
An Experimental Evaluation of ITL, TDD and BDD

Luis A. Cisneros, Marisa Maximiano, Catarina I. Reis
Computer Science and Communication Research Centre

 Polytechnic of Leiria
Leiria, Portugal

email: 2160085@my.ipleiria.pt, {marisa.maximiano,
catarina.reis}@ipleiria.pt

José Antonio Quiña Mera
Carrera de Ingeniería de Sistemas Computacionales

Universidad Técnica del Norte
Ibarra, Ecuador

email: aquina@utn.edu.ec

Abstract— Agile development embodies a distancing
from traditional approaches, allowing an iterative
development that easily adapts and proposes solutions to
changing requirements of the clients. For this reason, the
industry has recently adopted the use of its practices and
techniques, e.g., Test-Driven Development (TDD), Behavior-
Driven Development (BDD), amongst others. These
techniques promise to improve the software quality and the
productivity of the programmers; therefore, several
experiments, especially regarding TDD, have been carried
out within academia and in industry. These show variant
results (some of them with positive effects and others not so
much). The main goal of this work is to verify the impact
made by the TDD and BDD techniques in software
development by analyzing their main promises regarding
quality and productivity. We aim to conduct the experience
in academia, with a group of students from the Systems
Engineering Degree of the Universidad Técnica del Norte,
Ecuador. The students will receive training and appropriate
education to improve knowledge about it, and we aspire to
achieve interesting results concerning both quality and
productivity. The challenge that it is also desirable, is to
reproduce the experiment in industry or other adequate
contexts.

Keywords—Empirical research; ITL; TDD; BDD;
Software Engineering; productivity; code quality; Incremental
Test-Last; Test-Driven Development; Behavior-Driven
Development.

I. INTRODUCTION

In software development, quality is probably the most
important aspect [1]. The industry in this area is well
aware of this because users prefer products that provide a
satisfying and productive experience. However, these kind
of products are difficult to build. To do this, teams make
use of software development methodologies such as:
traditional or agile that allow planning and controlling the
process of creating a software [2]. Agile methods have
been very popular in industry in contrast to traditional
methods [1]. They use an iterative approach that responds
quickly to the changing needs of the client [2][3]. They
improve the quality and also increase the productivity of
programmers [4]. A question arises: Do agile practices
such as Test-Driven Development (TDD) or Behavior-
Driven Development (BDD) help increase product quality
and developer productivity? In this context, we intend to
run a workshop and a controlled experiment that will
answer that question.

The document is structured as follows: Section II
introduces software testing and the techniques used in the
experiment, Section III provides a summary of the related
work, Section IV defines the goals, Section V contains the
design of the study. Finally, the expected results and the

conclusion and future work are presented in Section VI
and VII, respectively.

II. BACKGROUND

Testing is one of the cornerstones of software
development because it ensures the quality of the product
[3]. In the traditional software development approach,
Test-Last Development (TLD) is usually used. Tests are
written at the final phase of the development cycle [4].
This means that the quality of the products is only
determined in the final phase and, at that moment, making
any change can present severe difficulties. On the contrary,
in an agile approach that promotes the early development
of tests; changes are welcomed and advancing with
functional components and correcting defects is made
earlier in the process [5].

A. Incremental Test-Last

Incremental software development is modeled around a
gradual increase of feature additions to a system. This
allows the programmer to take advantage of what was
being learned during the development of the earlier ones
and provide more user-visible functionality with each
addition [6][7].

Incremental Test-Last (ITL) is a natural evolution of
the TLD approach and became available upon the
introduction of the Revised Waterfall model that enabled
the Royce's iterative feedback [8]. Thus, it consists of the
development of small portions of the production code,
followed immediately by the performance tests of the
corresponding unit [9]. The ITL flow is present in Figure
1.

Figure 1. Incremental Test-Last flow.

