
An Enumerative Variability Modelling Tool for Constructing

Whole Software Product Families

Chen Qian and Kung-Kiu Lau

School of Computer Science
The University of Manchester

Kilburn Building, Oxford Road, Manchester, United Kingdom, M13 9PL
Email: chen.qian,kung-kiu.lau@manchester.ac.uk

Abstract—Constructing a product family requires the formulation
in problem space of a domain model (including a variability
model) and its implementation in solution space. Current Soft-
ware Product Line Engineering tools mostly aim to build an
‘assembly line’ for deriving one product at a time by assembling
domain artefacts according to the variability model. Therefore,
those tools support enumerative variability in problem space, but
parametric variability in solution space. In this paper, we present
a tool to model and implement enumerative variability in both
spaces, and hence construct a whole product family in one go.

Keywords–Enumerative Variability; Product Family Engineer-
ing; Web-based Tool.

I. INTRODUCTION

Current Software Product Line Engineering (SPLE) tools,
e.g., pure::variants [1], AHEAD [2] and Clafer [3], construct
a product family by using an ‘assembly line’ (product line).
In the domain engineering phase, SPLE tools (i) construct a
variability model in the problem space, and (ii) model and
implement domain artefacts in the solution space, that can
be used to assemble individual products. In the application
engineering phase, SPLE tools assemble one product at a time
from the domain artefacts in the solution space [4]. By contrast,
we have defined an approach that constructs a whole product
family in one go [5].

Existing SPLE tools usually define a feature model to
specify variability in the domain engineering phase, and use
a configuration model to specify a particular product variant
in the application engineering phase. A feature model defines
enumerative variability, as it includes all valid variants. A
configuration model defines parametric variability, as it is
parameterised on the presence/absence of features in a single
product.

By contrast, we use enumerative variability in both the
problem space and the solution space [5]. In Section II, we
briefly introduce our product family engineering approach with
the underlying component model. In Section III, we present a
web-based tool that supports every step in our approach. In
Section IV, we use an example to show how to construct
a product family and derive products from the family by
using our tool. Finally, in Section V, we finish our paper by
conclusion of our work and discussion of the future work.

II. OVERVIEW OF OUR APPROACH

Starting from a feature model, we model and implement the
enumerative variability defined by the feature model. Our ap-

proach is component-based, i.e., it follows a component model
[6], [7]. We define a whole product family as a composition
of variants of sets of components, as illustrated in Figure 1.

Family Filter

Family Connector

Variation Generator

Component

Family

OPT

oi

ALT

oi oi oi

OR

oioi

Figure 1. Component model: Levels of composition.

We proceed in three main stages, modelling and imple-
menting (i) features, (ii) variation points, and (iii) product
variants, respectively. Firstly, we construct components (atomic
or composite) as the implementations of leaf features in
the feature model. Notably, the abstract features aggregate
behaviour corresponding to leaf features. A component is
a software unit with a provided service (a lollipop in its
interface) but no required services. Such a component is called
an encapsulated component [7]. Then we apply variation
generators, which model variation points in the feature model,
viz. optional, alternative and or (respectively OPT, ALT and
OR in Figure 1), and therefore generate sets of components as
variations of the input set of components. So at the next level
of composition, we apply family composition connectors. Each
of them yields a set of product variants, i.e., a (sub)family of
products, in the form of Cartesian product of its input sets, and
composes components in each element of the Cartesian product
using the corresponding component composition connector.

In our component model, the composition operators are
algebraic, i.e., composite components are the same type as
their sub-components, and composition is therefore strictly
hierarchical. This important property enables us to model and
implement the elements of a feature model (features, variation
points, product variants) level by level.

Constraints in the feature model as well as feature interac-
tion are dealt with by filters in family composition connectors.
Invalid products are immediately removed from the Cartesian
product of component sets produced by a family composition
connector. We can also create new components for interacting
features, and use them to replace original ones if feature

138Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Cardinality

Variation Points

(a) Feature model.

(b) All 576 valid variants.

