
Continuous Improvement and Validation  

with Customer Touchpoint Model in Software Development 

Tanja Sauvola, Markus Kelanti, Jarkko Hyysalo, Pasi Kuvaja and Kari Liukkunen 

M3S Research Unit, Faculty of Information Technology and Electrical Engineering,  

University of Oulu 

PO BOX 4500, FI-90014 University of Oulu, Finland 

e-mail: {tanja.sauvola, markus.kelanti, jarkko.hyysalo, pasi.kuvaja, kari.liukkunen}@oulu.fi 

 

 

 
Abstract—Experimental-driven software development 

approach has gained momentum as a way to incrementally 

build and validate customer value. In-depth understanding of 

customer needs and reasons behind constantly changing 

requirements are essential for building successful software 

products. However, identifying, validating and reacting to 

these changes is often difficult and requires short iteration 

cycles and feedback from customers. This paper reports a 12-

month case study conducted in an agile software team 

following a practical customer touchpoint (CTP) model for 

continuous improvement and validation. The objective of the 

study was to implement CTP into software team practices in 

order to determine what kind of effect it has on the 

development of a web application. The contribution of this 

paper is twofold. First, an in-depth case study is presented that 

identifies the practices a CTP model should adopt when 

implemented in the software development process. The CTP 

model is then extended based on the identified 

recommendations. Second, the benefits and challenges of the 

extended CTP in software development are presented. The 

main benefits relate to learning, decision-making, innovation, 

co-creation and communication. The model had a positive 

impact on the software development process, but some 

challenges, such as stakeholder availability and customer value 

measurement, were identified. 

Keywords—lean UX; service design; customer involvement; 

software development; continuous improvement. 

I.  INTRODUCTION 

Customer value determines the success of a product or a 
service in the marketplace, and software has become 
essential to value creation and delivery [1]. Software 
development teams face high pressure to develop innovative 
products and services at increasing speeds in a dynamic and 
continuously changing business environment. To this aim, 
development teams seek to become more data-driven, which 
requires using customer feedback and product data to 
support learning and decision-making during the 
development process and throughout a product’s lifecycle. 
This presents the challenge in software development to adopt 
iterative and agile practices for the continuous deployment of 
new features and enhancements to provide customers with 
added value [1]-[3]. Customer value and the ability to 

experiment with business ideas have been considered in 
Agile methods [4] and the Lean Startup [5] philosophy, both 
very popular in the software industry. Recently, concepts like 
continuous experimentation—where software development 
teams constantly experiment with product value—have been 
introduced in the literature as well [3][6][7]. The continuous 
experiment approach involves customers and end-users of 
the service in the decision-making process, providing 
feedback to developers by interacting with experimental 
materials like early prototypes of the features under 
development.  

User experience (UX) has also become an increasingly 
important determinant of the success or failure of software 
systems. Approaches such as Design Sprint, introduced by 
Google Ventures [8], and Lean UX [9] using Lean Startup 
principles, now appear. These experiment-driven approaches 
interrelate with business strategy decisions and tend to focus 
on customer centricity. Forward-thinking companies see the 
benefits and importance of UX design in their product and 
service development activities. Even with these 
methodologies, software teams still encounter challenges 
when involving customers and integrating customer 
feedback into short development cycles [2][6].  

In this paper, the customer touchpoint (CTP) model 
introduced by Sauvola et al. [2] is examined as a way for 
software development teams to become more customer 
centric and data driven. The study focuses on finding 
answers to the following research questions: 

RQ1: What practices should the CTP model adopt when 
implemented in the software development process?  

RQ2: What are the benefits and challenges of CTP in 
software development? 

To address the research questions, a case study in the 
software development context has been performed. The CTP 
model is validated and extended by proposing practices for 
the continuous validation of customer value in short 
development cycles to increase customer understanding. The 
benefits and challenges of the extended CTP model are then 
identified.  

The paper is organized as follows. Section 2 studies the 
related work. Section 3 presents research approach and 
describes the case project. Section 4 presents the results and 

52Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances



analyses. Section 5 discusses the results. Section 6 concludes 
the work with a summary and topics for further research. 

II. RELATED WORK 

A. Value creation through continuous experimentation  

In software development, short product development and 
deployment cycles and shorter feedback loops are enabled by 
practices such as agile and lean development [4][5], 
continuous deployment [10] and DevOps [11]. An 
organisation’s ability to deploy new functional and non-
functional features continuously enables faster responses to 
customer needs [10][12]. However, these practices provide 
only a little guidance on how to constantly validate product 
assumptions while experiment-driven approaches focus more 
on value delivery with validated learning.  

