ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Concurrency Analysis of Build Systems

Vasil Tenev, Bo Zhang, Martin Becker
Fraunhofer Institute for Experimental Software Engineering (IESE)
Kaiserslautern, Germany

Email: {vasil.tenev, bo.zhang,

Abstract—In order to derive executable software artefacts, a
build system needs to be maintained properly along with the
evolution of source code. However, in large software projects
the build process often becomes effort-consuming, which is often
caused by suboptimal concurrency either in the design of the
build system or in the execution of the build process. To cope
with these challenges, we present our concurrency analysis with
practical experiences in this paper. In particular, we propose
a new metric called Degree of Freedom for evaluating the
concurrency potential of a build system based on dependencies
among build jobs and artefacts. In fact, this metric is not limited
to build analysis. It can be used for analyzing the concurrency
potential of any executable process in general.

Index Terms—concurrency, build system, control flow

I. INTRODUCTION

While normal source code (also as known as production
source code) implement the behavior of a software, its build
system (including build tools and build code such as makefiles)
derives the executable software from its production source
code. In large industrial software systems, the complexity of
the build system is often high (in terms of build jobs and build
dependencies), and the build process is time-consuming (over
one hour in large systems) even in a distributed environment
using high-performance and multi-core computers. This is not
acceptable in real continuous integration settings with frequent
code revisions and builds per day.

In order to understand the build process and related issues,
in our previous work [18] we have depicted the build process
via the notion of Build Dependency Structure. Theoretically,
the build dependency structure contains two dimensions as
illustrated in Figure 1 on page 1. On the one hand, the root
build command triggers a flow of build actions that can further
run atomic build jobs (e.g., compiling and linking). These
build actions and jobs are invoked and executed in a tree
structure (vertical in Figure 1 on page 1). On the other hand,
the build jobs with different build tools indicate dependencies
between input build artefacts and output build artefacts, which
further constitute a dependency graph (horizontal in Figure 1
on page 1).

In the build dependency structure, some build jobs need
to be executed sequentially due to the dependencies among
build jobs and artefacts. However, independent build jobs
could be executed in parallel, which helps improving the build
efficiency. Therefore, in practice it is important to analyze
the build system and make sure that build jobs are executed
with optimal concurrency. Although there was some endeavor
in build dependency extraction and optimization [6], [12] a

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

martin.becker}@iese.fraunhofer.de

------- » Language-specific Dependencies
— Build Artefact Dependencies
———> Build Job Flow

Build Jobs

Y ja

y

Binary files

S

Linker
(gec, g+
Javac, ...)

Compiler

(gee, g++

intermediate files

Ve

Source files

Figure 1: Notion of the Build Dependency Structure

comprehensive analysis focusing on build concurrency is still
lacking.

In order to optimize the build concurrency and improve
build efficiency, we would like to conduct automated anal-
yses both on the build execution process and also on the
build system architecture. At build execution time, we use
existing commercial tools for monitoring the build process
and analyzing the execution of build jobs in different threads
and on different machines. This shows whether build jobs
are actually executed in parallel. Moreover, we also conduct
static analysis on build dependencies of the build system and
measure concurrency potential of the build architecture. This
helps identify root causes of concurrency problems in the build
process.

In this paper, we provide the following contributions:

o Practices of dynamic and static concurrency analysis in
an industrial study.

¢ An innovative metric called Degree of Freedom for static
concurrency analysis.

o Lessons learned during the concurrency analysis and
optimization.

This paper is presented in the following structure. Section II
presents our practice of dynamic concurrency analysis. Sec-
tion III introduces our static concurrency analysis approach.
While Section Section IV discusses related work, Section V
presents conclusions, summarizes lessons learned during our
concurrency analysis study, and discusses future work at the
end.