Figure 2. Canvas for constructing feature model.

interactions occur in a product. The interaction rules are set
up in the family filters, which are bound with every family
composition connector, as shown in Figure 1.

III. THE TOOL

Our tool is a web-based graphical tool that implements our
component model [8]. The GUI is realised using HTML5[9]
and CSS3 [10], whereas the functionality is implemented using
JavaScript [11]. In particular, we adopt the latest edition of
ECMAScript as JavaScript specification since its significant
new syntax, including classes and modules, supports complex
applications. Additionally, we import jQuery [12], the most
widely deployed JavaScript library, to improve code quality

and enhance system extensibility. Our tool also offers a client-
side repository called IndexedDB [13], which is a NoSQL
database for massive amounts of structured data, as shown on
the right side of Figure 3 (and Figure 4). For the purpose of
user-friendliness, all building blocks, including constraints and
interaction, can be easily added through buttons and dialogue
boxes, as seen in Figures. 2-5.

The tool provides a workbench with functionalities that
support the stages of our approach. Here, we describe these
functionalities and illustrate them with the construction of a
whole product family with 576 valid variants. The example
is a family of External Car Lights (ECL) systems, which is
adapted from an industrial example provided by pure-systems

139Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Atomic Component

Computation Unit

Unit Test

Execution Result

(a) Atomic component.

Composite Component

Instantiation

Retrieve

Input

Output

Data Channel

Composite Connector

Adapter

(b) Composite component.

Figure 3. Canvases for constructing components for leaf features.

GmbH. The requirement of ECL family is demonstrated in
Section IV. Figure 2(a) shows the feature model that contains
all 576 valid product variants enumerated in Figure 2(b).

A. Component Construction

Figure 3 shows the canvases provided by our tool for
constructing components for leaf features. After a component
is created, it should be deposited in a repository, and therefore
can be retrieved for further construction.

Figure 3(a) depicts the construction and deposition, of an
atomic component, FogLight, which is the implementation

of leaf feature FOG LIGHT. By simply clicking the ‘New
Component’ button, we can define the component name,
service name, input data and output data in a dialogue box,
which automatically generates an implementation template for
the computation unit. Additionally, we can immediately test
the component as soon as the computation unit has been
implemented, and examine the result through browser console.

Figure 3(b) illustrates the construction of a composite
component, StaticCornerFogLight. According to re-
quirements, it implements the feature interaction caused by
STATIC CORNERING LIGHT and FOG LIGHT. A composite com-

140Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Product Family Family Filter

Input

Cardinality

Variation Generator

Output
Constraints

Family Composition Connector

Figure 4. Canvas for constructing a whole product family from a feature model.

ponent is defined by its name and service, and constructed
by composing components (retrieved from repository) via
predefined composition connectors and adaptors (on the left
of Figure 3(b)). Composition connectors include Sequencer
and Selector, which provide sequencing and branching respec-
tively. Adapters include Guard and Loop, which offer gating
and looping respectively. Components can also be aggregated
into a façade component, i.e., one that contains the aggregated
components, by an aggregator connector AGG. Aggregates are
essential for implementing the or variation point.

B. Variants and Family Construction
Figure 4 shows the canvas for constructing a whole

product family from the feature model. It is worth noting
that we omit the repository and data channels for clarifi-
cation. A product family is defined by its name and ser-
vice, and constructed by composing components (retrieved
from repository) via predefined variation generators and fam-
ily composition connectors (on the left of Figure 4). Con-
straints, derived from the constraints in the feature model
(Figure 2(a)), as well as feature interaction, are defined
as rules in a family composition connector filter. For ex-
ample, if interacting features StaticCornerLight and
FogLight are selected together, the former will be replaced
by StaticCornerFogLight immediately.

C. Product Explorer
Figure 5 presents a useful feature of our tool, namely

Product Explorer. It enumerates all valid products in the form
of variability resulting from each variation generator at any
level of nesting. For each product, by a simple click, the user
can examine its structure and built-in components, and hence

compare this product with the corresponding variant derived
from the feature model. In this case, there are a total of 576
products in solution space, matching exactly the 576 variants
enumerated in problem space in Figure 2(b). Figure 5 also
shows the model structure of product No. 165.