The literature presents several methods for establishing 
continuous experimentation with customers. Bosch et al. 
[13], for example, suggests exposing products to customers 
in two- to four-week experimentation iterations to solicit 
feedback. Studies of software engineering also propose ideas 
for continuous experimentation. Fagerholm et al. [3] suggest 
their RIGHT model for continuous experimentation, in 
which the key element is the start-up company’s ability to 
release prototypes with suitable instrumentation. In this 
model, business strategies form the basis of experiments, and 
results guide future development activities. Holmström 
Olsson et al. [6] present the concept of an innovation 
experiment system (IES) in which software development 
teams constantly develop hypotheses and test them with 
customers. The IES approach also recommends that software 
teams continuously deploy individual features rather than 
plan larger product releases. This enables short feedback 
loops and facilitates data-driven decisions, reducing the risk 
of failing to build customer value by continuously 
identifying, prioritising and validating product assumptions 
in all software development phases. Holmström Olsson et al. 
also coined the hypothesis experiment data-driven 
development (HYPEX) model, which introduces a set of 
practices to integrate feature experimentation into the 
software development process by combining feature 
experiments and customer feedback. The model aims to 
improve the correlation between customer needs and 
research and development efforts [14]. More recently, 
Holmström Olsson et al. also presented a 
quantitative/qualitative customer-driven development (QCD) 
model. This model presents available customer feedback 
techniques and aims to help companies become more data-
driven by combining qualitative feedback with quantitative 
customer data [15]. Such methods are supported by Kohavi 
et al. [16], who report that companies use experiments to 
guide product development and accelerate innovation. 
Companies adapting the experimentation approach are 
typically developing internet related product and services, 
such as  Amazon, eBay, Facebook, Google, LinkedIn, 
Microsoft and Netflix [16]. While experimentations are 
recognized as beneficial approach to software development, 
barriers to related resources, organisational culture and data 
knowledge persist [17]. 

B. Service design in software development 

Service design (SD) is a methodological approach that 
can be utilized during software development to involve 
customers and collect feedback. It is a holistic, 
multidisciplinary approach that aids innovation and improves 
existing products to make them more useful and desirable to 
customers [18]. SD provides an outside-in-development 
approach, where products and services are developed 
holistically from customers’ and end-users’ points of view, 
and applies design thinking and methodologies in product 
and service development. Recently, some process models 
and working practices, such as Lean UX [9] and Design 
Sprint [8], have been introduced under SD and UX design 
titles with the aim of synthesising design thinking, agile 
software development and lean start-up philosophies. Lean 
principles and Lean Startup apply to Lean UX in three ways: 
1) removing waste by only creating the design artifact that 
enables the software development team to move their 
learning forward; 2) embracing cross-functional 
collaboration and bringing all relevant stakeholders into the 
design process; and 3) adopting the experimentation mindset. 
Lean UX is the evolution of product design, aiming at 
breaking down the barriers between software development 
teams, designers and users [9]. Similarly, Google Ventures 
introduced Design Sprint to integrate product discovery, 
product validation and delivery activities in a five-day 
process [8].  

Experiments with customers require the ability to elicit 
customer feedback. For example, visualisation techniques 
nurture the co-design process and elicit feedback without 
relying on existing technical infrastructure or up-front 
development efforts. Different visualisation techniques are 
used, e.g., in agile development to design a product or a 
service, support the development process, enhance 
communication and track the process [19]. The SD approach 
emphasises the co-design process, whereby stakeholders are 
involved in concrete, productive design tasks such as 
workshop sessions. These sessions typically include 
collaborative prototyping and other means of expressing the 
information needed in the design and development process 
[20].  

III. RESEARCH APPROACH 

The software development process and related activities 
are presented in this paper through a case study that follows 
the guidelines set by Runeson and Höst [21]. A qualitative 
case study method was chosen to gain a practical view on the 
topic.  In principle, the study is an in-depth, single-case 
study, where the involved participants represent different 
public and private organisations with fundamentally different 
roles, such as user, data provider, company representative 
and ecosystem leader. According to Yin [22], the single-case 
design is appropriate for testing a specific theory, which in 
this case is the CTP model. The study is also confirmatory in 
nature, as it aims to evaluate the robustness of a theory. 

53Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances



A. Case description 

Our case study was conducted in the Fenix project  
(www.fenix.vip), where the software team develops a cloud-
based service for real-time business case management for the 
Allied ICT Finland (AIF) (www.alliedict.fi) In the AIF 
program, a need was identified as currently information 
about companies, research institutes, business opportunities 
and product offerings are scattered into various databases 
and services. Thus, there is a need to aggregate this 
information under one digital service-point. Fenix was 
therefore designed to provide one place for finding and 
meeting new business opportunities, solution providers, 
experts, start-ups, business incubators and research institutes. 
The aim is that the tool would allow users to browse 
information about potential business partners and 
opportunities across multiple third-party systems from a 
single point. For example, the utilization of Business Finland 
(www.businessfinland.fi) database to follow cases and offers 
from municipalities and governments as starting cases. 

The specific challenge of the Fenix system was to gain 
the commitment of user stakeholders, namely companies, 
universities and other organisations, which AIF and Business 
Finland aimed to support. The idea was that Fenix would 
promote Finnish industry by increasing overall trade and 
exports through the improved exposition of business 
opportunities, expertise and new company and research 
ecosystem growth. The challenge was that there were no 
clear requirements to fulfil due to the changing group of 
stakeholders and the need to develop an efficient mechanism 
to expose and promote business cases and ecosystem 
formation. Further more, development funding depended on 
the success of committing enough stakeholders to create 
ecosystems in Fenix. 

The development team consisted of nine people: a 
designer/product owner, seven developers and a scrum 
master in total. During development, one researcher acted as 
product owner and UX designer and another adopted the role 
of software architect. Experience levels ranged from novice 
to expert with several years of industrial experience. The 
software team followed scrum methodology with iterative 
two-week development cycles. Customer collaboration was 
guided by the CTP approach during the design and 
implementation of the system (see [2] for details). 