33

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Agents & Joos

szeacssiiNI0

szeacssiel0n31

STRACSIIINGIZ 1

szxeacssicl03d

soeacssi10034

“llll.ll

Nanigation

Figure 2: Dynamic Concurrency Analysis by Electriclnsight

II. DYNAMIC CONCURRENCY ANALYSIS

The dynamic concurrency analysis shows the actual exe-
cution of different build jobs in a distributed environment.
There exists commercial tools like ElectricInsight [2] for such
purpose. Typically, these tools monitor the build process by
instrumenting the GNU (GNU is a recursive acronym for
"GNU’s Not Unix!") make tool or even replacing it with
their own make tool. As a result, a build execution graph
is generated to visualize concurrent scheduling and execution
of build jobs. For instance, in an industrial case study we
used ElectricInsight and generated the build execution graph
as shown in Figure 2 on page 2. While some build jobs
are executed in parallel in different threads (by build agents)
and CPU (Central processing unit) cores, other build jobs are
executed sequentially in the same thread.

Besides monitoring build execution, ElectricInsight also
claims to optimize the scheduling of concurrent build execu-
tion (to reduce the overall build duration). However, from our
experience the build concurrency is often not optimal. As seen
in Figure 2 on page 2, while a few build threads keep executing
build jobs sequentially, many other threads finish early and
remain idle until the end of the build process. It seems that
some build jobs have to be executed sequentially due to build
dependencies defined in the build system (e.g., makefiles).
In order to investigate the root causes of this suboptimal
build concurrency, it is necessary to further analyze build
dependencies and identify the actual concurrency potential.

IITI. STATIC CONCURRENCY ANALYSIS

While dynamic concurrency analysis shows the actual be-
havior of build job execution during the build process, static
concurrency analysis focuses on the concurrency potential of

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

/ A HA.OH A / clean compile link

(a) Artefact View

(b) Process View

compile_A1

P i . My

(c) Execution View

clean

Figure 3: Different Views of Build Dependencies.

build jobs and artefacts based on their dependencies. In this
section, we assume an arbitrary but fixed environment for the
execution of the build process, i.e., number of CPU cores,
parallel threads, RAM (Random-access memory) size, etc.
Moreover, we assume that the build process has only one
connected graph component.

A. Build Dependencies

Various dependencies exist between build jobs and artefacts.
We consider three views to analyze the different aspects of the
build dependencies structure:

The Artefact View contains source code artefacts, interme-
diate and final artefacts of a build process. In Figure 3a on
page 2 an artefact “A.o” depends on artefact “A.c”.

On the other hand, the Process View shows build jobs and
the process dependencies in-between, that represent finish-
to-finish relationships. For an example of a clean build see
Figure 3b on page 2, where the job “link” can finish, only if
job “compile” has finished. The job “link” may however start
before, in parallel, or after the job “compile”. In any case,
“link” can’t finish before “compile” is finished.

The Execution View describes three kind of dependencies
(see Figure 3c on page 2):

o Execution Dependency: Job “compile_A2” executes job

“clean”;

« Input Dependency: Job “compile_A2” depends on input

artefact “A2.c”’; and

e Output Dependency: Artefact “A2.0” is result of job

“compile_A2".
These views depict all build dependencies in the vertical and
horizontal dimensions of the Build Dependencies Structure
in [18]. Accounting the different views and the number of
possibilities for scheduling build jobs make the basis of the
static concurrency analysis.

In any of the views on a well-defined build dependency
structure, we deal with an acyclic directed graph. Such struc-
ture is equivalent to a partial order over the set of artefacts and
build jobs, respectively. This partially ordered set is considered
by a build tool (like GNU Make [3], Ninja [5], etc.) to
compute a schedule over all build jobs and execute them in
the right order. The richer the scheduling possibilities with

34

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Compile_1

) F Y
Compile 8 Compile_2

Compile 7 g 4 Compile 3

Compile_6 Compile_4

h 2

Compile_5

Figure 4: Process view of a best-case example for maximal
parallelization

respect to the build dependencies structure, the bigger the
optimization space, the greater the degree of freedom for
concurrent execution.

