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Abstract—The concepts of modularity, abstraction, and 
encapsulation have been an integral part of software 
engineering for over four decades. However, their definitions 
and application vary between software development paradigms. 
In some cases, conflicting definitions exist for a single paradigm. 
This paper first defines the concept of a principle for software-
engineering, in general, and then provides a template for 
documenting principles so they can be easily referenced and 
taught. Next, it proposes initial unified definitions for 
modularity, abstraction, and encapsulation that are applicable 
to multiple programming paradigms.  It then shows that these 
unified definitions for modularity, abstraction, and 
encapsulation are non-redundant but complimentary of each 
other. Finally, it discusses future work for refining and 
validating these unified definitions through a series of empirical 
studies. 

Keywords-software engineering principles; modularity; 
encapsulation; abstraction.  

I. INTRODUCTION 
Ideally, software engineers aim to build quality products 

on time and within budget [1, p. 8], where a quality product is 
one that supports the required functionality and has 
appropriate levels of understandability, testability, 
maintainability, efficiency, reliability, security, extensibility, 
openness, interoperability, reusability, and other desirable 
characteristics. On the surface, different programming 
paradigms appear to embrace different principles for helping 
developers achieve these characteristics. However, there are 
more commonalities than dissimilarities among these 
principles and developers would benefit from more general, 
unified definitions, especially as mixed-paradigm software 
development becomes more prevalent. 

Object orientation (OO), which is currently the most 
common paradigm, places considerable importance on 
encapsulation and abstraction [2][3], but it also advocates 
modularity with low coupling and high cohesion [2][4]. 
Structural programming emphasizes modularization, but can 
be make use of control abstraction, certain kinds of data 
abstraction, and encapsulation.  Functional programming (FP) 
emphasizes modularity and encapsulation using pure 
functions that have no side-effects [5][6], but also benefits 
from control abstraction. Logic programming (LP) 
emphasizes behavior (rule) and data (predicate) abstraction, 
but can leverage modularity and encapsulation.  LP also takes 

advantage of control abstraction by hiding nearly all the 
underlying inference algorithm. 

The modularity, abstraction, and encapsulation (MAE) 
principles are beneficial to virtually every programming 
paradigm. Unfortunately, there are no generally accepted 
definitions for the MAE principles or agreement on their 
application and potential benefits. 

One problem is that software-engineering publications 
typically focus on a single paradigm, and if they define 
principles, do so using concepts and terms specific to that 
paradigm. Also, pressure to push the state-of-art forward and 
publish innovations encourages authors to reinvent or recast 
principles instead of adapting or generalizing existing work. 

A lack of general, unifying definitions has led to 
overlapping and sometimes conflicting ideas about design 
principles. Consider for example, the SOLID principles [7]-
[10], which are five design principles popular in object 
orientation (OO). Their definitions, which are specific to OO, 
have significant similarities with early work on the MAE 
principles, but differ in some subtle ways. Specifically, the 
first SOLID principle, called the Single Responsibility 
Principle (SRP), overlaps with the original notation of 
modularity for high cohesion but only deals with it at a class 
level [2, p. 54][11]. Similarly, the Open/Closed Principle 
overlaps with modularity for minimal coupling [2, p. 54], at 
least at a class-level. The five SOLID principles also overlap 
with themselves. For example, the Interface Segregation 
Principle can be re-cast as an application of SRP in the context 
of interface abstractions. 

Literature about design principles is sparser for some 
paradigms than others. For example, there is relatively little 
written about design principles for FP and LP compared to OO 
and SP. This does not mean, that design principles are less 
important in these paradigms, but that developers are expected 
to carry them over from more mainstream paradigms, like OO 
and SP. 

Problems caused by the lack of unified definitions for 
design principles is becoming more serious as new paradigms 
continue to emerge and programming languages evolve to 
support multiple paradigms. Java, C#, JavaScript, and C++, 
for example, now support mixed-paradigm approaches, where 
developers can use constructs from OO, FP, Aspect 
Orientation (AO), and Generic Programming (GP), and more, 
together within the same system [5][12]. 
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This paper makes three initial contributions towards 
addressing this problem. First, Section II clarifies the purpose 
of software-engineering principles, in general, and 
distinguishes them from “best practices”, idioms, and 
patterns. Section II also purposes a template for documenting 
principles that allows a principle’s definition to go beyond just 
communicating the underlying concepts. Specifically, it 
provides a basis for assessing of adherence to the principle and 
a foundation for teaching the principle to programmers. Next, 
using this template, Sections III-V propose drafts of 
paradigm-independent definitions for the MAE principles. 
There are undoubtedly other paradigm-independent design 
principles besides the MAE, but these three are a good starting 
point because of their non-redundant yet complimentary 
relationships with each other.  An explanation of these two 
relationships is given in Section VI and as another 
contribution of this paper. 

The work presented here is not about inventing or 
reinventing the concepts of modularity, abstraction, or 
encapsulation. Instead, it aims to synthesize existing 
knowledge into a simple, accessible form for software 
developers and software-engineering education. Although this 
paper presents three contributions towards meeting this 
objective, it is just the first step that provides 1) a starting point 
for formulating research questions related to software quality 
across multiple paradigms, 2) a foundation for designing and 
conducting empirical studies, and 3) a basis for eventually 
defining metrics for systematically assessing quality in mixed-
paradigm software systems. Section VII discusses these 
follow-on efforts in more detail, in addition to providing a 
summary of the contributions of this paper. 