B. Data collection and analysis 

Empirical data was collected between January and 
December 2017 from observations and field notes, 13 
interview recordings and 20 workshops. Semi-structured 
interviews with open-ended questions [23] were used to 
collect data from six customer interviews and seven 
development team interviews. Customer participants were 
selected to best represent the companies, research institutions 
and local public actors.  

The interviewed customers represented the AIF, Business 
Finland, trade associations and local companies. The themes 
discussed in the interviews were customer collaboration 
practices, agile ways of working and the benefits and 
challenges involved in the current way of working. The 
interviews were conducted face-to-face and lasted 

approximately 60 minutes. All interviews were recorded and 
transcribed for analysis in QSR NVivo tool 
(www.qsrinternational.com). The obtained material was 
analysed in continuous collaboration by three researchers, 
following the recommendations for thematic analysis in 
software engineering by Cruzes and Dybå [24]. The 
interview data was first coded based on the interview topics 
and then analysed and coded according to emerging themes. 
The themes were first examined independently, then cross-
analysed.  

The workshops, besides being an integral part of the 
development cycles, occurred bi-weekly after every sprint. 
Workshops lasted approximately one hour and included 
software product demonstrations and collaborative 
prototyping sessions. Customers and other stakeholders were 
invited to see the latest version of the prototype software and 
to try, test and give feedback. Workshop participant groups 
consisted of the whole development team and between two 
and 15 customers. Before these workshops, a new version of 
the software in question was deployed. During the bi-weekly 
workshops, the product owner presented the changes and 
new features introduced in that particular software version 
and collected feedback and new development ideas. New 
features ideas were experimented with using UI mock-ups 
and interactive prototypes during the workshop sessions. The 
developers summarised the key points of each workshop, and 
the researchers observed and made notes about stakeholder 
reactions and documented relevant comments. Following the 
workshops, the development team analysed the feedback, 
prioritised next tasks and planned the next iteration. 

C. Validity and reliability of the study 

The design of the present study was carefully planned to 
consider validity concerns. We discuss four threats to 
validity: internal and external validity, construct validity, and 
reliability [22].  

Internal validity regarding cause–effect relations was 
addressed via multiple sources of evidence, and with 
iterative research gradually building the final outcome. 
Evaluation of utility, quality and efficacy was done 
extensively with the help of industrial experts and real users. 
Immediate feedback was gathered, and the use of prototypes 
was observed. Based on the rich feedback and analysis, 
further development and corrective actions were carried out. 

External validity concerning the generalisability of 
results was addressed by involving several industrial experts 
to provide their views. In addition, the involvement of 
several organisations of different types and domains 
increased the external validity and generalisability of the 
results. However, further study will be needed to generalise 
the results fully. 

Construct validity was mitigated by several activities. 
First, an interview guide was developed and piloted. A pilot 
interview was used to refine and clarify the interview 
questions. Second, interview candidates were vetted for 
suitability to the study, and interview themes were 
introduced with background information.  

The reliability of the data and derived results was ensured 
by applying a peer-reviewed research protocol. Threats to 

54Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances



reliability were mitigated, particularly in the analysis phase, 
by involving all three researchers. The data itself was 
recorded using Jira (atlassian.com/software/jira) and 
Confluence tools (atlassian.com/software/confluence), which 
allowed other researchers and experts to review and correct 
the data.  

Some danger of positive bias exists in the study’s results 
and activities due the way the case study was implemented. 
The constant communication among researchers, the 
development team and customer representatives, as well as 
the inclusion of researchers on the development team, 
increased the likelihood of producing only positive results. 
This danger was mitigated by having one researcher to 
evaluate the plan, results and actions without participating in 
the development team activities. Further, clear roles and 
rigorous research methods helped the researchers to maintain 
an objective perspective throughout the study. 

IV. RESULTS AND ANALYSIS 

This section presents the extended CTP model (Figure 1.) 
with identified practices for continuous improvement and 
customer validation adapted from SD and Lean UX 
approaches. The practices are defined based on the empirical 
findings of the data collection and analysis as well as the 
authors’ previous experiences when working with software 
development teams. The benefits and challenges of applying 
the extended CTP model in agile software development are 
then discussed.  

A. Recommended practices for the CTP model  

Continuous improvement of the service unfolds true 

qualitative and quantitative data collected from customers 

and products in the field. Various experimentation 

techniques and combinations can be applied throughout the 

development process. The role of the CTP model in the 

present study was to guide the development team to 

experiment and collaborate with several internal and 

external stakeholders during the development process and 

collect feedback.  

The purpose of extending the CTP model was to allow 

the continuous identification, prioritisation and validation of 

product assumptions in short development cycles with the 

help of customers, using identified practices presented in 

touchpoints T1-T4 in the model. These practices should be 

applied as continuous activities to improve service and 

validate product hypotheses. The findings of this study 

indicate that to fully utilise the practices, the development 

team must have an agile and lean mindset, be self-

organising and share responsibility. Also, the team must be 

cross-functional, with one designer onboard. In-depth 

analysis of the quantitative data requires data analytics and 

data knowledge expertise, as analysing and utilising data is 

much more complicated than collecting it.  

