ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Function-as-a-Service X Platform-as-a-Service:
Towards a Comparative Study on FaaS and PaaS

Lucas F. Albuquerque Jr.?, Felipe Silva Ferraz®, Rodrigo F. A. P. Oliveira', and Sergio M. L. Galdino'

'Polytechnic School of Pernambuco, University of Pernambuco, Recife, Brazil
Email: {1faj,rfapo}@ecomp.poli.br, sergio.galdino@ieee.org
2IFPE - Federal Institute of Technology, Palmares, Brazil
Email: lucasjr@palmares.ifpe.edu.br
3Recife Center for Advanced Studies and Systems (CESAR), Recife, Brazil
Email: fsf@cesar.org.br

Abstract—The adoption of cloud computing for service delivery
is a market trend and attracts customers seeking elastic, scalable,
and cost-effective infrastructures. Instance-based models, such as
Platform-as-a-Service (PaaS), are being used to support mobile
applications. Despite the management facilities, the PaaS receives
criticism for the inefficient use of resources. Studies point to
a new model, known as Function-as-a-Service (FaaS), as an
alternative that would offer a more efficient use of resources
and lower costs. The present work has proposed to perform a
comparative evaluation between FaaS and PaaS service delivery
models regarding performance, scalability and costs issues in
support of mobile applications based on microservices. The
conclusions obtained showed that FaaS presented an equivalent
performance, a more efficient scalability and the costs influenced
by workload type.

Keywords—Cloud Computing; FaaS; PaaS; Serverless; Mobile;
Microservices

I. INTRODUCTION

The term virtualization is associated with the abstraction
of computational resources for the purpose of optimizing their
use, allowing users and applications to transparently share
resources [1]. Thus, with virtualization of the infrastructure,
servers become a mere abstraction of resources, being more
easily managed [2]. Virtualization technologies form the basis
of what we now know as cloud computing, which is the
provision of information or computing resources as a ser-
vice accessible through the network [3]. Cloud models, such
as Infrastructure-as-a-Service(IaaS) and Platform-as-a-Service
(PaaS) use the concept of instance to define the amount of
computational resources allocated to carry out their tasks.

In parallel to the advances related to cloud computing,
the dissemination of mobile devices led to the emergence of
the Mobile Cloud Computing (MCC) [4] concept, which is
the use of cloud computing by mobile devices for service
delivery anytime, anywhere, managing a large volume of data
from a variety of device platforms. To meet performance and
scalability requirements in mobile applications, microservice
architectures have emerged to enable the development of de-
coupled applications in separate, scalable and portable modules
that communicate through common protocols [5].

Considering mobile application support, PaaS model has
been used as the cloud computing alternative for many mi-
croservices applications [6]. One of the advantages of PaaS
would be its independence from operational issues, allowing

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

the customer to focus on code development. However, the
PaaS model is criticized for being a instance-based model,
requiring pre-allocating resources, increasing costs for certain
types of workloads [7]. In this context, the Function-as-
a-Service (FaaS) model, commercially known as Serverless
Computing, has been cited as an alternative model for meeting
the requirements of mobile applications in microservices [8],
offering a scalable, on-demand infrastructure that operates in
response to events, adopting a granular demand-based billing
model.

FaaS has been cited in several studies as a computational
model with potential to meet many of the challenges of mobile
computing, as an alternative to the PaaS model. Works such
as [9]-[13] point out that due to platform variability, data
volume and temporal data characteristics of MCCs, event-
based models like FaaS, would be an alternative model in
support of mobile devices, Internet of Things (IoT), real-time
processing, artificial intelligence, among others. However, as
a newly proposed model, many questions remain open about
the benefits of using and applying FaaS model.

Considering the several open questions related to the FaaS
models, this paper presents a comparative analysis between the
PaaS and FaaS models in the mobile application support, as
well as a performance and scalability evaluation between these
two models. Finally, the paper also proposes to present a cost
comparison between the PaaS and FaaS models from a case
study based on a geolocation microservices-based application.