B. Test-Driven Development

TDD, created by Kent Beck (inventor of Extreme
Programming [10] and JUnit [11]) refers to a style of
programming where three activities are closely
intertwined: Coding, Testing (in the form of unit tests) and
Design (in the form of refactoring) [12]. Its main idea is to

20Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

perform initial unit tests for the code that must be
implemented [13], and then implement the actual feature.

The TDD process [4][5] is presented in Figure 2, and
consists of the following steps: (1) select a user story, (2)
write a test that fulfills a small task of the user story and
that produces a failed test, (3) write the production code
necessary to implement the feature, (4) execute the pre-
existing tests again. Where if any test fails, the code is
corrected and the test set is re-executed and finally (5) the
production code and the tests are re-factored. This method
produces some benefits that focus on the promise of
increasing the quality of the software product and the
productivity of programmers [13][14].

Figure 2. Test-Driven Development flow (based on [4]).

Figure 3. Behavior-Driven Development flow.

C. Behavior-Driven Development

BDD, initially proposed by Dan North [15], is a
synthesis and refinement of software engineering practices
that help teams generate and deliver higher quality
software quickly [16][17]. It has core values that are
guided by some agile practices and techniques, including,
in particular: Test-Driven Development (TDD) and
Domain Driven Design (DDD). Most importantly, BDD
provides a common language based on simple structured
sentences expressed in something extremely similar to
spoken English (Gherkin) [18]. This aspect facilitates

communication between project team members and
business stakeholders [16]. Gherkin is used to write the
acceptance tests as examples and descriptions of scenarios
that anyone on the team can read [18].

The BDD process is similar to TDD (see Figure 3) and
follows these steps: (1) write a scenario, (2) run the
scenario that fails, (3) write the test that corresponds to the
specifications of the scenario, (4) write the simplest code
to pass the test and the scenario, and lastly, (5) refactor to
eliminate duplication.

III. RELATED WORK

Test-Driven Development has been exposed to several
scientific experiments developed by researchers in order to
validate the advantages offered by its use in software
development. O. Dieste et al. [4] studied the produced
effect by the technique on the developer's experience
through analysis of external quality and productivity. By
imparting theoretical and practical knowledge of ITL and
TDD to a group of master's students and evaluating the
application of techniques in the execution of programming
exercises, the study showed that the effectiveness of TDD
is lower than ITL. Although the differences are not
significant, both productivity and quality improved in half
of the cases. They deduced that the technique does not
produce immediate benefits and that an intensive training
for the subjects is of the utmost importance.

The research directed by Munir et al. [1] was
developed in the industry with professional Java
developers with previous knowledge of software testing. It
aimed to visualize the impact produced by TDD on the
quality of internal code, the quality of external code, and
productivity, when compared to TLD (Test-Last
Development). For this purpose, a programming exercise
consisting of 7 user stories was executed. This allowed the
participants to put into practice the aforementioned
techniques. The results of the analysis by the number of
approved test cases: McCabe's Cyclomatic complexity,
branch coverage, the number of lines of code per person
per hour, and the number of user stories implemented per
person per hour. The tests showed slightly significant
improvements in favor of TDD, especially in reducing the
number of defects. In terms of productivity, the tests
suggest that subjects who used TDD achieved an average
productivity slightly lower than TLD. This indicates that
the adoption of TDD requires compliance with the
guidelines of all aspects of software development and
adequate training to improve the skill set of the tests.

There is also a recent study designed by Fucci et al.
[19], where TDD was compared to ITL through a
controlled experiment with professionals within software
companies (two in Europe and one in Asia). To achieve a
more exact qualification of the effect produced by the
techniques within quality and productivity four
characteristics were formulated: sequencing, granularity,
uniformity, and refactoring effort. The resolution of
programming exercises of different levels of difficulty
revealed that the improvements found in TDD were
associated with granularity and uniformity. The remaining
characteristics did not have a relevant influence on the
experiment. Thus, the benefits of TDD are due to
encouraging stable and precise steps that improve the

21Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

focus and flow of software development which in turn
promise to improve quality and productivity.