Discovery: The first customer touchpoint T1, is used to 

discover and compile customer needs and translate them 

into product requirements and product hypotheses, which 

can be used in experiments. Typically, new ideas and 

requirements are collected from various sources, including 

market and competitor intelligence, feedback from 

customers and product usage data (after the first release of 

the product has been made).  

 

 

Figure 1.  Lean UX practices in extended CTP model. R refers to the main 

activities: R1 Collection; R2 Prioritization; R3 R&D Verification and R4 
Deployment. T indicate where companies and customers exchange 

information: T1 Release learnings or new customer requirements, T2 
Release trade-offs and cost/benefit analysis, T3 Release features and 

delivery commitments and T4 Release configurations and real usage vs. 

planned usage of the product/feature. R1–R4 are also sources for 
requirements for new product ideas, including market and competitor 

intelligence, product usage data, customer feedback data collected, etc. 

Techniques for collecting qualitative data can vary, from 

surveys and interviews to observations. Product 

assumptions are then turned into hypotheses for validation. 

The practices identified and utilised by the development 

team in this study included customer journey and 

stakeholder mapping, user analysis and creation of user 

stories. Journey mapping [9] provides a structured 

visualisation of a specific element, be it a single feature or 

an overview of the entire customer experience. Stakeholder 

mapping [18] on the other hand governs the overall complex 

situation and the expectations from various stakeholder 

groups. Benchmarking through online research and market 

data collection can also be used as an input to these 

practices. 

Key learning: Balance discovery activities with 

development efforts by testing only high-risk hypotheses 

and conducting smaller amounts of research more often. 

Journey: The second customer touchpoint T2, is used to 

visualise an organisation’s service vision and the customer 

journey. Such visualisation, considered as MVPs in this 

study, lends insight to improve the understanding of 

information. In the early phases of product development, 

55Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances



many uncertainties related to customer expectations arise. 

Concept work is required when envisioning the idea for a 

service, or even at the feature level when designing 

prototypes and mock-ups. Visualisation techniques like 

wireframes, UI mock-ups, interactive prototypes and 

evolutionary prototypes guide development teams to 

prioritise development tasks continuously through 

experimentation with product concepts and design artefacts. 

In terms of prototyping, interactive prototypes are 

simulations that typically illustrate few predefined 

scenarios. They look and function like end product but do 

not handle real data input, processing or output.  This 

technique proposes a quick and cost-effective way to 

concretise and test new ideas before any development work 

is done and help software teams to avoid developing 

unnecessary features. Evolutionary prototypes, build based 

on lessons learned from the interactive prototypes, however 

handle real data and form the basis for the actual software 

evolving after every iteration. Results of the present study 

indicate that design tasks should be treated as equal to 

development tasks and executed in the same or parallel 

cycles during software development. Digital product 

prototyping tools, such as Invision (invisionapp.com), 

UXPin (uxpin.com), and Sketch (sketchapp.com) were 

determined to be useful in this phase because they allowed 

for more effective collaboration and experimentation with 

product assumptions.  

Key learning: Visualisation techniques create a common 

understanding by which to resolve communication-related 

issues. However, adapting these techniques require the role 

of UX designer in the development team.   

Validation: Most of the validation in touchpoint T3 

occurs through testing activities. Testing activities are an 

opportunity to validate mismatches between customer needs 

and product offerings. As experienced in our previous 

research [2], this opportunity is often overlooked. Adopting 

the journey validation practice, trough different visualisation 

techniques, helps a development team to identify their 

needed steps, possible pain points and gaps. Internal 

validation then covers practices like daily scrum meetings, 

wikis and other communication channels to provide quick 

and frequent feedback from executives and team members. 

During daily scrum meetings in the present study, it was 

observed that the work that had been visualised on Kanban 

boards was often the work that got done. This demonstrates 

the importance of making product discovery and UX design 

tasks visible in a backlog. In this case, the UX tasks were 

visualised, executed and tracked in two-week sprint cycles 

alongside development tasks. External validation was done 

by exposing experiment materials to customers in two-week 

cycles to elicit and collect feedback. The experiment 

materials included interactive prototypes, mock-ups and 

evolutionary prototypes. Feedback was collected from 

customer workshops after every cycle, and utilizing 

usability testing with direct feedback mechanism in the 

working software integrated into the product development 

practices. It was concluded that it is important to involve the 

entire development team in external validation activities like 

workshops, as doing so helps the team avoid 

misunderstandings and the incorrect implementation of 

features.  

Key learning: Customer needs and requirements change 

constantly. Backlog prioritisation should be done with high 

flexibility in short cycles against validated learnings. 

Value: The ability to combine qualitative and 

quantitative customer feedback data is important, as often 

they complement each other. For example, by monitoring 

feature usage, quantitative data can be used to validate 

qualitative data. Analytic tools and collected product 

operation and performance data allows development teams 

to make data-driven decisions to improve the service in 

customer touchpoint Value T4 continuously. In the present 

case, project log files and product usage data such as clicks, 

page views and number of visits were recorded and 

analysed. Especially in the field of web development, 

collecting and analysing product usage data has been eased 

by general tools such as Google Analytics. Target areas for 

quantitative data collection can range from system 

performance and UX improvements to business-level 

decision-making. In the present study, corrective actions 

based on quantitative data were done for example by 

improving the system level performance as well as 

placement and visibility of UI elements and workflows. 