This paper is structured as follows. In Section 2, we
introduce the basic idea behind FaaS (Function-as-a-Service)
and present a comparative analysis to PaaS. In Section 3,
we discuss the experiment setup and test plan performed. In
Section 4, we discuss the findings, analyzing the performance,
scalability results (Section 4.1) and costs (Section 4.2). Section
5 discusses related research, and finally Section 6 concludes
the paper with lessons learned and an outlook on future work.

II. FUNCTION-AS-A-SERVICE

Serverless computing was initially associated with two
scenarios:

e Applications that depend on external services for their
operation, having their business rules concentrated on
the client side. This development model was initially
called Backend-as-a-Service (BaaS) and included the

206

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Main page

Auth Signup Querytem Getilem Additem UpdateCart

Accounts
CATALOG
BASKET

Checkout

CHECKOUT

Ques Validat
uery I Sinte Scorelten AddCart GetCart AddCupom

S~

Figure 1. A Faasified application where each service is decomposed into
functions that can be performed or escalated independently.

use of external services as databases, authentication
services, messaging services, among others [14].

e Applications whose business rules are located in the
cloud, running on demand only, in response to events
and in an ephemeral way (no relation between events).
This approach is more recent and usually referred as
FaaS (Function-as-a-Service) or Event-Driven Com-
puting [?].

The BaaS model was an important driver for both cloud
computing and popularization of mobile devices, but it did
carry with it some complications. Business rules on the client
side were making it difficult to update and deploy new features
as well as reverse engineering risks. In FaaS, business rules
can be server-centric or divided between the server and the
client, and the application is decomposed into small, specific,
well-defined tasks, called functions. Each executed function
is treated as an ephemeral event (independent and stateless)
and its lifetime is the same as the task being executed. The
client has an environment that responds to events, rather than
dedicated full-time infrastructure [8].

FaaS enables the decomposition of service in micro-
functions, which can be performed and scaled independently,
introducing the concept of nanoservices [15]. Another concept
introduced by FaaS is related to the transformation process of
monolithic or microservice applications to functions (Figure
1), process known as FaaSification [16] [17].

Studies that have already been carried out, place FaaS as a
variant of the PaaS model, or a type of specialized PaaS [6],
but do not present in a consolidated form the characteristics
of each of the models. From Table I it is possible to observe
the main differences that can be pointed out in relation to the
PaaS and FaaS models considering several aspects.

III. EXPERIMENTATION

The purpose of this section is to present the environment
used to perform the experiments (Subsection III-A) and the
results obtained (Subsection III-B). At the end of the Sec-
tion, performance, scalability and cost analyzes will also be
presented for the scenarios evaluated (Subsections III-C and
III-D, respectively).

A. Experiment Setup

For the experiments, we developed an application using
the architecture based on microservices (Figure 2) composed

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

Sensor

Website

1
AP | w <>
- GET /sensors/geofpull Gateway

i >

BD

Figure 2. Diagram of the microservice application for storage and
availability of Geolocation data

of two services (ul e u2), responsible for receiving and mak-
ing available geolocation information collected from mobile
devices. The ul was responsible for receiving and storing data
received through HTTP (Hypertext Transfer Protocol) REST
(Representational State Transfer) requests, while u2 receives
requests and returns the results in JSON ((JavaScript Object
Notation) format (Figure 2).

To perform the experiments, we use Amazon Web Services
(AWS) Elastic Beanstalk as the PaaS environment and AWS
Lambda as FaaS solution for running an application developed
in Node.JS with MongoDB database as persistence layer. For
the tests, the following operations were performed, in three
rounds, with an interval of one hour between them:

e Write - Write operations targeting ul for both envi-
ronments.

e Read - Read operations targeting p2 for both environ-
ments.

e Write/Read - Write and read operations for ul and
ul simultaneously, for both environments.

Beyond the one hour interval, upon completion of each
round, both environments were destroyed and re-implemented,
to ensure that results from previous rounds did not interfere in
the results of subsequent rounds.