B. Degree of Freedom

Here, we propose a new metric called Degree of Freedom
that quantifies the parallelization property of a build process,
i.e.,the degree to which extent a build process can be paral-
lelized. This stands intuitively in direct correlation with the
number of possible scheduling plans.

Examples: (a) Consider a build process where the depen-
dency graph in the process view is a chain (e. g., Figure 3b on
page 2). For such a process, there is only one possible plan
for scheduling its execution and it is not parallelizable. (b) In
comparison, for a star-shaped build process, like in Figure 4
on page 3, there are 8! = 40320 possible scheduling plans to
execute it in one processing thread and 8 of the 9 jobs can be
parallelized.

We assume that a build process always has exactly one
starting point (i.e., the main build job) and only one final
resulting artefact (i.e., the product that is build). Thus, the
dependency graph always has exactly one root in every view
and therefore a star-shaped build process is the best possible
case for maximal parallelization. Using this and the correlation
from above, we define a metric that compares a given build
process with a same-size, star-shaped build process by the
number of possible scheduling plans.

However, the number of scheduling possibilities depends
not only on the partial order, but also on the environment,
i.e., mostly the number of parallel threads available for the
execution. To get an environment independent metric, that is to
multiply out the factor depending on the number of threads for
parallel computing, we use the number of possible execution
sequences for a single thread computation. Therefore, we
define the Degree of Freedom by

Freedom (P) = loggp+) S (P)

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

where S (P) is the number of possible execution sequences
for build process P and S (P*) is the number of possible
execution sequences for a star-shaped build process with the
same number of build jobs/artefacts as in P. Thus, S (P*)
equals(|P| — 1)!. Formally, S (P) is the number of linear
extensions over the partially ordered set (poset) P (see [11]).

Example: Let P be a build process with process view of 9
build jobs, such that P is a sequence. Then the corresponding
star-shaped build process P* is equivalent to this on Figure
4 on page 3. Therefore Freedom (P) = loggp«) S (P) =
loggyl = 0 and Freedom (P*) = loggp«)S(P*) =
logg 8! = 1.

C. Implementation

At its heart, our metric is based on the number of possible
execution sequences for a build process, which is a partial
ordered set as discussed in III-A. The number of all sequences
with respect to a poset is the number of all linear extensions of
the poset [11]. In general, computing S (P) is a #P-complete
problem for arbitrary posets [8].

Although there are several algorithms that can find one
linear extension in linear time [10], it is not clear if there exists
even a polynomial time algorithm for computing the number
of all linear extensions [16]. However, there are polynomial
approximation schemes [9], which can be used to compute
the number of all linear extensions by counting. In contrast
to these works, we deal with special case of partial ordered
sets. From the fact that they correspond to the dependency
graph of a build process, we can expect that the posets are
‘almost’ trees. This means, that they contain a small number of
edges that are in contradiction with the tree properties. Thus,
we based our approach on the algorithm for computing the
number of linear extensions in a tree-shaped poset proposed
by Atkinson [7]. He proposes an O (n2) algorithm for trees
with n being the number of elements. Since we deal with
‘almost’ trees, we develop two algorithms for computing a
upper and lower bounds for S (P).

1) Upper Bound: We apply Atkinson’s algorithm in com-
bination with Prim’s minimum spanning tree algorithm [15] to
approximate a minimum tree-shaped poset that is a superset
of P. Firstly, it will take all edges that are conform to the
properties of a tree. All remaining edges are evaluated with
respect to the minimal number of linear extensions resulting
from taking one edge and recursively applying the same
procedure until we end up with a tree on which we apply
Atkinson’s algorithm. This minimal number defines the edge
weight. Afterwards, a minimal spanning tree is constructed.
The number of linear extensions of that tree gives a upper
bound for the number of linear extensions of P, since the
set of dependencies (edges) of the tree is a subset of the
dependencies of P. This algorithm runs in O (k*n?), where
k is the number of edges that contradict to the tree properties
from graph theory.