Techniques such as A/B testing can also serve as a 

potential approach to collect product usage data. In the 

present case study, A/B testing was not conducted because 

developing different variations of the same feature required 

vast resources and a large user base. In addition, a more 

detailed analysis of the log data would require specific skills 

and resources, such as adding a data scientist to the team.  

Key learning: Quantitative data reveals tacit and 

complex knowledge of product usage. Detailed analyses of 

data and systematic, controlled experiments require the 

active presence of a data scientist.  

B. Benefits of the extended CTP model in software 

development 

The use of the extended CTP model with the identified 

practices as part of the two-week software development 

cycle was determined to be beneficial from the customer 

and development team points of view, but some challenges 

were identified. The benefits (Table I) and challenges (Table 

II) based on the research data are discussed next. 

The most significant observed benefit of using the 

extended CTP model in software development was that it 

assisted both business and technical decision-making by 

promoting a better understanding of information (i.e., tacit 

knowledge is transformed into tangible knowledge). For the 

development team, direct interaction with customers 

enabled them to understand the reasons behind customer 

requirements and validate which features brought real value. 

Shared understanding also facilitated faster decision-

56Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

http://www.sketchapp.com/


making, which enabled the team to prioritise tasks ‘on the 

fly’ and estimate the validity of tasks in the product backlog.  

The findings from this case study demonstrate that at 

their best, these practices increased customer involvement 

and nurtured innovation. Involving users in the early phases 

of development made customers more active and 

experienced with the product. This increased the motivation 

of development team and especially users, as they 

experienced the impact of their involvement during the 

process.  

In terms of decision-making, the present results indicate 

that visualisation is one of the most important ways to 

concretise and test new ideas, as information is made visible 

to both customers and the development team through design 

artefacts.  

TABLE I.  IDENTIFIED BENEFITS 

Benefit Description 

Learning and 

decision-making 

Accelerate the decision-making process and 

concretise functions before actual development 

work. 
Innovation and 

value co-creation 

Accelerate co-creation and innovation between 

development team and users. Receive the first 

user feedback in the product/service idea phase. 
Motivation Interaction and co-creation between development 

team and users motivated both the development 

team and the users.  
Communication 

improvement 

Visualisation and prototyping methods improved 

communication and helped avoid 

misunderstandings between different stakeholders 
(e.g., management, development team, customers 

and end-users). 

Transparency Increase transparency between customers, users 
and the development team. Reveals grassroots 

knowledge exploitable in development. 

Direct feedback Presents an opportunity to receive instant and 
direct feedback from end-users in short cycles. 

Integrated UX 

work  

Design activities take place in the same cycle 

with development activities.  
Service vision in 

communicable 

form  

Developers have a clear, precise schematic by 

which to see the intended service from the 

customer perspective and can choose precise 
specifications.  

Prioritisation 

 

Prioritisation ‘on the fly’ allows the development 

team to capture changing priorities in short cycles 
and react flexibly and accurately. 

Holistic approach Holistic approach to software development from 
customers' and end-users' point of view. 

 

The interviews stressed the need to produce proper 

visualisations, such as interactive prototypes and UI mock-

ups, to concretise the service vision and improve 

communication to avoid misunderstandings. According to 

the interviewees, UX work was often perceived as a 

separate function, one asynchronous with research and 

development activities. It was also stated in the development 

team interviews that sometimes UX work was overlooked, 

as things like code quality, software scalability and security 

issues were deemed more important. “Usability and user 

interface design… perhaps we cannot appreciate these or 

we consider more important that the software itself works or 

the code is good quality, the software is scalable and safe 

and so one, which is of course important… but from my 

perspective, I see that it is old-fashioned engineering 

thinking. …today, in my mind it (usability) is the biggest 

competitive advantage of software, (senior software 

developer).”  

Visualisation techniques used in the workshop sessions 

also bridged the communication gap between those with 

business mindsets and those more technically oriented. It 

was important that the whole development team participated 

in the workshop sessions to get direct and instant feedback 

from customers. This helped the development team to 

understand the reasons behind  customer needs, the kind of 

behaviours expected from the service and what created 

value for customer. During the sessions, the development 

team was able to identify design improvement ideas for the 

future and problem areas in the existing design. This had a 

clear impact on project work such as planning, scheduling 

and prioritising tasks, as the team was able to capture and 

react to changing priorities in short cycles. The practices 

presented in the extended CTP model facilitated better 

alignment and transparency of different functions, from UX 

design, business development and product management to 

short cycles with research and development activities. 

By adopting visualisation techniques as suggested in the 

extended CTP model, the development team was able to 

obtain their first user feedback after very short iterations (a 

few days to a few weeks). The model also guided the entire 

development team to holistic thinking by following a 

customer centric design and development process 

throughout the project lifecycle.  

C. Challenges of the extended CTP model in software 

development 

Stakeholder availability and commitment represented 

some challenges for example, if few or no visible functions 

were delivered in a short iteration cycle, customer and 

stakeholder commitment to participate in the workshops 

could suffer. In addition, customers may feel disrupted from 

their own work by being involved in development activities 

too often. The development team reported the two-week 

cycle as optimal, but based on the interviews it could be 

shortened to one week. For customers, the two-week 

development cycle with a workshop at the end of each sprint 

was sometimes seen too often.  

