Unlike

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

FIFO Sabbath

(queue_out= [4]) GextDirection = u@

nextFloor=3

minFloor=1

—
=

A 4
Service

Figure 16. Variability-aware testing of Elevator.

conventional FOSD approaches, we can ‘pick up’ any number
of products from the product explorer in one go, instead of
one product at a time via configuration.

Here, to exemplify, we choose product No.3 from the
product explorer in Figure 13. Figure 17(a) shows the product
architecture, which is executable, and Figure 17(b) expresses
partial execution result.

i i 0 —
currentFloor nextFloor - ;"St Floor --
@ F-LOP Going up...
.) -- 2nd Floor --
mmf;o::* this rurmk.vg==true Going up...
1
mavFiloy i ertDirects -- 3rd Floor --
* extDirection Going up...
F-SEL -- 4th Floor --
this.inService==false | " this.inService==true Going down...
-- 3rd Floor --
Going down...
Service on...
Going down...
-- 1st Floor --
(Sabbath)sab (Service)ser -
(a) (b)

Figure 17. Product 3.

IV. CONCLUSION AND FUTURE WORK

By comparison with the original elevator family imple-
mentation in [20], our implementation has many merits. For
example, the original example is realised by FOP, in which
every feature is mapped onto multiple code fragments scat-
tering cross three classes. Each feature cannot be tested in
isolation. Simply put, our approach provides better maintain-
ability, manageability and testability because of the explicit
1-to-1 feature mappings. However, our family model only
realises behaviour in the family. Contrariwise, in [20], FOP
can define user interface for simulation, because as a low-level
programming language, FOP can overwrite any code directly.

To provide step-by-step instructions of how to use our
approach for family construction, we choose a small example
for the simplicity. But our approach can be used for product
families of non-trivial size. Besides the functions shown in

148

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Section III, our tool can deal with cross-tree constraints (e.g.,
‘require’, ‘exclude’) among features, and among components.
Our tool can also set cardinalities to narrow down massive
families. Moreover, our tool can handle feature interaction
problem, which becomes the most significant challenge in
SPLE [28], by importing extra off-the-shelf components during
composition. As a matter of fact, we have successfully con-
structed product families for industrial cases, i.e., consisting
of dozens of features and hundreds of products. In future, we
plan to present these results of our research.

According to [29], in the real world, many organisations
adopt product families using three techniques: proactive, re-
active and extractive. A proactive approach implies that a
product family is modelled from scratch. In contrast, a reactive
approach begins with a small, easy to handle product family,
which can be incrementally extended with new features and
artefacts. An extractive approach starts with a portfolio of
existing products and gradually refactors them to construct
a product family. At present, it is apparent that our work
is proactive. However, recent researches [30], [31] in reverse
engineering suggest that our work also has potential to support
reactive and extractive techniques.

REFERENCES

[11 K. Pohl, G. Bockle, and F. J. van Der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer Science
& Business Media, 2005.

[2] C. Kistner, S. Trujillo, and S. Apel, “Visualizing software product line
variabilities in source code.” in SPLC (2), 2008, pp. 303-312.

[3] K. Berg, J. Bishop, and D. Muthig, “Tracing software product line
variability: From problem to solution space,” 2005, pp. 182-191.

[4] J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach. Pearson Education, 2000.

[5] S. Apel and C. Kistner, “An overview of feature-oriented software
development.” Journal of Object Technology, vol. 8, no. 5, 2009, pp.
49-84.

[6] K.-K. Lau and S. di Cola, An Introduction to Component-based
Software Development. World Scientific, 2017.

[71 C. Qian and K.-K. Lau, “Enumerative variability in software product
families,” in Computational Science and Computational Intelligence
(CSCI), 2017 International Conference on. IEEE, 2017, pp. 957-962.

[8] A.-L.Lamprecht, S. Naujokat, and I. Schaefer, “Variability management
beyond feature models,” Computer, vol. 46, no. 11, 2013, pp. 48-54.

[91 K. C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented Product Line
Engineering,” IEEE software, vol. 19, no. 4, 2002, pp. 58-65.

[10] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling step-wise refine-
ment,” IEEE Trans. Software Eng., vol. 30, no. 6, 2004, pp. 355-371.