Regarding Behavior-Driven Development (BDD), no
experiments have been found that evaluate the benefits
proposed by the technique, but being based on a set of
practices including Test-Driven Development, we hope
that it improves or, at least, maintains benefits granted by
TDD. In addition, some investigations were found
[20][21][22] in which BDD is put into practice in the
development of computer solutions while obtaining good
results.

IV. STUDY DESIGN

The goal of this empirical experiment is to analyze the
impact on software quality and developer productivity
produced by applying test-based techniques in software
development. The project goal will be achieved through
four related steps:

 Step 1: Teach a group of computer systems
engineering students about Software Testing,
JUnit, Incremental Test-Last, Test-Driven
Development, and Behavior-Driven Development.

 Step 2: Provide a workshop about software
development and testing techniques with the
execution of code katas (programming exercise).

 Step 3: Provide a challenge to the students so that
they can apply the techniques in an autonomous
way.

 Step 4: Analyze and evaluate the results obtained
by the challenge in order to show the incidence in
the quality of the developed software and the
productivity with the mentioned techniques.

A. Research questions

The experiment is focused on the following research
questions with regard to three outcomes: external software
quality (fulfillment of stakeholder requirements), internal
software quality (the way that the system has been
constructed) and developer productivity. External quality
is based on functional correctness, and specifically,
average percentage correctness [4][19]. Internal code
quality deals with the code quality in-terms of code
complexity, branch coverage, coupling and cohesion
between objects [1]. Developer productivity is based on
speed of production, or amount of functionality delivered
per effort unit [4][19].

 RQ1: Does TDD and BDD improve external code
quality compared to ITL?

 RQ2: Does TDD and BDD improve internal code
quality compared to ITL?

 RQ3: Does TDD and BDD improve productivity
compared to ITL?

 RQ4: Does BDD improve external code quality
compared to TDD?

 RQ5: Does BDD improve internal code quality
compared to TDD?

 RQ6: Does BDD improve productivity compared
to TDD?

B. Experimental description

The experiment will be done with students
(approximately 20) from the Systems Engineering Degree

of the Universidad Técnica del Norte (Ibarra - Ecuador). It
will have an approximate duration of 30 hours and will
consist of three phases: knowledge, training, and
experimentation.

In the initial phase (knowledge phase), information
will be given such as: Introduction to agile development,
Testing, JUnit, Incremental Test-Last, Test-Driven
Development, Behavior-Driven Development, and
Cucumber [18]. In addition, at the end of the explanation
of each of the techniques, a simple calculator will be
created that allows the calculations of adding and dividing.
The application will not have graphical interface so that
the students can focus on the understanding of the
execution of the technique.

In the training phase, jointly done with the students,
two code katas will be developed: Rock Paper Scissors
(RPS) and Roman Numerals (RM). They will be
developed using the techniques chosen for the experiment.
RPS is a traditional game involving two players making
pre-defined hand gestures while playing against each
other, with the winner being decided based on the rules
[23]. RM is about the conversion of Arabic numbers into
their Roman numeral equivalents, and vice versa [24].

In the third phase (experimental phase), students will
develop two code katas through the techniques learned:
FizzBuzz variant (FB) and String Calculator (SC). FB is a
counting and number replacement game, where: any
number that is divisible by 3 is replaced with the word
'fizz', any number divisible by 5 is replaced with the word
'buzz', any prime number is replaced with the word 'whiz',
any number simultaneously divisible by 3 and 5 is replaced
with 'fizz buzz', any prime number divisible by 3 is
replaced with 'fizz whiz', and any prime number divisible
by 5 is replaced with 'buzz whiz' [21]. SC is about
building a string calculator with a simple add method [26].
It receives a string with some numbers separated by one or
multiple delimiters and returns the sum of all the numbers.
An estimation of four hours duration was made to ensure
the total resolution of each exercise.