Furthermore, any product can be executed and tested
directly. A batch download link of all source code files is
available.

IV. DEMONSTRATION ROADMAP

In this section, we will present how to construct a software
product family step-by-step from scratch by our approach and
tool.

Step 1: Construct Feature Model
An ECL system can control headlights (including LOW

BEAM lights and HIGH BEAM lights), FOG LIGHTs and DAYTIME

RUNNING LIGHT (including REDUCED LOW BEAM lamp, LED
and STANDARD BULB). These lights can be switched on or off
according to the driver’s instructions. A beam is either Xenon
or Halogen.

On the other hand, in some cases, an ECL system enables
lights and signal devices by automatic detection. It provides
a functionality called DRIVER ASSISTANCE, which supports
AUTOMATIC LIGHT, AUTOMATIC HIGH/LOW BEAM and CORNER-
ING LIGHT (including STATIC CORNERING LIGHT and ADAPTIVE

FORWARD LIGHT).
Figure 2(a) shows the canvas for constructing the ECL

feature model along with features, variation points and con-
straints. It defines an enumerative variability with a total of

141Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Figure 5. Product explorer and product No.165.

576 valid variants. Figure 2(b) shows all valid variants in terms
of feature combinations.

Step 2: Construct Bottom Level Components
There are 20 leaf features in Figure 2(a), but some of

them are reused. As a result, we construct 12 components
(atomic or component) for them. In addition, we construct an
optional component for feature interaction, as already stated
in Section III-A. Once implemented, they are deposited for
further construction. The repository in Figure 3 shows all the
components, each of them can be tested directly, as illustrated
in Figure 6.

Step 3: Apply Variation Generators
Now, we retrieve the pre-constructed components from

repository. After instantiation, we have prepared 22 component
instances for family construction, as shown in Figure 4. Then
we apply the variation generators according to the feature
model in Figure 2(a). For example, the OPT applied to Fog
yields the set {∅, {Fog}}; the ALT applied to LED and Bulb
and gives the set {{LED}, {Bulb}}; and the OR applied to
AFL1 and SCL1 generates the set {{AFL1}, {SCL1}, {AFL1,
SCL1}}.

Step 4: Apply Family Composition Connectors
This step is to compose the variations into sub-families

of the ECL family using family composition connectors. The
choice of family composition connectors is a design decision,
however it will not affect the total number of products in
the (sub)family. For instance, in Figure 4, a family sequencer
called F-SEQ1 composes a sub-family, which is the imple-
mentation of abstract feature AUTOMATIC HIGH/LOW BEAM.
The whole family is constructed when all sub-families have
been constructed and composed. However, in order to filter
out the invalid products, we need to add constraints between
component instances, which are mapped onto the constraints
we defined in Figure 2(a).

Step 4: Establish Interaction Rules
In Figure 4, we show a family filter for setting out

interaction rules. It has been exemplified in Section III. The
interaction will be displayed in the nearest family composition
connector that composes the components involved. We add
necessary data channels to define data flows. The final whole
product family is shown in Figure 4.

Step 5: Test Products
All the products in the family are fully formed and ex-

ecutable, so they can be directly tested. Figure 6 shows the
generated source code, testing code and result of product 165.
This concludes the demonstration.

V. CONCLUSION AND FUTURE WORK

Our tool is a complete re-implementation of an earlier
version presented in [14]. We have re-defined the underlying
component model, added new capabilities including feature
interaction, and used a different technology stack.

Compared to current SPLE tools, which use parametric
variability to configure one product at a time in solution space,
our tool offers a new possibility of constructing the whole
family in one go, by using enumerative variability in solution
space. Although, from a customer’s point of view, constructing
all products at once may seem like overkill, our approach/tool
can be adopted by current SPLE techniques in application
engineering, since our approach can provide all the necessary
domain artefacts. For example, for the ECL family, our tool can
generate an annotative code base using pure::variants notations.
This code base can be correctly used in pure::variants for
application engineering (Figure 7).