In order to carry out the performance tests, we use JMeter
3.1 [18] configured in an EC2 c4.large instance connected to
the same Virtual Private Cloud (VPC) as the environments
to be evaluated. The performance tests were executed with
the objective of identifying the maximum number of requests
supported by each scenario and the scalability efficiency.
The tests simulated concurrent requests (threads) that were
gradually increased to the limit of 100 users. Tests started
with 10 threads and started another 10 every 10 seconds (with
ramp-up of 2 Seconds). After reaching 100 requests, the test
remained active for 120s, finally being finalized in a controlled
way, at a rate of 5 req/sec (Figure 3).

W Expacted Active Ussrs Count

)
80
70
60
50
40
kL)
20
10

Number of active threads

0
00:00:00 00:00:25 00:00:50 00:01:16 00:01:41 000207 00:02:32 00:02:57 00:0323 00:03:48 00:04:14
Elapsed time

Figure 3. JMeter test plan used during experiments

In test plan, it was defined that the tests would be inter-
rupted if any of the conditions listed below were met:

207

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE 1. COMPARATIVE ANALYSIS BETWEEN PAAS AND FAAS MODELS CONSIDERING DIFFERENT ASPECTS.

Aspects PaaS FaaS
Coding and Focused on services, with development teams being responsible Focused on tasks (functions) with development teams being
Delivery for one or more parts of the application. Service-based delivery. responsible for a set of functions. Function-based delivery.
- Based on the number of instances and resources required by the .
Sizing . . L ces req Y Based on the amount of resources for the execution of each event.
services. Risks of overestimating or underestimating workloads.
. Fully operated by the provider with possibility of customization Fully operated by the provider with no possibility of customization
Environment . i
by the client. by the client.
Application Interventions in the code need to take into account a specific
h Interventions in the code need to take into account the entire service. .
Maintenance function. Less code.
Resources Pre-allocation of resources with the possibility of allocating additional .
. . No pre-allocated resources. Transparent and on-demand allocation.
Allocation instances on demand.
. . . . No waiting state. The function is executed when required.
Execution Permanent waiting state, no restrictions on the duration of events. - . .
Restriction of maximum duration per event.
Billing By instantiated resources, whether used or not. Per event executed. Without commitment.

1) If the latency for any of the requests destined for
ul and u2 reaches the Maximum Latency Accepted
(MLA) for the test scenario being performed;

2) If any of the tested requests return errored responses
to the requests made;

3) If the time planned for the tests is completed, con-
sidering the test plan defined on JMeter for ul and
u2;

B. Results

The results obtained during the tests will be presented in
tables throughout the section. In each table, the rounds in bold
with (U indicate that the test round did not return positive
results, representing 100% errors in the samples. The rounds
in bold with @, however, indicate successful samples, but
errors were observed during execution that forced premature
interruption of threads, as indicated in Section III-A. And,
finally, rounds without indication mean that the round was
completed successfully, with no observed errors.

For Lambda(A) scenario (Table II), the application exe-
cuted in the FaaS environment presented errors in 100% of
the samples tested, the round being closed due to the requests
having exceeded the MLA limit. The Cloudwatch logs showed
that the initial requests made to the Application Programming
Interface (API) Gateway reached a latency of 14.50 seconds,
which extrapolated the MLA for the scenario (5000 ms). This
latency observed in the execution of the FaaS functions was
an issue already cited in other works, being known as Cold
Start [19] [20], this behavior is observed in FaaS implemen-
tations, and affects functions of eventual use or that present
long temporary lapses between the requisitions, causing the
deallocation of resources. In order to try to overcome cold
start, for the Lambda(B) scenario the MLA was increased to
10000ms, but some rounds still showed errors, returning 100%
of failures.

For the Lambda(C) scenario (Table III), the MLA was
increased to 15000ms, which allowed the cold start to be
overcome and the samples returned successfully. But despite
overcoming cold start, the samples presented errors during
execution. When analyzing the Lambda logs, it was observed
that the errors occurred because the Lambda was taking a
Iot of time to process the requests, exceeding the default
maximum duration for Lambda environment (3 secs), causing
timeout errors. In the Lambda (D) scenario, with the memory
increased to 256MB, the FaaS environment started to complete
the rounds successfully. The results confirmed the existence

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

TABLE II. RESULTS FOR THE SCENARIOS (A) AND (B) FOR
LAMBDA ENVIRONMENT, SETTING WITH MLA of 5000MS AND
10000MS, RESPECTIVELY.