It is important to emphasize that each code kata was
evaluated with the function point metric that provides a
measure to the difficulty of the exercise. The purpose is to
solve exercises of similar difficulty both in the training
phase as well as in the practice phase. This metric allows
the evaluation of the functionality of a software at any
stage of its life cycle [27][28].

C. Design and threats

The order of the interventions used in an experiment
can affect the behavior of the subjects or elicit a false
response due to fatigue, carry-over, resolution order, or
outside factors [4][29]. To counteract this, a
counterbalanced design could be applied (see Figure 4),
which reduces the impact of the order of interventions or
other factors adversely influencing the results [29][30].
This process is called “Latin Square”.

Our experiment will have three interventions (ITL - A,
TDD - B and BDD – C). We will divide the subjects into 6
groups and choose the interventions’ order according to
the following: ABC, ACB, BAC, BCA, CAB and CBA.

22Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

Figure 4. Counterbalanced design for three conditions.

The experimental sessions will be applied contiguously
in time, so the main obstacle is fatigue. To counteract this
threat, we will provide an adequate time period for the
execution of each exercise and grant breaks within the
resolution of each technique.

D. Factors and metrics

The experiment will be based upon two factors. The
development approach level [4]: ITL, TDD, or BDD, will
be used as the main factor. The tasks [4] corresponding to
the development of code katas (FB and SC) will be used as
the secondary factor. The effectiveness of the development
approach will be studied under the perspective of the
experiments [1][4][19].

The external quality metric (QLTY) represents the
degree of agreement of the system with the functional
requirements [4][19]. The formula for calculating QLTY is
defined as:

���� =
∑ �����

#���
��

#���
 � 100 (1)

where QLTYi is the quality of the user history ith
implemented by the subject. QLTYi is defined as:

����� =
#�������(����)

#�������(���)
(2)

In turn, the number of user stories addressed (#TUS) is
defined, such as:

#��� = ∑ �
1
0

�
���

#�������(����) > 0
��ℎ������

 (3)

where n is the number of user stories that make up the
task. In both cases, it represents the number of passing
JUnit assert statements in the set of tests associated with
the ith user history. Consequently, a user history is
considered addressed if it passes at least one of its JUnit
assert statements. For example, supposing that a person
assesses two user stories (#TUS = 2), this means that there
are two user stories for which at least one assert statement
passes in the test suite. Let us assume that the acceptance
tests of the first analyzed user story contains twelve
assertions, out of which six are passing. The acceptance
tests of the second user story contain nine assertions, of
which three are passing. The quality value of the first
assessed user story (QLTY1) is 0.50, while the second user
story has a quality value of 0.33 (QLTY2). Therefore, the
QLTY measure for the subject is 41.5 percent, i.e., (QLTY
= (0.50 + 0.33) / 2 * 100).

The productivity metric (PROD) represents the work
done by the subjects with the required quality and within
the specified time [19]. Its formula is defined as:

���� =
 ������

����
(4)

OUTPUT symbolizes the percentage of passing JUnit
assert statements found in the set of tests for a task.

������ =
#������(����)

#������(���)
 � 100 (5)

TIME (minutes) is an estimate of the amount of work
used in the resolution of a task and is based on the time
records (milliseconds) collected by the IDE.

���� =
 ������������

����
(6)

For example, a person implements a task with a total of
50 assert statements in a test suite. After running the
acceptance test suite against the person’s solution, 40
assert statements are passing. Then OUTPUT = (40 / 50) x
100 = 80%. Suppose that the solution was delivered in one
and a half hours (i.e., TIME = 90 minutes). The person’s
PROD is therefore 0.89 (80/90), denoting an assertion
passing rate of 0.89 percent per minute.