2) Lower Bound: For the approximation of the lower
bound, we use a simple scheduling strategy that is more restric-
tive than an optimal strategy for the given poset. We traverse

35

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

the poset graph bottom-up starting with leaf nodes — elements
with no outgoing dependencies —and moving towards a root
node —element without ingoing dependencies. Hereby, we
detect independent sequences of nodes between branching
locations in the graph. This gives us a sequence of layers in
the graph. Each layer consists of independent subsequences.
The scheduling strategy is to run all subsequences in parallel
and synchronizing the build process where a branching takes
place. We compute the number of linear extensions /; for layer
7 using the multinomial coefficient. More precisely, for every
layer 5 of m independent subsequences, we have

I — k1+k2+"'+km
T k17k27°"7km

with k; being the number of nodes in i-th subsequence for
all 1 < 4 < m. In total, we need the product of all ;.
Computing the lower bound requires only one traversal of the
graph without repetitions, as described above, which implies
linear time.

Example: In the following, let P be the build dependency
graph from Figure 3c on page 2 to illustrate a computa-
tion for both lower and upper bounds. We compute the
upper bound, as described earlier, based on Prim’s minimum
spanning tree algorithm. In this example, only two edges
contradict to the tree properties from graph theory — these are
“clean”<+"compile_A1” and “clean”«"compile_A2". Choos-
ing either edge results in equivalent trees with respect to the
number of linear extensions due to symmetry. By applying
Atkinson’s algorithm we get S (P) < 70 linear extensions
and we get Freedom (P) < 0.4, since|P| = 9.

On the other hand, the lower bound is computed very easily.
Following the introduced algorithm, we end with three layers
(l1,12,13). From left to right:

« [consists of 3 independent subsequences each of a single

node. These are “Al.c”, “clean”, and “A2.c” and imply

I, = (1+1+1) -6
1=\111) ="

« [y consists of 2 independent subsequences each of length
2: ”compile_A17+“Al1.0” and “compile_A2"+"A2.0”.
Here we get I» = (37)) = 6.

o Finally, I3 consists of one subsequences of 2 nodes
“link_A”+"A”, that means I3 = (3) = 1.

Since S(P) > Iy - I3 - I3 = 36, Freedom (P) > 0.337 holds

and in total Freedom (P) = 0.3685 + 0.0315.

D. Optimization and Visualization

The Degree of Freedom is a metric for the static concur-
rency analysis, that measures the parallelization potential of a
build process as a whole. While it is an objective measurement,
it does not provide direct recommendations for optimization.
However, in cases where the build process can be separated in
several independent sub-processes (see Figure 5 on page 4), a
domain expert would be able to detect high-potential regions
by applying our metric.

Here we recommend our »GAME-changing« method with:

« The Goal to increase concurrency

« by taking Actions to restructure dependencies.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

K
Figure 5: Visualization of Static Concurrency Analysis

o This is achieved by identifying the high potential using
Measurements to detect large sub-process size with low
Degree of Freedom and

« Executing the following steps:

1) relationship analysis in high potential subgraphs by
domain experts;
2) alignment of process and artefact dependency
graphs;
3) reconnection of wrongly routed dependencies; and
4) removal of unnecessary dependencies.
Additional visualization of the build process can also provide
insights and support for further analysis. In Figure 5 on page 4,
we provide an example visualization using Cytoscape [1]. Here
we see the execution view of a (disconnected) build process,
where each edge color represents different execution context,
i.e., different execution scripts, different execution variable
set, etc. Figure 5 on page 4.

IV. RELATED WORK

There have been approaches and tools for both dynamic and
static build analysis. In our previous work [18], we focused
on the build process of Android and extracted the build
jobs and dependencies by instrumenting the shell of GNU
make. Gligoric et al. [12] intercepted file reads and writes
in Windows by instrumenting Win32 functions using Detours
[13]. In Linux there is the strace tool [14] for capturing
such information like file read and write, process invocations,
time measurement, etc. Moreover, there are tools for static
makefile analysis, such as MAKAO [6], SYMake [17], and
Makefile::Parser [4]. However, these tools are for general build
extraction and analysis, and they do not support analyzing the
concurrency of build execution.