Finally, our tool will facilitate product line testing [15].
So far, our tool only provides a workbench for domain unit
testing, i.e., testing components and products. However, it does
not support domain integration testing and domain system
testing [16]. Therefore, the further development of our tool
includes (1) automatic comparison of variability specified in

142Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Source Code Testing Code

Execution Result

Figure 6. Product/Component testing.

Figure 7. Generating annotative code base for pure::variants.

the problem space (Figure 2(b)) and implemented in the
solution space (Figure 5), (2) the validity of every data channel,
(3) generation of featured statecharts to examine behaviour at
family level [17], [18].

REFERENCES

[1] D. Beuche, “Modeling and building software product lines with
pure::variants,” in Proceedings of the 16th International Software Prod-
uct Line Conference-Volume 2. ACM, 2012, pp. 255–255.

[2] D. Batory, “A tutorial on feature oriented programming and the ahead
tool suite,” Generative and Transformational Techniques in Software
Engineering, 2006, pp. 3–35.

[3] M. Antkiewicz, K. Bąk, A. Murashkin, R. Olaechea, J. H. J. Liang,
and K. Czarnecki, “Clafer tools for product line engineering,” in
Proceedings of the 17th International Software Product Line Conference
co-located workshops. ACM, 2013, pp. 130–135.

[4] K. Berg, J. Bishop, and D. Muthig, “Tracing software product line
variability: From problem to solution space,” 2005, pp. 182–191.

[5] C. Qian and K.-K. Lau, “Enumerative variability in software product
families,” in Computational Science and Computational Intelligence
(CSCI), 2017 International Conference on. IEEE, 2017, pp. 957–962.

[6] K.-K. Lau and Z. Wang, “Software component models,” IEEE Trans-
actions on Software Engineering, vol. 33, no. 10, October 2007, pp.
709–724.

[7] K.-K. Lau and S. di Cola, An Introduction to Component-based
Software Development. World Scientific, 2017.

[8] C. Qian, “Enumerative Variability Modelling Tool,” http://www.cs.man.
ac.uk/~qianc?EVMT, 2018, [Online; accessed 1-July-2018].

[9] G. Anthes, “HTML5 leads a web revolution,” Communications of the
ACM, vol. 55, no. 7, 2012, pp. 16–17.

[10] T. Celik and F. Rivoal, “CSS basic user interface module level 3 (CSS3
UI),” 2012.

[11] D. Flanagan, JavaScript: the definitive guide. O’Reilly Media, Inc.,
2006.

[12] D. S. McFarland, JavaScript & jQuery: the missing manual. O’Reilly
Media, Inc., 2011.

[13] S. Kimak and J. Ellman, “The role of html5 indexeddb, the past, present
and future,” in Internet Technology and Secured Transactions (ICITST),
2015 10th International Conference for. IEEE, 2015, pp. 379–383.

[14] S. di Cola, K.-K. Lau, C. Tran, and C. Qian, “An MDE tool for defining
software product families with explicit variation points,” in Proceedings
of the 19th International Conference on Software Product Line. ACM,
2015, pp. 355–360.

[15] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “Analysis
strategies for software product lines: A classification and survey,”
Software Engineering and Management, 2015.

[16] L. Jin-Hua, L. Qiong, and L. Jing, “The w-model for testing software
product lines,” in Computer Science and Computational Technology,
2008. ISCSCT’08. International Symposium on, vol. 1. IEEE, 2008,
pp. 690–693.

[17] V. H. Fragal, A. Simao, and M. R. Mousavi, “Validated test models for
software product lines: Featured finite state machines,” in International
Workshop on Formal Aspects of Component Software. Springer, 2016,
pp. 210–227.

[18] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: efficient verification of temporal
properties in software product lines,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
1. ACM, 2010, pp. 335–344.

143Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