Lambda (A) Lambda (B)
Operation Average Average
P 128mMB g 128MB €
Latency (ms)| Latency (ms)
Round " ™ 3" ™ 0" 03"
Write Suceeded 0 0 0 10854 o 202 o 9821
Requests
Latency (ms) 11210 10020 11332 11425 4057 13981
Round e 2" e Tl " B
Suceeded
o] o] o] 162 0 0
Read Requests 11915 8501
Latency (ms) 13642 12301 9201 4322 10935 13241
Timeout: 5000ms Timeout: 10000ms

of a direct proportionality between the allocated memory and
CPU resources.

TABLE III. RESULTS FOR THE SCENARIOS (C) AND (D) FOR
LAMBDA ENVIRONMENT, SETTING MEMORY TO 128MB AND
256MB RESPECTIVELY, AND 15000MS OF MLA

Lambda (C) Lambda (D)
N Average Average
Operat
peration 128MB Latency 256MB Latency
(ms) (ms)
Round " " " #l #2 #3
. S ded
write | “uceece 152 189 177 4134 | 10000 | >10000 | >10000 129
Requests
Latency (ms)| 4232 4057 4112 139 127 121
Round #"? #2™ #3™ #1 #2 #3
Suceeded
150 150 141 >10000 >10000 | >10000
Read Requests 4338 585
Latency (ms)| 4322 4292 4401 571 604 580
Timeout: 15000ms Timeout: 15000ms

In the case of the Beanstalk(A) scenario (Table IV), the
same issues observed in Lambda(C) were also observed for
this scenario. During the execution of the tests, the PaaS
environment started to return errors, caused by the resource
saturation of the instance used (z/.micro). For the Beanstalk
(B) scenario, the multi-instance feature was enabled, allocating
more instances on demand, allowing the successful completion
of the test rounds.

Considering that the Lambda(D) and Beanstalk(B) scenar-
ios completed the tests successfully, other scenarios were ana-
lyzed, adding extra features to the tested environments in order
to evaluate the existence of a direct relation between resources
and performance considering the proposed application. For
the FaaS environment, the scenarios included the increase of
memory per function performed and the use of SSD disks. For

208

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE IV. RESULTS FOR THE SCENARIOS (A) AND (B) FOR
BEANSTALK ENVIRONMENT, USING SINGLE-INSTANCE AND
MULTI-INSTANCE, AND 15000MS OF MLA

Ik (A) Ik (B}
o] ti N " A " " A
peration Single Instance (t1.micro) La‘:::?:“) Multi Instance (t1.micro) mtev:::?;s)
Round #? wn"® w3 #1 #2 #3
Suceeded
Write Reguests >10000 | >10000 | >10000 114 >10000 | >10000 | >10000 162
Latency (ms) | 111 9% 136 158 183 144
Round #™ w2 L # #2 #3
Suceeded
Read Requests >10000 | >10000 | >10000 179 >10000 | =10000 | >10000 523
Latency (ms) 203 157 177 458 579 531
Timeout: 5000ms Timeout: 15000ms

the PaaS environment, tests were performed using instances
with more resources (2x) and Solid State Disks (SSD) also.
The results (Table V) show that, for the tested scenarios, based
on the Lambda(D) and Beanstalk(B), latency reduction did not
show a proportionality between the addition of resources and
performance, depending also on the type of operation (writing
or reading).

TABLE V. COMPARISON BETWEEN SEVERAL LAMBDA AND
BEANSTALK SCENARIOS SHOWING THE REDUCTION IN LATENCY
OBTAINED IN DIFFERENT SCENARIOS

WRITE L-512-HDD %|L-256-SSD% | L-512-SSD %

L-256- HDD -69,51 -57,62 -78,30 L-256-HDD = Lambda - 256MB - HDD
L-512- HDD %|L-256 - SSD % | L - 512 - SSD % | |12HPD = Lambda - 512M5 - HOD
READ L-256-55D = Lambda - 256MB - SSD
2,74 -48,83 -54,76