Regarding the internal quality analysis, the metric used
in the experiment by Munir et al. [1], McCabe's cyclomatic
complexity metric, provides a quantitative measurement of
the logical complexity of a software; that is, it indicates
how a program can be difficult to test and maintain
[1][31]. Furthermore, the Source Code Analyzer PMD will
be applied to find common programming flaws like:
unused variables, empty catch blocks, unnecessary object
creation, and so forth [32].

E. Development Environment Operationalization

The development environment that the participants will
use includes: Java 8 using the IDE: IntelliJ IDEA with the
4 additional plugins of Cucumber, Activity Tracker,
Metrics Reloaded, and QAPlug. The Cucumber plugin will
allow the implementation of the BDD technique in the
resolution of the exercises. The Activity Tracker plugin is
intended to track and record the activity of the IDE user,
such as the time spent on tasks. McCabe's cyclomatic
complexity metric will be applied with the use of Metrics
Reloaded plugin. In addition, QAPlug plugin implements
PMD module to manage code quality.

V. EXPECTED RESULTS

We expect that the descriptive statistics analysis of the
information compiled from the code katas implementation
by ITL, TDD and BDD responds positively to questions
RQ1, RQ2, RQ4 and RQ5. Meaning that the exercises
developed through TDD and BDD should present
improvement of internal and external quality. A slight
decrease of the productivity is expected due to the fact that
both TDD and BDD present more steps in its process
(RQ3 and RQ6).

VI. CONCLUSION

The experiments that analyze TDD against other
techniques mention that the benefits are not very evident
and emphasize training as one of the relevant facts for
obtaining such results. Therefore, this work focuses on
increasing training and performing exercises at the same
level of difficulty with the intention of maximizing
understanding of the implementation of the techniques
used and obtaining better results. This work is now
complete after the initial application of the study, held
between May and June 2018. We are currently gathering
all the information and conducting the statistical analysis

23Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

that will be of great benefit if the research applied in other
environments such as in industry and other countries.

ACKNOWLEDGMENTS

This work is financed by national funds through the FCT -
Foundation for Science and Technology, I.P., under project UID /
CEC / 04524/2016.

REFERENCES

[1] H. Munir, K. Wnuk, K. Petersen, and M. Moayyed, “An
experimental evaluation of test driven development vs. test-
last development with industry professionals,” Proc. 18th
Int. Conf. Eval. Assess. Softw. Eng. - EASE ’14, pp. 1–10,
2014.

[2] J. Shore and S. Warden, The Art of Agile Development.
O’Reilly Media, Inc, 2008.

[3] T. D. Hellmann, A. Sharma, J. Ferreira, and F. Maurer,
“Agile testing: Past, present, and future - Charting a
systematic map of testing in agile software development,”
Proc. - 2012 Agil. Conf. Agil. 2012, pp. 55–63, 2012.

[4] O. Dieste, E. R. Fonseca, G. Raura, and P. Rodríguez,
“Efectividad del Test-Driven Development: Un Experimento
Replicado,” Rev. Latinoam. Ing. Softw., vol. 3, no. 3, p. 141,
2015.

[5] D. Janzen and H. Saiedian, “Test-driven development:
Concepts, taxonomy, and future direction,” Computer (Long.
Beach. Calif)., vol. 38, no. 9, pp. 43–50, 2005.

[6] C. Larman and V. R. Basili, “Iterative and incremental
developments. a brief history,” Computer (Long. Beach.
Calif)., vol. 36, no. 6, pp. 47–56, 2003.

[7] I. Sommerville, Software Engineering. Pearson, 2016.
[8] R. Martin, “Iterative and incremental development (iid),”

C++ Rep., vol. 11, no. 2, pp. 26–29, 1999.
[9] D. S. Janzen, “On the Influence of Test-Driven Development

on Software Design,” pp. 0–7, 2006.
[10] K. Beck and M. Fowler, Planning Extreme Programming.

Addison-Wesley, 2000.
[11] K. Beck, JUnit pocket guide. O’Reilly Media, 2004.
[12] Agile Alliance, “What is Test Driven Development (TDD)?”