New requirements appear all the times and they may 

disrupt the old ones, often this is related to different user 

groups and customer roles with conflicting needs. This may 

also add complexity to defining feature maturity and 

identifying metrics for measuring customer value.  

For a software team to adapt practices presented in the 

extended CTP model, certain key roles must be filled, which 

may cause some challenges. The current case study required 

expertise of back-end and front-end development, database 

development, server and tool management, a product owner 

to represent the customer and a UX/UI designer to conduct 

and facilitate design tasks. While the development team and 

57Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances



effort were kept as minimal as possible, it was evident that 

UX design and different visualisation techniques required 

significant effort; the person in charge of the design had to 

discuss and make decisions on the design with different 

stakeholders who often held conflicting demands and 

priorities. In order to mitigate this problem, a stakeholder 

analysis method [25] was used to gain further insight on the 

conflicting issues and resolve them. The UX work alone 

was often full-time work for a single person, even in a 

lightweight web application project. Furthermore, detailed 

analysis of the log data would require specific skills and 

resources, such as adding a data scientist to the team and a 

large user base. In this study, analytic support was 

integrated to working software and some corrective actions 

were continuously taken based on quantitative data. 

However, small user base and lack of resources hindered 

more detailed analyses. It should be noted that in some 

industries, laws and regulations or other limitations could 

prevent quantitative feedback collection. 

TABLE II.  IDENTIFIED CHALLENGES  

Challenge Description 

Stakeholder 
availability and 

commitment 

Finding suitable time for all stakeholders to 
participate workshops. Balancing workshop 

frequency and getting customer commitment to 

participate and give feedback.   
Customer role Different user groups might have different needs, 

and those can change according to context.  

Measurement of 
customer value 

Identify metrics for how to measure customer 
value is challenging. 

Resources Successful implementation required having a 

cross-functional team with an active UX/UI 
designer and data scientist in the team. 

Direct 

communication 

Developers may not always be confident or 

comfortable with increased and direct customer 
interaction.  

Visualised 

features might be 
understood as 

‘easy to do’ 

Workload estimation can be challenging from the 

customer perspective. E.g., features in an 
interactive prototype and real effort for actual 

implementation might come as a surprise. 

Maturity and 
definition of done 

(DOD) 

Changing priorities and stakeholders make it hard 
to analyse the maturity and DOD of features.  

Quantitative 
metrics / analytics 

Quantitative metrics and analyses become 
possible after implementing analytics support, 

once the software is in use and there is a 

sufficient stakeholder pool using it. Before that, 
obtaining quantitative data is nearly impossible. 

Physical distances Technical issues and lack of tools for sharing 

local demonstrations.  

 

Development team interviews of the present study 

revealed that some developers were more confident when 

allowed to focus simply on building the software, preferring 

to keep their interactions with customers at a minimum or 

restricted to key individuals.  

While a working prototype proved an efficient way to 

involve stakeholders in the development process, the 

downside was that customer expectations rose when they 

saw how ‘easy’ it was to produce something visible that 

matched their needs. This led to situations where customers 

expected that the feature’s implementation would be easy as 

well. The challenge therefore is the increased risk of 

customers developing unrealistic expectations related to 

work estimations for the complete functional feature. 

During the study, this was addressed by maintaining a 

careful balance between keeping stakeholders satisfied even 

the workload would be bigger and prioritizing these features 

over those that are not visible but can be important for 

system stability, security and other issues that do not show 

in day-to-day work. 

Physical distances reduced the development teams 

ability to interact with their customers face to face, as well 

as posed a challenge during the workshops and meetings 

due to technical issues, such as connection quality and 

faulty communication equipment. While these technologies 

enable participation regardless of physical location, 

communication tools do fail at times, or stakeholders are not 

used to hold online meetings. Mistakes like using a low 

volume of voice, moving away from the microphone or 

demonstrating locally something not visible to those 

participating remotely can slow down the meeting, make 

communication difficult and increase the risk of 

misunderstanding.  

V. DISCUSSION 

Software development is not an easy or straightforward 

task. It is even more challenging when requirements are 

constantly changing and there are many involved customer 

organisations with different demands. Previous research [2] 

shows that, delivering value and meeting customer needs in 

constantly changing markets are key success factors for any 

business. Multitude of existing methods and approaches for 

identification, prioritization and validation of customer 

needs are presented in literature, with more recent being 

continuous experimentation. From a process perspective, 

Schermann et al. [26] reports a lack of clear guidelines for 

conducting experiments.  Our extended CTP model fills the 

gap and presents an approach for continuous improvement 

and customer validation.  

Typically, existing methods and approaches for 

continuous experimentation (presented in Section II of the 

paper) are influenced by the ‘build-measure-learn’ loop and 

include the phases of planning, collecting customer 

feedback and analysing of data for learning and decision-

making purposes. While some of the approaches focus on 

the technical implementation and instrumentation for 

collecting customer feedback data, the extended CTP model 

offers a more holistic outside-in approach and integrates UX 

work in the same development cycle. The model can be seen 

as a framework that guides development team to experiment 

and collaborate with internal and external stakeholders 

during the development process. Experimentation does not 

always require working software as experiments can be 

conducted with other kinds of experimental artefacts, such 

as visualizations or mock-ups. Multiple variations of the 

58Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances



extended CTP model can be derived based on context and 

available resources.  