L-512-55D = Lambda - 256MB - SSD

B-T2-HDD%| BT1SSD% | B-T2-SSD % | B! Micro-HDD=Beanstalk - 256M8 - HOD

WRITE B-T2 Small-HDD = Beanstalk - 512MB - HDD

B-T1-HDD 43,51 2598 45,98 | 571 Micro-SsD = Beanstalk - 256M8 - S5
READ B-T2-HDD % | B-T1-SSD% B-T2-SSD % | B-T2 Small-sSD = Beanstalk - 256MB - SSD
64,73 -50,57 -50,89

C. Performance and Scalability Analysis

Considering the results for the scenarios tested, some
considerations:

e The results showed that the cold start observed in
FaaS environments affected the performance of appli-
cations executed in FaaS environments. This behavior
is observed in applications of occasional use or that
present long temporary lapses between the requisi-
tions, causing the deallocation of resources and is
common to all serverless implementations evaluated.

e The results showed that the allocation of more re-
sources to the tested environments had a positive im-
pact on overall performance. For FaaS environments,
there was a direct relationship between the amount
of memory and the processing resources allocated
by function. However, at the application level, the
allocation of more resources was not proportional to
the performance gains;

e The results showed that the scalability mechanisms
adopted by the PaaS and FaaS environments were
efficient in all scenarios evaluated. The scalability
of the PaaS environment was based on instance and
occured in resource jumps, being less granular. In
FaaS environments scalability was linear, occurring
based on volume of events.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

D. Cost Analysis

Some types of applications tend not to benefit from the
characteristics of PaaS, especially those that present variations
in workload. For these types of applications, which can range
from zero requests to thousands in a few seconds, the perma-
nent instantiation of resources is not advantageous, considering
that the instances are kept alive and are charged regardless of
usage. For applications that present variations in workloads,
the FaaS model presents itself as more adequate, considering
the dynamic allocation of resources. The economic benefits of
serverless computing heavily depend on the execution behavior
and volumes of the application workloads.

Considering the scenarios tested, it was possible to extract
a cost basis in order to compare infrastructure costs. For
comparison purposes, the monthly quantity of requests were
used as a metric, since a direct cost comparison was not
possible. In order to obtain the number of monthly requests
supported by a Beanstalk instance, the number of 10,000
requests per minute was used as a reference, based on the
maximum number of requests supported per minute by one
instance during the tests performed. In order to obtain the
maximum number of requisitions per month, the maximum
number of requisitions supported (10,000) was multiplied by
43,200, which is the number of minutes per month, totaling
432,000,000 monthly requisitions.

For the costing of the FaaS environment, the durations of
100ms and 300ms were considered for writing and reading
operations, respectively, so that cost simulations were based
on 50/50 (50% write/50% read), 70/30 (70% write/30% read)
and 90/10 (90% write/10% read). The proposed durations were
based on the mean reading and writing values obtained from
the median latencies during the tests performed. Table VI
presents the results of the comparison for the three proposed
scenarios, as well as the monthly cost of an instance tI.micro.
As can be seen in the results, for the 50/50 scenario the
monthly cost was US$44.65, while for the 70/30 scenario the
monthly cost was US$ 37.45, both scenarios presented a higher
monthly cost than the AWS Beanstalk, which was US$ 33.86.
However, for the third scenario (90/10), the monthly cost was
US$ 30.25, falling below the monthly value for Beanstalk.

TABLE VI. COMPARISON OF COSTS BETWEEN AWS LAMBDA AND
AWS BEANSTALK CONSIDERING A TOTAL OF 43,200,000 MONTH
REQUESTS IN THREE DIFFERENT SCENARIOS

50/50 70/30 90/10

21.600.000 21.600.000 30.240.00 12.960.000 38.880.000 4.320.000

100ms 300ms 100ms. 300ms 100ms 300ms

Operation Write Read Write Read Write Read
AWS Lambd
256!\:‘3 2 USS$ 13.32 | US$ 31.33 USS 18.65 USS 18.80 | USS$ 23.98 Uss$ 6.27
Montlly Cost USS$ 44.65 US$ 37.45 USS 30.25