V. CONCLUSION

This paper presents our approach for concurrency potential
analysis we developed to support the maintenance of build
system for constantly evolving software in big projects where
the build process consumes an important amount of effort. We
address these challenges providing our experience on dynamic
and static analysis that we gained in our industry case. While
conducting the concurrency analysis and optimization in this
study, we have the following lessons learned:

1) Conduct dynamic concurrency analysis to monitor the

concurrency performance of the actual build process.

2) Conduct static concurrency analysis to evaluate concur-

rency of the designed build process.

36

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

3) In order to optimize concurrency, deficits in the build
system (e. g., obsolete/redundant build jobs) should be
first fixed.

4) To prioritize concurrency optimization, consider to first
focus on larger build subprocesses that have lower
Degree of Freedom.

Moreover, we propose a new metric for measuring the con-
currency potential of a build process. In fact, this metric is
not limited to build analysis. It can be used for analyzing the
concurrency potential of any executable process in general.
Our implementation also provides a polynomial algorithm for
computing lower and upper bounds for the number of linear
exertions of a partial order set.

ACKNOWLEDGMENT

Thanks to our colleges from Fraunhofer IESE: Markus
Damm for pointing to the right terminology by the problem
formulation; and Soren Schneickert for many fruitful discus-
sions and his constructive criticism.

REFERENCES

[1] Cytoscape. http://www.cytoscape.org, August 2018.

[2] ElectricInsight. http://electric-cloud.com/, August 2018.

[3] GNU Make. https://www.gnu.org/software/make, August 2018.

[4] Makefile::Parser. https://github.com/agentzh/makefile-parser-pm, August
2018.

[5] Ninja. https://ninja-build.org, August 2018.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

[6] B. Adams, H. Tromp, K. de Schutter, and W. de Meuter. Design recovery
and maintenance of build systems. In Proc. IEEE Int. Conf. Software
Maintenance, pages 114-123, October 2007.

[71 M. D. Atkinson. On computing the number of linear extensions of a
tree. Order, 7(1):23-25, Mar 1990.

[8] Graham Brightwell and Peter Winkler.
Order, 8(3):225-242, 1991.

[9] Russ Bubley and Martin Dyer. Faster random generation of linear
extensions. Discrete Mathematics, 201(1-3):81-88, apr 1999.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Second Edition, chapter 22.4
Topological sort, pages 549-552. The MIT Press, 2001.

[11] Chaabane Djeraba Dan A. Simovici. Mathematical Tools for Data
Mining. Springer London, 2008.

[12] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van Velzen,
Iman Narasamdya, and Benjamin Livshits. Automated migration of build
scripts using dynamic analysis and search-based refactoring. SIGPLAN
Not., 49(10):599-616, October 2014.

[13] Galen Hunt and Doug Brubacher. Detours: Binary Interception of Win32
Functions. In Proceedings of the 3rd USENIX Windows NT Symposium,
pages 135-144, Seattle, Washington, July 1999.

[14] D. V. Levin, R. McGrath, and W. Akkerman. strace. linux syscall tracer.
http://sourceforge.net/projects/strace, August 2018.

[15] R. C. Prim. Shortest Connection Networks And Some Generalizations.
Bell System Technical Journal, 36(6):1389-1401, nov 1957.

[16] Ivan Rival, editor. Graphs and Order. Springer Netherlands, 1985.

[17] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen. Symake:
a build code analysis and refactoring tool for makefiles. In Proc. 27th
IEEE/ACM Int. Conf. Automated Software Engineering 2012, pages 366—
369, September 2012.

[18] Bo Zhang, V. Tenev, and M. Becker. Android build dependency analysis.
In Proc. IEEE 24th Int. Conf. Program Comprehension (ICPC), pages
1-4, May 2016.

Counting linear extensions.

37