[Online]. Available:
https://www.agilealliance.org/glossary/tdd/. [Accessed: 11-
Nov-2017].

[13] R. Martinez, “TDD, una metodología para gobernarlos a
todos,” 2017. [Online]. Available:
https://www.paradigmadigital.com/techbiz/tdd-una-
metodologia-gobernarlos-todos/. [Accessed: 11-Nov-2017].

[14] K. Beck, Test-driven development: by example. Addison-
Wesley, 2003.

[15] D. North, “Introducing BDD | Dan North & Associates,”
2006. [Online]. Available: https://dannorth.net/introducing-
bdd/. [Accessed: 07-Dec-2017].

[16] J. F. Smart, BDD In Action: Behavior Driven Development
for the Whole Software Lifecycle. Manning, 2014.

[17] Agile Alliance, “BDD: Learn about Behavior Driven
Development.” [Online]. Available:
https://www.agilealliance.org/glossary/bdd/. [Accessed: 16-
Nov-2017].

[18] M. Wynne and A. Hellesoy, The Cucumber Book:
Behaviour-Driven Development for Testers and Developers,
Pragmatic. 2012.

[19] D. Fucci, H. Erdogmus, B. Turhan, M. Oivo, and N. Juristo,
“A Dissection of the Test-Driven Development Process:
Does It Really Matter to Test-First or to Test-Last?,” IEEE
Trans. Softw. Eng., vol. 43, no. 7, pp. 597–614, 2017.

[20] M. Rahman and J. Gao, “A reusable automated acceptance
testing architecture for microservices in behavior-driven
development,” Proc. - 9th IEEE Int. Symp. Serv. Syst. Eng.
IEEE SOSE 2015, vol. 30, pp. 321–325, 2015.

[21] R. A. De Carvalho, F. Luiz, D. Carvalho, R. S. Manhães,
and G. L. De Oliveira, “Implementing Behavior Driven
Development in an Open Source ERP,” pp. 242–249, 2013.

[22] P. L. De Souza, A. F. Do Prado, W. L. De Souza, S. M. Dos
Santos Forghieri Pereira, and L. F. Pires, “Combining
behaviour-driven development with scrum for software
development in the education domain,” ICEIS 2017 - Proc.
19th Int. Conf. Enterp. Inf. Syst., vol. 2, no. Iceis, pp. 449–
458, 2017.

[23] Agile Katas, “Rock Paper Scissors Kata.” [Online].
Available: http://agilekatas.co.uk/katas/RockPaperScissors-
Kata. [Accessed: 16-Feb-2018].

[24] Agile Katas, “Roman Numerals Kata.” [Online]. Available:
http://agilekatas.co.uk/katas/RomanNumerals-Kata.
[Accessed: 16-Feb-2018].

[25] M. Whelan, “FizzBuzzWhiz Kata.” [Online]. Available:
https://github.com/mwhelan/Katas/tree/master/Katas.FizzBu
zzWhiz. [Accessed: 16-Feb-2018].

[26] R. Osherove, “TDD Kata 1 - String Calculator.” [Online].
Available: http://osherove.com/tdd-kata-1/. [Accessed: 16-
Feb-2018].

[27] Ifpug, “Function Point Counting Practices Manual,” Group,
vol. on06/23/. 2010.

[28] F. Sánchez, “Medida del tamaño funcional de aplicaciones
software,” Univ. Castilla-La Mancha, 1999.

[29] N. J. Salkind, Encyclopedia of Research Design. SAGE
Publications, 2010.

[30] D. J. Saville and G. R. Wood, Statistical Methods: The
Geometric Approach. Springer New York, 1991.

[31] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw.
Eng., vol. SE-2, no. 4, pp. 308–320, 1976.

[32] PMD Open Source Project, “PMD Source Code Analyzer.”
[Online]. Available: https://pmd.github.io/. [Accessed: 19-
Feb-2018].

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