The study found two main contributions from the 

extended CTP model. First, the extended CTP model 

enhances software development process with practices to 

improve feedback elicitation, continuous improvement and 

customer validation through its suggested practises in 1) 

Discovery, 2) Journey, Validation and 4) Value customer 

touchpoints. Second, the extended CTP model integrates 

collaborative product discovery with product delivery tasks 

in short cycles while recognizing the role and importance of 

UX work. Conducting smaller amounts of research but more 

often, involving the entire development team and testing the 

high-risk hypothesis with visualisation techniques are 

encouraged.  In this way, the model offers a new holistic 

approach to continuous improvement and customer 

validation. 

The research results highlight that teams adopting 

recommended practices need to have a cross-functional 

competences, innovative and experimental mindset in which 

experimentation is seen as a learning opportunity. This is in 

line with previous continuous experimentation research 

where organisational culture act as barrier to the 

incorporation of the practices [17]. In general, adopting 

these practices benefited both the development team and 

users and enabled the team to become more customer-driven 

while focusing on the tasks most relevant to the users. The 

main benefits relate to learning and decision-making, 

innovation, value co-creation and communication. We also 

identified number of challenges that may hinder customer 

involvement and adapting identified practises, such as 

stakeholder availability, commitment and measuring 

customer value. We acknowledge that adapting visualisation 

practices and quick prototyping requires a cross-functional 

team with UX design activities and tasks aligned together 

with the research and development tasks. In addition, 

experimentation with quantitative data requires a data 

scientist to be present in the team. Unlike large companies, 

such as Microsoft [27], this may not always be feasible due 

to limited resources. We also argue that analysis of 

quantitative data is not a sole responsibility of a data 

scientist, as it requires deep customer insight from 

qualitative data. It this sense, data analysis could fall under 

product management tasks as the shared responsibility of a 

product owner, UX designer and data scientist were also 

business aspects are taken into consideration. This 

reinforces the fact that there is not one right approach for 

software teams to become more customer centric. Rather, 

practices should be tailored to meet specific domain and 

contexts, distinct business goals and different organisational 

cultures. 

VI.  CONCLUSION AND FUTURE WORK 

In this paper, we presented a case study aiming to help 

software teams to continuously validate customer value in 

short development cycles to increase customer 

understanding trough practises presented in the extended 

CTP model. The current findings are based on empirical 

data gathered from a software development team developing 

a modern software-as-a-service platform called Fenix. The 

Fenix system was designed to help companies grow their 

revenue through digital partnering and ecosystem creation 

strategies.  

This study shows that several methods and practices can 

be utilised during software development to capture and 

validate customer needs thus helping development teams to 

reduce the gap between user expectations and actual 

implementation. The extended CTP model presents the 

identified practises through customer touchpoints. By 

recognising the synergies between continuous customer 

collaboration, integration of design tasks and involving all 

the relevant stakeholders, along with the ability to combine 

qualitative and quantitative feedback, software teams can 

speed up their delivery process and become more data-

driven in their learning and decision-making processes.  

Future work on this topic should examine how the 

extended CTP model works when the web application in 

question is developed further and the user base is substantial 

enough to use controlled experiments. This would allow for 

interesting evaluations of the different practices used in the 

extended CTP model when used to develop already 

established software rather than restricting investigations 

into new software development. 

ACKNOWLEDGMENTS 

This work was supported by the Six City Strategy 

(6Aika) and the European Regional Development Fund 

(ERDF), Business Finland, Allied ICT Finland and its 

ecosystems.  

REFERENCES 

[1] A. Nguyen-Duc, X. Wang, and P. Abrahamsson, “What 
influences the speed of prototyping? An empirical 
investigation of twenty software startups”. In: Software 
Engineering and Extreme Programming, XP 2017. Lecture 
Notes in Business Information Processing, vol. 283, pp. 20–
36. Springer, Cham, 2017. 

[2] T. Sauvola et al., ”Towards customer-Centric software 
development, A multiple-Case study”. In: 41st Euromicro 
Conference on Software Engineering and Advanced 
Applications (SEAA), 2015, pp. 9–17. IEEE, Funchal, 
Portugal, 2015. 

[3] F. Fagerholm, A. S Guinea, H. Mäenpää, and J. Münch, “The 
RIGHT model for continuous experimentation”. J Syst 
Software vol. 123, pp. 292–305, 2017.  

[4] K. Beck, J. Grenning, and R. C. Martin, Agile Manifesto. 
http://www.agilemanifesto.org/ [retrieved: August, 2018] 

[5] E. Ries, The Lean Startup: How Constant Innovation Creates 
Radically Successful Businesses. Penguin Group, London, 
2011.  

[6] H. Holmström Olsson, J. Bosch, and H. Alahyari, “Towards 
R&D as innovation experiment systems: A framework for 
moving beyond agile software development”. Proceedings of 
the IASTED, pp. 798–805, 2013. 