[11] S. Apel, T. Leich, M. Rosenmiiller, and G. Saake, “FeatureC++: on
the symbiosis of feature-oriented and aspect-oriented programming,” in
Generative Programming and Component Engineering. Springer, 2005,
pp- 125-140.

[12] A. Haber, T. Kutz, H. Rendel, B. Rumpe, and I. Schaefer, “Delta-
oriented architectural variability using MontiCore,” in Proceedings of
the 5th European Conference on Software Architecture: Companion
Volume. ACM, 2011, p. 6.

[13] 1. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella, “Delta-
oriented programming of software product lines,” in Software Product
Lines: Going Beyond. Springer, 2010, pp. 77-91.

[14] 1. Schaefer, “Variability modelling for model-driven development of
software product lines.” VaMoS, vol. 10, 2010, pp. 85-92.

[15] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software Engineer-
ing Institute, Carnegie-Mellon University, Tech. Rep. CMU/SEI-90-TR-
021, 1990.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

C. Kistner and S. Apel, “Feature-oriented software development,” in
Generative and Transformational Techniques in Software Engineering
IV. Springer, 2013, pp. 346-382.

W. Zhang, H. Mei, H. Zhao, and J. Yang, “Transformation from CIM to
PIM: A feature-oriented component-based approach,” in International
Conference on Model Driven Engineering Languages and Systems.
Springer, 2005, pp. 248-263.

P. Trinidad, A. R. Cortés, J. Pefia, and D. Benavides, “Mapping feature
models onto component models to build dynamic software product
lines.” in SPLC (2), 2007, pp. 51-56.

C. Qian, “Enumerative Variability Modelling Tool,” http://www.cs.man.
ac.uk/~qianc?’EVMT, 2018, [Online; accessed 1-July-2018].

J. Meinicke et al., “Developing an elevator with feature-oriented
programming,” in Mastering Software Variability with FeatureIDE.
Springer, 2017, pp. 155-171.

C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and
S. Apel, “FeatureIDE: A tool framework for feature-oriented software
development,” in Proceedings of 31st ICSE. IEEE, 2009, pp. 611-614.

A. Classen, P. Heymans, P-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: efficient verification of temporal
properties in software product lines,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
1. ACM, 2010, pp. 335-344.

J. Lee, S. Kang, and D. Lee, “A survey on software product line
testing,” in Proceedings of the 16th International Software Product Line
Conference-Volume 1. ACM, 2012, pp. 31-40.

L. Jin-Hua, L. Qiong, and L. Jing, “The w-model for testing software
product lines,” in Computer Science and Computational Technology,
2008. ISCSCT’08. International Symposium on, vol. 1. IEEE, 2008,
pp- 690-693.

T. Thiim, S. Apel, C. Kistner, I. Schaefer, and G. Saake, “Analysis
strategies for software product lines: A classification and survey,” Soft-
ware Engineering and Management 2015. Gesellschaft fr Informatik
e.V., 2015, pp. 57-58.

V. H. Fragal, A. Simao, and M. R. Mousavi, “Validated test models for
software product lines: Featured finite state machines,” in International
Workshop on Formal Aspects of Component Software. Springer, 2016,
pp. 210-227.

C. Kistner et al., “Toward variability-aware testing,” in Proceedings of
the 4th International Workshop on Feature-Oriented Software Develop-
ment. ACM, 2012, pp. 1-8.

M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Fea-
ture interaction: a critical review and considered forecast,” Computer
Networks, vol. 41, no. 1, 2003, pp. 115-141.

C. Krueger, “Easing the transition to software mass customization,” in
Software Product-Family Engineering. Springer, 2002, pp. 282-293.

R. Arshad and K.-K. Lau, “Extracting executable architecture from
legacy code using static reverse engineering,” in Proceedings of 12th
International Conference on Software Engineering Advances. IARIA,
2017, pp. 55-59.

R. Arshad and K.-K. Lau, “Reverse engineering encapsulated com-
ponents from object-oriented legacy code,” in Proceedings of The

30th International Conference on Software Engineering and Knowledge
Engineering. KSI Research Inc., July 2018, pp. 572-577.

149