AWS Beanstalk

(t1.micro) 744 hours/month ‘ USS 33.86 ‘

From the costs shown in Table VI, the following conclu-
sions were obtained regarding the costs related to the case
study in question:

e FaaS and PaaS environments presented cost variations
considering the different scenarios presented (50/50,
70/30 and 90/10), depending on the type of predomi-
nant operation. The cost of the FaaS environments was

209

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

higher in the first two scenarios due to the duration
observed during the writing operations;

e For FaaS, the longer the duration of the functions,
the higher the cost. Investing in the use of more
performative database instances and caching features
could reduce the duration of read operations, enabling
a reduction in cost per read event;

e Different FaaS providers may offer lower costs per
event (Table VII). Providers seeking to build a port-
folio of clients or seek to consolidate their product on
the market can offer attractive prices;

TABLE VII. COMPARISON OF COSTS BETWEEN FAAS PROVIDERS
CONSIDERING A TOTAL OF 43,200,000 MONTH REQUESTS FOR
THE 90/10 SCENARIO

50/10

38.880.000 4.320.000
100ms 300ms
Provider Read Write Montly Cost
AWS Lambda UsS 23.98 Us$ 6.27 Us$ 30.25
Azure Functions USS 23.33 USS 6.05 US$ 29.38
Google Functions USS 33.53 Uss$7.72 US$ 41.25
IBM OpenWhisk USS 16.52 US$ 5.51 USS$ 22.03

e The commercial policies adopted by the PaaS and
FaaS providers follow a similar model to their re-
spective scalability characteristics. For the PaaS en-
vironment, the costs increase based on the allocated
instances (in jumps) (Figure 4). In the case of FaaS
environments, the cost increases due to the number of
requests received and executed.

Service Costs [100 5]
Service Costs [100 5]
.

Requests [1000 per minute] Requests [1000 per minute]

Figure 4. Graphs showing the evolution of costs in the Paas (A) and FaaS
(B) environment in relation to the number of requisitions [21]

This section was dedicated to present and discuss the
results obtained during the performed experiments regarding to
performance and costs for the proposed scenarios. In the next
section will be presented the works that served as reference or
are related with the present work.

IV. REeLaTED WORK

As a newly proposed model, scientific work related to FaaS
is still scarce, and most use the term Serverless to refer to
the model. Works such as [11] and [19] propose Serverless
implementations as proof of concept and experimental, to
be used for research purposes and for evaluation of appli-
cations in event-based environments, addressing conceptual
issues regarding scalability and performance. Some papers
are dedicated to proposing Serverless implementations and
present results of experiments performed, such as [22], which
addresses the inefficiency of instance-based models, and [23]
that analyzes scalability issues, cold start and execution in
FaaS environments.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

Some papers focus on cost issues in Serverless environ-
ments, such as [24] that addresses performance, scalability, and
cost issues in FaaS environments. In [25] and [26], the authors
present results comparing a single application implemented
as monolithic, an instance-based microservices and an event-
based microservices (Lambda), and presenting significant cost
reductions with the adoption of the FaaS model. As in [21], the
authors present CostHat, a graphical model for evaluating costs
for instance and event-based microservices, which simulates
the impact of changes in applications.

In [16], the authors addressed FaaSification, which is a
process of migrating applications to nanoservices, or event-
based architectures that, although functional, still requires
more in-depth research. Works related to the use of Serverless
computing in several applications, such as for rejuvenation
of environments [27], support for weareables [28], cognitive
services [20], among others.

Considering previous works, the present paper has the
purpose to contribute with a comparison between the FaaS
and PaaS model with a focus on performance, scalability and
cost on support of microservices applications. The work seeks
to cover the characteristics of both the models, intrinsical
aspects of FaaS and its pitfalls, such as cold start and execution
limitations in different workload scenarios, points not covered
by other published papers.

V. CoNcLUSION

The growth of cloud computing has been boosting and
enabling the emergence of parallel research areas, which use
computational clouds to support various applications, such as
mobile devices support. Variations in the volume of requests,
the use of heterogeneous platforms and the availability re-
quirements are peculiar characteristics of mobile computing
environments that, in association with the use of micro-
service architectures, allow scale gains, independence and the
availability required to support modern applications.

Although the PaaS is a consolidated model and recognized
as efficient in supporting applications in microservices, the
FaaS model has been identified as an alternative model for
meeting mobile computing scenarios, providing more efficient
use of resources and lower costs. This paper proposed to
perform a comparative evaluation between FaaS and PaaS
cloud service delivery models regarding performance issues,
scalability and costs in the use of mobile applications based
on microservices.

Based on the experiments carried out, the comparative
analyzes and the case study, it was possible to reach the
following conclusions:

e The FaaS application performance during the experi-
ments was shown to be equivalent to the PaaS for most
of the scenarios tested. And the addition of resources
did not represent proportional gains in performance.

e Cold Start issues observed in FaaS environments must
be taken into account prior to the adoption of the
model and can significantly impact the performance
of the application, despite the existence of techniques
to reduce these latencies;

e In terms of scalability, FaaS has proven to be most
interesting for services whose workloads are variable

210

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

or unpredictable, while PaaS best applies to constant
or predictable workloads;

e In terms of costs, FaaS presented a better cost benefit
in the treatment of requests that require short and
predictable execution times, while PaaS was better
suited for requests that require longer execution times
or variable duration;

e In order to keep costs low using FaaS, in addition to
the concern with the execution time of the requests,
the results showed that the dependence on the use
of external services, such as database, authentication
services, among others, can interfere considerably
with the expenses . In these cases, it is worth investing
in better-performing external services, to reduce the
time to perform functions while reducing costs.

In order to reduce the cold start impacts, some preliminar
techniques can be applied. (1) in applications that have a
higher latency tolerance, adjust the response threshold times,
as performed during the performed experiments; (2) maintain
an external routine (heartbeat) to keep resources permanently
active through requisitions at regular times; (3) associate
microservices of frequent and occasional use under the same
API endpoint, so that access to the most used microservices
guarantees the instantiation of resources to those of less access.

The results showed that the use of FaaS can help reduce
costs depending on the workload. As FaaS market implementa-
tions take a charge per event taking into account the execution
time of the function, the longer the time required to process
a request, the higher the cost of the operation. In addition,
applications whose execution times are short and predictable
tend to benefit from the use of FaaS, which, together with
the infinite scalability of the model, can aid in the support
of seasonal workloads. The results obtained can help solution
architects in the decision making regarding the use of FaaS to
support their applications.

A. Future Research Directions

The presented work requires future work in three direc-
tions:

e To deepen the cost studies in FaaS environments from
a service provider’s point of view, in order to evaluate
if, in comparison with other models, FaaS enables a
more efficient use of resources, thus reducing costs
reduction with infrastructure.

e Evaluation of techniques to reduce cold start in FaaS
environments in order to reduce latency in occasional
applications;

e Evaluate FaaSification techniques for the portability
of microservice applications for FaaS environments.

ACKNOWLEDGMENT

This research has been supported by an AWS in Education
Research Grant which helped us to run our experiments on
AWS Lambda as representative public commercial FaaS.

REFERENCES

[11 J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on
concepts, taxonomy and associated security issues,” in 2010 Second
International Conference on Computer and Network Technology, April
2010, pp. 222-226.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

(2]
(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

M. Portnoy, Virtualization Essentials. Sybex, 2012.

Y. Tsuruoka, “Cloud computing - current status and future directions,”
vol. 24, no. 2. Information Processing Society of Japan, 2016, pp.
183-194.

Y. Wang, 1.-R. Chen, and D.-C. Wang, “A survey of mobile cloud
computing applications: Perspectives and challenges,” Wireless Personal
Communications, vol. 80, no. 4, Feb 2015, pp. 1607-1623.

M. Fazio et al., “Open Issues in Scheduling Microservices in the Cloud,”
in IEEE Cloud Computing, vol. 3, no. 5, sep 2016, pp. 81-88.

C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study,”
in Proceedings of the 6th International Conference on Cloud Computing
and Services Science - Volume 1, INSTICC. ScitePress, 2016, pp.
137-146.

T. Reeder, “What is serverless computing and why is it important —
iron.io,” https://goo.gl/0oDIcT, Jul 2016, (Accessed on 06/16/2017).