[7] S. G. Yaman et al., “Transitioning towards continuous 
experimentation in a large software product and service 

59Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

http://www.agilemanifesto.org/


development organization: A case study”. In: P. 
Abrahamsson, A. Jedlitschka, A. Nguyen Duc, M. Felderer, S. 
Amasaki, and T. Mikkonen (eds). Product-focused Software 
Process Improvement, PROFES 2016. Lecture Notes in 
Computer Science, vol. 10027, pp. 344–359. Springer, Cham, 
2016. 

[8] J. Knapp, J. Zeratsky, and B. Kowitz, Sprint: How to Solve 
Big Problems and Test New Ideas in Just Five Days. Simon 
and Schuster, New York, 2016. 

[9] J. Gothelf and J. Seiden, Lean UX: Designing Great Products 
with Agile Teams. O’Reilly Media Inc., Sebastopol, 2016. 

[10] J. Bosch, “Building products as innovation experiment 
systems”. In: M. A. Cusumano, B. Iyer, N. Venkatraman 
(eds). Software Business, ICSOB 2012. Lecture Notes in 
Business Information Processing, vol 114, pp. 27–39. 
Springer, Berlin, Heidelberg, 2012. 

[11] F. Elberzhager, T. Arif, M. Naab, I. Süß, and S. Koban, 
“From agile development to devops: Going towards faster 
releases at high quality: Experiences from an industrial 
context”. International Conference on Software Quality, 2017, 
pp. 33–44. Springer, 2017. 

[12] E. Anderson, S. Y. Lim, and N. Joglekar, “Are more frequent 
releases always better? Dynamics of pivoting, scaling, and the 
minimum viable product”. Proceedings of the 50th Hawaii 
International Conference on System Sciences, 2017, pp. 
5849–5858, 2017. 

[13] J. Bosch, H. Holmström Olsson, J. Björk, and J. Ljungblad, 
“The early stage software startup development model: A 
framework for operationalizing lean principles in software 
startups”. In: B. Fitzgerald, K. Conboy, K. Power, R. Valerdi, 
L. Morgan, K.-J Stol, (eds). LESS 2013. LNBIP, vol. 167, pp. 
1–15, Springer, Heidelberg, 2013. 

[14] H. Holmström Olsson and J. Bosch, “The HYPEX model: 
From opinions to data-driven software development”. In: 
Bosch J. (ed). Continuous Software Engineering. Springer, 
Cham, 2014. 

[15] H. Holmström Olsson and J. Bosch. “Towards continuous 
customer validation: A conceptual model for combining 
qualitative customer feedback with quantitative customer 
observation”. In: J. Fernandes, R. Machado, K. Wnuk (eds). 
Software Business, ICSOB 2015. Lecture Notes in Business 
Information Processing, vol. 210, pp 154-166, Springer, 
Cham, 2015. 

[16] R. Kohavi, A. Deng, and B. Frasca. “Online controlled 
experiments at a large scale”. Proceedings of the 19th ACM 
SIGKDD International Conference on Knowledge Discovery 
and Data Mining, 2013, pp. 1168–1176, 2013. 

[17] E. Lindgren and J. Münch, “Raising the odds of success: The 
current state of experimentation in product development”. 
Inform Software Tech, vol. 77, pp. 80–91, 2016. 

[18] M. Stickdorn and J. Schneider, This is Service Design 
Thinking (1st ed). 2012. 

[19] J. Parades, C. Anslow, and F. Maurer, “Information 
visualization for agile software development teams”. In: 
Second IEEE Working Conference on Software Visualization 
(VISSOFT), 2014, pp. 157–166, 2014. 

[20] Y. Lee, “Design participation tactics: The challenges and new 
roles for designers in the co-design process”. J Co-design, vol. 
4(1), pp. 31–50, 2008.  

[21] P. Runeson and M. Höst, “Guidelines for conducting and 
reporting case study research in software engineering”. 
Empirical Software Engineering, vol. 14(2), pp. 131–164, 
2009. 

[22] R. K. Yin, Case Study Research: Design and Methods (5th 
edn). Sage Publications, 2013.  

[23] M. D. Myers and M. Newman, “The qualitative interview in 
IS research: Examining the craft”. Inf Organ, vol. 17(1), pp. 
2–26, 2007.  

[24] D. S. Cruzes and T. Dyba, “Recommended steps for thematic 
synthesis in software engineering”. In: International 
Symposium on Empirical Software Engineering and 
Measurement (ESEM), 2011, pp. 275–284, 2011.  

[25] M. Kelanti, J. Hyysalo, J. Lehto, S. Saukkonen, P. Kuvaja and 
M. Oivo “Soft Systems Stakeholder Analysis Methodology”. 
Proceedings of the 10th International Conference on Software 
Engineering Advances (ICSEA 2015), pp.122–130, 
Barcelona, Spain, 2015. 

[26] G. Schermann, J. Cito, P. Leitner, U.Zdun, and H.C. Gall, 
“We’re doing it right live: A multi-method empirical study on 
continuous experimentation”. Information and Software 
Technology, 99, pp.41-57, 2018 

[27] M. Kim, T. Zimmermann, R.DeLine, and A. Begel. “Data 
Scientists in Software Teams: State of the Art and Challenges. 
IEEE Transactions on Software Engineering”, 2017, pp. 1–17, 
http://dx.doi.org/10.1109/TSE.2017.2754374 

 

 

60Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances


