
FANTASIA: A Tool for Automatically Identifying Inconsistency in AngularJS MVC

Applications

Md Rakib Hossain Misu
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

email: bsse0516@iit.du.ac.bd

Kazi Sakib
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

email: sakib@iit.du.ac.bd

Abstract—AngularJS is prone to inconsistency issues because
of the abstract interactions between Document Object Model
(DOM) and JavaScript. It creates hidden bugs, and leads the
application to failure. It becomes acute when developers use
custom AngularJS directives for increasing code reusability and
maintainability. To resolve the inconsistency issues, a static code
analysis based approach FANTASIA is proposed. FANTASIA
first extracts Abstract Syntax Tree (AST) and DOM from the
AngularJS application’s MVC modules including its custom
directives. By traversing AST and DOM, next it finds the
defined identifiers along with the associated data types of those
identifiers. Finally, the extracted identifiers and data types are
mapped and compared using a string matching algorithm to
determine the consistency across the application. To evaluate
FANTASIA, 25 open source AngularJS applications are used
where 15 applications contain only MVC modules and rest of
the applications contain both MVC modules and custom direc-
tives. The experimental result shows that FANTASIA produces
overall 97.63% recall and 100% precision to correctly detect
inconsistency in those 15 applications similar to existing approach
AUREBESH. Interestingly, when custom directives are present,
FANTASIA outperforms with a significant increase of overall
96.66% recall and 100% precision comparing to 76.97% recall
and 100% precision of AUREBESH.

Keywords-JavaScript; MVC; Inconsistency; Static Analy-
sis.

I. INTRODUCTION

AngularJS is a JavaScript-based MVC framework used for
developing loosely coupled web applications, which are known
as Single Page Applications (SPA) [1]. It provides developers
the flexibility to separate business logic in several reusable
modules and components, such as model, view, controller,
directive, service, etc. However, AngularJS is still prone to
inconsistency issues because of wrong interaction between
DOM and JavaScript [2]. This wrong interaction occurs, as
AngularJS facilitates the application development by abstract-
ing the DOM API method call between the JavaScript and
HTML code.

AngularJS depends on the use of identifiers to represent
model variable(s) (mv) and controller function(s) (cf). To
represent the functionality, the identifiers of mv and cf should
be consistent in the view. Besides, in AngularJS, views consist
of various built-in directives, such as ng-if, ng-count [3]. To

use built-in directives, developers have to assign mv and cf to
these directives with a defined form, such as ng-if=”{mv}”,
along with specific data types. For example, ng-if directive
takes boolean type of mv and cf. So, mv and cf are used in ng-
if directive should be boolean type. Since JavaScript is loosely
typed dynamic programming language, the developers have to
keep in mind that, values assigned to mv and returned by cf,
should be consistent to their expected types. Inconsistencies
among these identifiers and the types, can potentially incur
significant loss in the functionality and performance. The
reason is that, the major functionalities of an application rely
on mv and cf.

AngularJS also supports the Do not Repeat Yourself (DRY)
feature [4]. It allows developers to create one directive and
reuse it anywhere within the entire application. Despite having
a lot of built-in directives, it also encourages the developers
to create custom directives to enhance the re-usability of the
code. Every custom directive has some specific properties that
define its own view, model and controller. Sometimes, it is also
used inside a view under a specific controller by following
a parent child relationship. While using custom directives,
inconsistency may arise not only within its own model, view
and controller, but also between its parent view and controller.
Unfortunately, developers do not get exceptions and warnings
when inconsistency issue occurs [5]. It becomes the worst
to find inconsistencies when an application contains multiple
models, views and controllers.

Since the usages of AngularJS MVC framework for client-
end application development are fairly new, there are few
papers addressing the inconsistency issues. Two state-of the
art works, TypeDevil [6] and AUREBESH [7] are proposed to
detect inconsistencies in JavaScript applications. TypeDevil is
capable of detecting inconsistency only within the JavaScript
source codes. It performs dynamic source code analysis to
detect data type inconsistency. On the contrary, AUREBESH
is also able to detect inconsistencies in JavaScript MVC
applications by performing static code analysis on both the
JavaScript and HTML code. However, these approaches are
not able to accurately identify inconsistencies in AngularJS
MVC applications. The reason is that TypeDevil only dynami-
cally analyzes the JavaScript source code instead of analyzing
both JavaScript and HTML source code. AUREBESH only

178Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

performs static source code analysis in MVC modules and
never analyzes the presence of custom directives in AngularJS
applications.

To resolve the inconsistency issues in AngularJS MVC
applications, a static code analysis based approach FANTASIA
is proposed. It first extracts Abstract Syntax Tree (AST) and
DOM by performing static code analysis among the modules,
such as model, view, controller and custom directive including
its associated files. Then using AST and DOM, it searches for
the identifiers that are used to represent mv and cf. The data
types of mv and return types of cf are also drawn by exploring
the AST nodes and DOM elements. Finally, to determine the
inconsistencies across application, identifiers and data types,
extracted from model and controllers are compared to those
identifiers and data types extracted from views.

In order to evaluate FANTASIA, 25 open source AngularJS
applications are used. Among these 25 applications, 15 appli-
cations contain MVC modules and rest of the 10 applications
contain both MVC modules and custom directives. From
experimental result analysis, it is observed that FANTASIA
performs accurate with overall 97.63% recall and 100% pre-
cision to find inconsistencies in 15 applications with MVC
modules, comparing to the existing approach AUREBESH
[7]. When custom directives are present, FANTASIA achieves
a significant overall 96.66% recall and 100% precision to
identify inconsistencies in 10 AngularJS MVC applications
that contain inconsistencies within both the MVC modules
and custom directives.

The remainder of this paper is structured as follows. Section
II describes the proposed approach for inconsistency detection
with a concise description of each step. Implementation, eval-
uation and result analysis are discussed in Section III. Section
IV deals with the existing techniques for fault and incon-
sistency detection in JavaScript applications. Finally, Section
V concludes the paper by summarizing the contribution and
possible future direction of this work.

II. PROPOSED APPROACH

To resolve the inconsistency issues, a static code analysis
based approach FANTASIA is proposed. An overview of the
proposed approach is depicted in Figure 1 as a block diagram.
From the block diagram, it is seen that there are 9 modules,
such as MVC Components and Directive Identifier (MCDI),
DOMExtractor (DMEx), DirectiveExtractor (DEx), ASTEx-
tractor (AEx), ViewExtractor (VEx), ModelExtractor (MEx),
ControllerExtractor (CEx), MVC Group Builder (MGB) and
Inconsistency Detector (InD) that work collaboratively in
several phases. TABLE I also represents the terms used for
describing the proposed approach. The modules are depended
on each other for taking input, providing output and giving
feedback. A brief description of each of the modules is
discussed in the following subsections.

A. MVC Components and Directive Identifier (MCDI)

MCDI module identifies and filters the MVC component
source files (except library files) based on the file names and

Figure 1. Block diagram of proposed approach.

module types. It is assumed that every module is written in a
single source file and the file name should be self descriptive
to figure which and what type of AngularJS module it is.
After filtering, the module makes a list of directive definition
files and extracts the application configuration file which is
responsible for defining the routes and the correspondent views
and controllers related to that routes. It provides the view and
controller file names that are related and responsible for each
route of the application. Using this information, a Primary
MVC Group (PMG) is made that contains a list of HTML code
for view file and JavaScript code for controller file in a form
of tuple <view HTML code, controller JavaScript code>.
Further, this group is used by the DMEx and AEx module
and the list of directive files is used by the DEx module.

B. DOM Extractor (DMEx)
DMEx module uses HTML code as input from PMG that is

provided by MCDI module. It also gets HTML source code
from the DEx module (shown in Figure 1). It is responsible for
transforming the HTML code into its DOM representations,
which is used for analyzing the HTML elements and attributes.
This module provides the extracted DOM to the VEx module
for further extracting the AngularJS built-in directives and
elements.

C. AST Extractor (AEx)
Similar to DEx, AEx module gets the input from PMG. It

also gets JavaScript code from DEx module. The responsibility
of AEx is to transform the JavaScript code into its AST
representation. It provides the AST to the ME and CEx
module. Those modules analyze the AST for further extracting
mv and cf.

D. View Extractor (VEx)
VEx module analyzes the DOM and produces a set of View

(V) objects. It extracts all the identifiers of mv and cf that are

179Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE I. LIST OF TERMS USED IN PROPOSED APPROACH

Term Descriptions Term Descriptions
MCDI MVC Components and

Directive Identifier
DMEx DOM Extractor

AEx AST Extractor VEx View Extractor
MEx Model Extractor CEx Controller Extractor
DEx Directive Extractor MGB MVC Group Builder
InD Inconsistency Detector M Model Object
V View Object C Controller Object
CD-M Model Object for Custom

Directives
CD-V View Object for Cus-

tom Directives
CD-C Controller Object for Cus-

tom Directives
PMG Primary MVC Group

UMG Updated MVC Group CMG Complete MVC
Group

used in the view. Generally, mv and cf are appeared as DOM
elements or attribute value of AngularJS built-in directives.
The attributes of AngularJS built-in directives accept a specific
type of value. So, the accepted type of these built-in directives
are also analyzed. Besides, VEx finds the presence of custom
directives that are used in the DOM and makes a list of custom
directives.

E. Model Extractor (MEx)

MEx takes AST as input from AEx module. It analyzes
the AST of controller files and produces a set of Model (M)
objects. It finds all the mv that are defined in the controller.
The mv which are used in the view are binded with a view
model variable (generally it is represented by $scope or vm).
To find the identifiers of mv, MEx looks for the left hand side
of the assignment expression. So, the identifiers are found as
the properties of view model variable. For getting the type
of mv, MEx considers the right hand side of the assignment
expression and infers the assigned type based on the AST
node (e.g., if the right hand side is StringLiteral node than
the inferred type is String). If the right hand expression is too
complex, the assigned type cannot be inferred. In this case,
the type is considered as complex for that identifier.

F. Controller Extractor (CEx)

Similar to MEx, CEx also receives AST from AEx module
and analyzes the AST of controller files and generates a set of
Controller (C) objects. It extracts the cf identifiers following
the same way described in MEx. However, to get the assigned
types for cf identifiers, the return type of each cf is considered.
Finally, the modules VEx, MEx and CEx generates the sets
of Models (M), Views (V) and Controllers (C) objects. Each
element of the set of M, V and C is considered as a tuple of
UMG in a form of <M,V,C> that is used by MGB module.

G. Directive Extractor (DEx)

DEx module gets a list of custom directive definition files
from MCDI module. Using the definition files, it extracts
directive type, related view and controller files that are respon-
sible for representing the functionality of that directive. The
view files are fed to the DMEx module to generate DOM. After
that, DOM is similarly extracted by the VEx module to create
a View object for that custom directive that is represented by

CD-V. It contains a list of mv and cf identifiers and types used
in the custom directive view. The controller file of that custom
directive is fed to the AEx module that also generates AST.
Next, this AST is extracted by the MEx module to produce a
Model object for that custom directive represented by CD-M.
The MEx extracts identifier and type of the mv. Similarly, CEx
generates a Controller object CD-C for that custom directive.
It extracts the identifier and return type of cf. Finally, DEx
module builds a list of Directive objects that contains the
related model, view and controller for each directive.

H. MVC Group Builder (MGB)

The module MGB receives UMG and gets a list of Directive
objects from the module DEx. It is responsible for building
CMG by adding some new tuple with UMG. For every element
of UMG, each directive is analyzed from the list of Directive
objects based on its type. At first, for each directive, an empty
tuple of Model M, View V and Controller C object is initialized
and the View object of the directive CD-V is assigned to it.
The reason is that the directive has its own view and it cannot
be inherited from the parent view. Next, for each directive
the type of the directive is checked. The type of a directive
is determined by its scope property. If the scope is false, it
refers that this directive does not manipulate the cf and mv of
its parent controller. It directly uses the cf and mv properties
from its parent controller to its view. So, the CD-M and CD-C
of that directive are directly assigned to the empty M and C. If
the scope is true, it means that this directive can prototypically
inherit and manipulate the cf and mv of its parent controller.
So, the collection of mv and cf used in both directive and its
parent controller are assigned to the M and C, respectively.
When the scope is isolated, it means that the mv and cf of
this directive are isolated from its parent controller. For such,
the directive’s CD-M and CD-C are assigned to the empty M
and and C, respectively. Finally, new tuple of <M,V,C> are
added to the UMG to form the CMG.

I. Inconsistency Detector (InD)

The module InD gets CMG from MGB and provides a list
of inconsistency. It mainly compares all the mv and cf among
the Model, Controller and View object of each tuple of CMG.
It is performed to identify the potential inconsistencies that
exist within each tuple. At first, it searches the inconsistencies
related to mv by iterating every mv that is used in the view and
controller. For all such mvs that are defined in the controller,
their identifiers are checked to see whether these also exists
and are defined to the corresponding view. The checking is
done based on string comparison. If it does not exist it means
either these mv are not used in the view or their identifiers are
inconsistent. So, there exists an identifier inconsistency and it
is included in the inconsistency list. However, if mv exists, next
the data type of the mv is checked into the view and controller.
If the data type of the mv is dissimilar, corresponding to
the view and controller, it means that a type inconsistency is
present that is also included in the inconsistency list. Following
the same process, inconsistencies in the cf are identified. It is

180Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

assumed that mv and cf with unknown and complex types are
matched with all types.

III. EVALUATION

This section deals with the evaluation of proposed approach.
A brief description of each aspect of evaluation is described
in the following subsection.

A. Implementation

Since Command Line Interface (CLI) tools are getting
popular for client-end application development, FANTASIA
[8] is implemented in the form of a CLI using JavaScript
programming language on top of Node.js framework. It is
available as an open source Node.js package that can eas-
ily be installed using Node.js package manager (nmp). For
identifying inconsistencies, developers have to run a command
called find-incons in the application’s base directory using the
command prompt. For each identified inconsistency, an error
message is shown containing the inconsistency type, file name
and the location of the code where the inconsistencies are
occurred. Tool demonstration of FANTASIA is available in
[8].

B. Experimental Dataset

In total, 25 AngularJS MVC applications are used. These
are chosen from a list of MVC applications mentioned in
AngularJS Git-Hub page [9]. The applications that were
chosen here were also used to evaluate the existing approach
AUREBESH. Based on the presence of inconsistencies in the
custom directives, these applications are categorized into two
classes. Among the 25 applications, 15 applications containing
MVC modules are categorized as Class A and rest of the 10
applications containing both MVC modules along with custom
directives are categorized as Class B.

C. Fault Injection Study

Similar to AUREBESH [7], the efficiency of FANTASIA
was measured by performing a fault injection study on the
experimental dataset. The injection was performed by ini-
tializing mutations in the applications. The mutations were
initialized in a way so that these could create inconsistencies
in those applications. Inconsistencies within the applications
depend on consistency properties. According to Frolin et al.
[7], JavaScript MVC applications are inconsistent if the appli-
cations do not satisfy one of the following four consistency
properties.

1) The controller and view can only use mv that are defined
in the model.

2) The view only uses cf that are defined in the controller.
3) The expected types of corresponding mv in the view

match the assigned types in the model or controller.
4) The expected and returned types of corresponding cf

match in the view and controller.
Based on the consistency properties, Frolin et al. introduced

10 types of mutations [7]. The description of each mutation
type is represented in TABLE III. Among these types, every

mutation type corresponds to a violation of the above 4
consistency properties. In this experiment, these 10 types of
mutations (mentioned in TABLE III) were also used. At first,
the mutations were injected into the source code of those
applications. After that, FANTASIA was run on the mutated
version of the applications and analyzed whether FANTASIA
could identify the inconsistencies initialized by the mutations.
If the inconsistencies were identified, the result of the injection
was noted as successful, otherwise failed. Finally, the numbers
of successful and failed detections were counted for measuring
precision and recall. For comparative analysis, AUREBESH
was also run on the mutated applications and counted the
number of successful and failed detections.

The results of identifying mutation type represent how
well FANTASIA can detect the violation of corresponding
consistency properties. For this study, at least 4 injections were
performed per mutation type that amounts 30 to 40 injections
in each application. It was noted that some mutation types
were not applicable for all applications. For example, it is
not mandatory that all controllers use the model variables.
For these types of specific case, some mutation types were
not considered. As a result, there were less than 40 injections
injected in some applications. The location of the mutated code
was chosen arbitrarily only if that line of code was applicable
for current mutation type.

D. Result

After running both FANTASIA and AURBESH on the
mutated version of Class A dataset, recall and precision are
calculated based on successful and failed detection. TABLE
II shows the fault injection study results over the Class
A dataset where TI refers to total injection, SD refers to
successful detection and FD refers to failed detection. As
TABLE II shows, FANTASIA is very accurate yielding to
an overall recall of 97.63% with 100% precision and gets
perfect recall in 11 out of 15 applications. From TABLE
II, it is also observed that existing approach AUREBESH
also performs accurately with an overall recall of 97.20%
with 100% precision and gets perfect recall in 11 out of 15
applications. So, both FANTASIA and AUREBESH perform
similarly for identifying inconsistencies in those applications
which contain inconsistencies only in MVC modules and not
in custom directives.

Again FANTASIA and AUREBESH both were run on
mutated version of Class B dataset to calculate the recall and
precision. TABLE IV shows the fault injection study results
over the Class B dataset. Here, FANTASIA also performs ac-
curately with an overall recall of 96.66% with 100% precision
and gets perfect recall in 5 out of 10 applications. However,
AUREBESH does not perform well with an overall recall of
76.97% and 100% precision with no perfect recall. The reason
for AUREBESH’s poor performances is that it never analyzes
the presence of custom directives in those applications. So,
it was unable to identify those inconsistencies which were
occurred within the custom directives. On the other hand,
FANTASIA analyzes the presence of custom directives and

181Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE II. COMPARATIVE RESULT BETWEEN FANTASIA AND AUREBESH ON CLASS A DATASET

Applications Application Category Size (LOC) TI FANTASIA AUREBESH
SD FD Recall(%) Precision(%) SD FD Recall(%) Precision(%)

Angular Tunes Music Player 185 35 35 0 100.00 100.00 35 0 100.00 100.00
Balance Projector Finance Tracker 511 40 34 6 85.00 100.00 33 7 82.05 100.00
Cafe Townsend Employee Tracker 452 40 40 0 100.00 100.00 40 0 100.00 100.00
Cryptography Encoder 523 40 40 0 100.00 100.00 40 0 100.00 100.00
Dematerializer Blogging 379 40 36 4 90.00 100.00 37 3 92.05 100.00
Dustr Template Compiler 493 40 40 0 100.00 100.00 40 0 100.00 100.00
ETuneBook Music Manager 5042 40 40 0 100.00 100.00 40 0 100.00 100.00
Flat Todo Todo Organizer 255 40 40 0 100.00 100.00 40 0 100.00 100.00
GQB Graph Traversal 1170 40 38 2 95.00 100.00 37 3 92.05 100.00
Hackynote Slide Maker 236 40 40 0 100.00 100.00 40 0 100.00 100.00
Kodigon Encoder 948 40 40 0 100.00 100.00 40 0 100.00 100.00
Memory Games Puzzle 181 37 35 2 94.59 100.00 34 3 91.89 100.00
Shortkeys Shortcut Maker 407 40 40 0 100.00 100.00 40 0 100.00 100.00
Sliding Puzzle Puzzle 608 34 34 0 100.00 100.00 34 0 100.00 100.00
TwitterSearch Search 357 40 40 0 100.00 100.00 40 0 100.00 100.00
Overall 11747 626 612 14 97.63 100.00 610 16 97.20 100.00

TABLE III. TYPES OF INJECTED FAULTS

No Description Property
1 Change the name of a mv used in line N of a view 1
2 Change the name of a mv used in line N of a

controller
1

3 For a particular mv used in line N of a view, remove
the declaration of that mv in a corresponding model

1

4 For a particular mv used in line N of a controller,
remove the declaration of that mv in a corresponding
model

1

5 Change the name of a cf used in line N of a view 2
6 For a particular cf used in line N of a view, remove

the declaration of that cf in a corresponding con-
troller

2

7 For a particular mv used in the view that expects a
certain type T1, change the declaration of that mv in
line N of a corresponding model so that the type is
changed to T2

3

8 For a particular mv used in the view that expects
a certain type T1 and declared in line N of a
corresponding model, change the expected type to
T2 by mutating the ng attribute name

3

9 For a particular cf used in the view that expects a
certain type T1, change the return value of that cf in
line N of the controller to a value of type T2

4

10 For a particular cf used in the view that expects a
certain type T1 and returns a value in line N of a
corresponding controller, change the expected type
to T2 by mutating the ng attribute name

4

able to identify the inconsistencies that are occurred within
the custom directives.

From TABLE II and TABLE IV, it is observed that both
FANTASIA and AURBESH attain 100% precision. The reason
is that there is no occurrence of getting false positive results for
successful and failed inconsistency identification. As, it is the
assumption that all applications are developed by following
proper coding convention, it prevents both approaches from
getting false positive results.

IV. RELATED WORK

Inconsistency occurs in JavaScript applications because of
wrong interaction between DOM and JavaScript code. As a
result, DOM-related faults and errors are partially responsible
for inconsistency issues. However, AngularJS has gradually
been developed over the last couple of years. Therefore, it

is considered to be a new area of research. A few works
have been found that directly discusses inconsistency issues
in AngularJS MVC applications. Among those works, several
studies [2][5][10][11] rigorously discuss DOM-related faults
and errors that occur in JavaScript applications. Moreover,
two recent studies [6][7] have addressed the inconsistency
issues in JavaScript application development. So, considering
all of those works, the knowledge domain is classified in
two categories, such as DOM Related Fault in JavaScript
and Inconsistency in JavaScript. A brief description of each
category is mentioned in the following subsections.

A. DOM Related Fault in JavaScript
Since AngularJS MVC framework contains both HTML

DOM and JavaScripts, DOM related errors and faults are
directly responsible for inconsistency issues. Several studies
have been conducted to analyze the behavior of DOM in
JavaScript applications, such as Forlin et al. performed an
empirical study [10] for identifying numerous errors and
faults in JavaScript based web applications. Both static and
dynamic source code analysis are performed in this study that
has identified different characteristics of JavaScripts faults.
Further, these characteristics of JavaScript faults are used
by Ocaizer et al. [11] to identify errors and faults during
JavaScript application development. They proposed an auto-
matic fault localization approach AUTOFLOX by analyzing
the JavaScript fault characteristics. By performing dynamic
backward program slicing, AUTOFLOX can localize faults
within the JavaScript based web applications. Besides, the
evaluation result of AUTOFLOX shows that about 79% of
reported JavaScript errors and faults are DOM related [11].

On the other hand, based on those results, Forlin et al. [2]
observed that almost 65% of JavaScript faults are DOM related
faults that occur because of the wrong interaction of JavaScript
code and DOM element using incorrect identifier. However,
in development phase, these located faults are needed to be
resolved. In order to resolve these faults, an automatic fault
repairing technique VEJOVIS was proposed by Forlin et al.
[5]. This technique includes the combination of both static
and dynamic code analysis with backward program slicing.
The outcome of this technique is the categorization of some

182Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE IV. COMPARATIVE RESULT BETWEEN FANTASIA AND AUREBESH ON CLASS B DATASET

Applications Application Category Size (LOC) TI FANTASIA AUREBESH
SD FD Recall(%) Precision(%) SD FD Recall(%) Precision(%)

Angular Qize Quiz Maker 523 36 36 0 100.00 100.00 30 6 83.33 100.00
Angular Table Component 327 35 35 0 100.00 100.00 30 5 85.71 100.00
Angular Ui-Grid Component 243 35 35 0 100.00 100.00 26 9 74.78 100.00
C3-Chart Librery 763 35 35 0 100.00 100.00 27 8 77.14 100.00
Color Chooser Component 134 30 30 0 100.00 100.00 23 7 76.66 100.00
Date Picker Component 278 40 37 3 92.20 100.00 30 10 75.00 100.00
Directives Lab Directive Example 412 40 39 1 97.50 100.00 31 9 77.50 100.00
GemStore2 Game 453 40 38 2 95.00 100.00 28 12 70.00 100.00
Responsive Slider UI Design 359 37 33 4 89.18 100.00 25 12 67.56 100.00
Text Editor Editor 192 40 37 3 92.50 100.00 33 7 82.50 100.00
Overall 3684 368 355 13 96.66 100.00 283 85 76.97 100.00

common types of faults. However, FANTASIA completely
differs from these works, as in these works non-MVC applica-
tions and frameworks are considered. These applications have
various architectural patterns compared to AngularJS MVC
framework. So, these works are not compatible to resolve
inconsistency issues in AngularJS MVC applications.

B. Inconsistency in JavaScript

Since, JavaScript is a dynamic programming language, it
does not provide compile-time warning if a program contains
identifier or data type inconsistencies [11]. Both of these
inconsistencies are responsible of creating hidden bugs and
failures. However, in a survey study, it is found that among
460 developers, 39% of those consider that silent failures
caused by identifier or type inconsistencies, are real prob-
lems during application development [12]. For identifying
type inconsistencies, Michael et al. proposed an approach
called TypeDevil [6] that can detect type inconsistencies by
performing dynamic analysis on JavaScript code. To evaluate
the approach, TypeDevil [6] was applied on JavaScript code
collected from various applications. The evaluation shows that
it can detect type consistency within the JavaScript files.

In order to detect inconsistency, an approach AUREBESH
[7] was proposed that can detect both the type and identifier
consistencies by performing static code analysis in JavaScript
MVC applications. To evaluate AUREBESH, a fault injection
study was conducted on 20 open source AngularJS applica-
tions considering to be representative of MVC applications.
The result of this study shows that AUREBESH can detect
inconsistencies and some real world bugs in those applications.

However, TypeDevil [6] cannot find inconsistency in Angu-
larJS MVC applications since to find type and identifier incon-
sistencies in MVC applications, both the controller JavaScript
and view HTML code should be analyzed. TypeDevil [6]
does not analyze the inconsistencies between the HTML and
JavaScript code rather it only analyzes the JavaScript code.
FANTASIA resolves this problem by performing static analy-
sis on both HTML and JavaScript code instead of performing
dynamic analysis only within JavaScript code. On the other
hand, while using custom directives in AngularJS applications,
AUREBESH [7] cannot detect inconsistencies because it does
not analyze the presence of custom directives. FANTASIA
also differs from AUREBESH as it considers the presence of
custom directives across the applications and identifies those

inconsistencies that occur within the custom directives and
MVC modules.

V. CONCLUSION AND FUTURE WORK

The presence of inconsistencies (e.g., identifier and type in-
consistency) in AngularJS applications produces hidden bugs,
which reduce the maintainability and readability of code.
During development, it is hard to identify inconsistencies
since JavaScript does not provide compile time warn if any
inconsistency occurs. Detecting inconsistency becomes more
difficult when developers use custom directives with MVC
modules. However, existing approach can only identify incon-
sistencies that occur in MVC modules omitting the presence
of custom directives. To resolve this issue, FANTASIA is
proposed that performs static code analysis across the applica-
tion and analyzed the presence of custom directives to detect
inconsistencies.

According to the result analysis, FANTASIA achieves an
overall 97.63% recall and 100% precision similar to existing
approach AUREBESH, to detect inconsistency in 15 applica-
tions that contain inconsistency in MVC modules. Comparing
to AUREBESH, it outperforms with an overall 96.66% recall
and 100% precision to detect inconsistency in 10 applications
containing inconsistency both in MVC modules and custom
directives. The reason for FANTASIA’s significant increase of
recall is analysis the presence of custom directives.

Incorporating FANTASIA with the existing tool AU-
REBESH, to detect inconsistency in other JavaScript MVC
frameworks (e.g., Ember.js), can be a future research scope.
As FANTASIA is only applicable to the primary version of
AngularJS framework, the future work is to make FANTASIA
compatible to the latest versions of AngularJS. Future scope
also includes to make FANTASIA compatible for TypeScript
or CoffeScript based MVC applications. Currently, the scope
of this proposed technique is to identify inconsistency only in
AngularJS MVC applications developed in JavaScript. How-
ever, in future this approach can be further used to automati-
cally remove and fix inconsistency in MVC applications.

REFERENCES

[1] V. Balasubramanee, C. Wimalasena, R. Singh, and M. Pierce, “Twitter
bootstrap and angularjs: Frontend frameworks to expedite science gate-
way development,” in 2013 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2013, pp. 1–1.

183Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

[2] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An empirical
study of client-side javascript bugs,” in 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.
IEEE, 2013, pp. 55–64.

[3] Angular, “Ng-if directive,” https://docs.angularjs.org/api/ng/directive/
ngIf, 2017, [Online], [Accessed 2017-06-15].

[4] AngularJS, “AngularJS.org,” https://angularjs.org/, 2017, [Online], [Ac-
cessed 2017-06-15].

[5] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Vejovis: suggesting
fixes for javascript faults,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 837–847.

[6] M. Pradel, P. Schuh, and K. Sen, “Typedevil: Dynamic type inconsis-
tency analysis for javascript,” in 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, vol. 1. IEEE, 2015, pp.
314–324.

[7] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Detecting incon-
sistencies in javascript mvc applications,” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 325–335.

[8] FANTASIA, “FANTASIA,” https://www.npmjs.com/package/
fantasia-inconsistency-detector, 2017, [Online], [Accessed 2017-
06-15].

[9] GitHub, “GitHub/AngularJS,” https://github.com/angular/angular.js,
2017, [Online], [Accessed 2017-06-15].

[10] F. S. Ocariza Jr, K. Pattabiraman, and B. Zorn, “Javascript errors in the
wild: An empirical study,” in Software Reliability Engineering (ISSRE),
2011 IEEE 22nd International Symposium on. IEEE, 2011, pp. 100–
109.

[11] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Autoflox: An
automatic fault localizer for client-side javascript,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and Valida-
tion. IEEE, 2012, pp. 31–40.

[12] M. Ramos, M. T. Valente, R. Terra, and G. Santos, “Angularjs in the
wild: a survey with 460 developers,” arXiv preprint arXiv:1608.02012,
2016.

184Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