M. Roberts, “Serverless
http://martinfowler.com/articles/serverless.html,
on 06/16/2017).

F. Renna, J. Doyle, V. Giotsas, and Y. Andreopoulos, “Query Processing
For The Internet-of-Things: Coupling Of Device Energy Consumption
And Cloud Infrastructure Billing,” ArXiv e-prints, Feb. 2016.

M. Diaz, C. Martin, and B. Rubio, “State-of-the-art, challenges, and
open issues in the integration of internet of things and cloud computing,”
in Academic Press Ltd., vol. 67, no. C. Academic Press Ltd., May
2016, pp. 99-117.

I. Nakagawa, M. Hiji, and H. Esaki, “Dripcast - Server-less java
programming framework for billions of IoT devices,” Proceedings -
IEEE 38th Annual International Computers, Software and Applications
Conference Workshops, COMPSACW 2014, vol. 23, no. 4, 2014.

S. Nastic, S. Sehic, D.-H. Le, H.-L. Truong, and S. Dustdar, “Provi-
sioning software-defined iot cloud systems,” in Proceedings of the 2014
International Conference on Future Internet of Things and Cloud, ser.
FICLOUD ’14. IEEE Computer Society, 2014, pp. 288-295.

Y. Jararweh et al., “Sdiot: a software defined based internet of things
framework,” Journal of Ambient Intelligence and Humanized Comput-
ing, vol. 6, no. 4, 2015.

K. Lane, Overview of the backend as a service (BaaS) space. API
Evangelist, 2015.

E. Wolff, Microservices: Flexible Software Architecture.
Education, 2016.

J. Spillner and S. Dorodko, “Java Code Analysis and Transformation
into AWS Lambda Functions,” ArXiv e-prints, Feb. 2017.

J. Spillner, “Transformation of Python Applications into Function-as-a-
Service Deployments,” ArXiv e-prints, May 2017.

Apress, 2013, ch. 8, pp.

architectures,”

2016, (Accessed

Pearson

D. Rahmel, “Advanced joomla!” in Apress.
211-247.

S. Hendrickson et al., “Serverless computation with openlambda,” in
Proceedings of the 8th USENIX Conference on Hot Topics in Cloud
Computing, ser. HotCloud’16. USENIX Association, 2016, pp. 33-39.

M. Yan, P. Castro, P. Cheng, and V. Ishakian, “Building a chatbot with
serverless computing,” in Proceedings of the Ist International Workshop
on Mashups of Things and APIs, ser. MOTA *16. New York, NY, USA:
ACM, 2016, pp. 5:1-5:4.

P. Leitner, J. Cito, and E. Stckli, “Modelling and managing deployment
costs of microservice-based cloud applications,” in 2016 IEEE/ACM
9th International Conference on Utility and Cloud Computing (UCC),
Dec 2016, pp. 165-174.

J. Spillner, “Snafu: Function-as-a-Service (FaaS) Runtime Design and
Implementation,” ArXiv e-prints, Mar. 2017.

E. Jonas, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the Cloud:
Distributed Computing for the 99%,” ArXiv e-prints, Feb. 2017.

T. Hoff, “The serverless start-up - down withservers!”
http://highscalability.com/blog/2015/12/7/the-serverless-start-up-down-
with-servers.html, Dec 2015, (Accessed on 06/16/2017).

M. Villamizar et al., “Infrastructure cost comparison of running web
applications in the cloud using aws lambda and monolithic and mi-
croservice architectures,” in 2016 16th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid), May 2016,
pp. 179-182.

211

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

[26] M. Villamizar, O. Garcs, H. Castro, and M. Verano, “Evaluating
the monolithic and the microservice architecture pattern to deploy
web applications in the cloud,” in 2015 10th Computing Colombian
Conference (10CCC), Sept 2015, pp. 583-590.

[27] B. Wagner and A. Sood, “Economics of resilient cloud services,” in
2016 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), Aug 2016, pp. 368-374.

[28] 1. Baldini et al., “Cloud-native , event-based programming for mobile
applications,” 2016 IEEE/ACM International Conference on Mobile
Software Engineering and Systems, 2016, pp. 287-288.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6 212