II. DESIGN PRINCIPLES 
Before considering the MAE principles in detail and 

presenting unified definitions for them, it is necessary to first 
establish the meaning and purpose of software design 
principles and distinguish them from desirable characteristics, 
metrics, processes, best practices, patterns, idioms, and 
artifacts. This is important to reduce potential confusion, 
because existing literature uses a term, like “abstraction” to 
represent more than one of these ideas. For example, some 
authors define abstraction as the process or practice of 
isolating and distinguishing common features among objects 
[13]-[15]. Others define abstraction as software artifacts that 
specify conceptual boundaries between objects or types of 
objects [2, p. 38][16]. In this paper, we will define abstraction 
as a principle, and not as a process or artifact. 

The Merriam-Webster and Oxford dictionaries define a 
principle as 1) a truth or proposition that supports reasoning, 
2) a rule or code of conduct, or 3) an ingredient that imparts a 
characteristic quality (e.g., desirable characteristic) [17][18]. 
We specialize these definitions for software as follows: a 
software design principle is 1) a truth or proposition that 
supports reasoning about the desirable characteristics of a 
software system, 2) a rule for creating software with certain 
desirable characteristics, or 3) an aspect of software design 
that imparts certain desirable characteristics. In other words, a 
principle is a foundational concept (truth, proposition, rule, 
etc.) that leads to and supports reasoning about desirable 

characteristics, such as maintainability, efficiency, openness, 
reusability, etc. 

If some concept, P, is a good principle for achieving a set 
of desirable characteristics Q, then the degree to which a 
software engineer adheres to P should predicate the degree to 
which Q is present in the software artifacts. In other words, 
the presence of Q is the goal or purpose of P. Ideally, the 
presence of Q in artifacts should be detectable or measurable 
through metrics based on the P [19][20]. However, creating 
valid and reliable metrics for measuring desirable qualities has 
proven to be challenging. We believe that one reason for this 
is that the principles upon which they are supposed to be based 
are not yet sufficiently defined and details about their 
relationships to desirable characteristics are still lacking. 

Best practices are procedures or techniques that help 
developers adhere to principles without having to consider the 
details of a situation at a theoretical level. For example, 
consider the practices of “prefer aggregation over inheritance” 
and “program to an interface or abstract” [21][22]. By 
knowing and using these practices, a developer can improve 
modularity, abstraction, and encapsulation, without having to 
analyze in detail all the alternatives in terms of their resultant 
desirable characteristics. Unfortunately, best practices like 
these two tend to be specific to a programming paradigm or 
language. 

Patterns also help developers achieve desirable 
characteristics; they exemplify principles by providing proven 
solutions to reoccurring problems in specific contexts [23]. 
Similarly, an idiom can help developers adhere to a principle 
by providing a solution for expressing a certain algorithm or 
data structure in a specific programming language [24]. 

Although software design principles are themselves not 
desirable characteristics, practices, patterns, idioms, or 
artifacts, they are at the heart of software engineering and their 
definitions should give developers the means to 1) reason 
about design decisions, 2) assess whether or how well a design 
either conforms to a principle, and 3) balance choices between 
conflicting objectives and design alternatives. The latter is 
important because software engineers must often make 
choices that weaken one desirable characteristic in favor of 
strengthening another. For example, a developer may have to 
sacrifice some extensibility in favor of efficiency. 

Table I shows a template for capturing the definition of a 
software design principle in a way that accomplishes the three 
objectives listed above. As with practices, patterns, and 
idioms, a principle’s name must accurately express the nature 
of the concept, because that name will become part of a 
vocabulary. The essence of a principle’s definition is a short 
statement that aims to covey the fundamental concept at level 
that is understandable for most programmers and can be 
taught to beginning programmers. The essence should 
highlight the principles relationship to hoped-for desirable 
characteristics. 

The next element of the template is a section that describes 
practices for following the principle and criteria that can be 
used to determine if a software system or component adheres 
to the principles. Like the essence, the practices and criteria 
need to be paradigm-agnostic and written a level that is 
understandable for most programmers. 
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The next element is a section that describes costs or other 
factors associated with following the principle that can help 
developers decide when to violate a principle, in lieu of some 
other conflicting objective. It may also include notes about the 
consequences of not meeting following the suggested 
practices or meeting the adherence criteria. 

The last two elements of the template are optional, but 
serve to help developers apply a principle for a specific 
paradigm and to teach the principle to new programmers. 
Naturally, the knowledge captured in these two elements will 
be paradigm specific and could refer to a wide range of 
artifacts, like source code, build scripts, hyper-text, style 
sheets, and configuration files. 

III. MODULARITY 
Over the last 50 years, many respected authors have 

addressed the topic of modularity or modularization, which is 
the process of trying to achieve good modularity. One of the 
first was David Parnas, who, in 1972, outlined criteria for 
decomposing software into modules such that individual 
design decisions could be hidden in specific components [25]. 
His landmark paper set the stage for other research on using 
modularization to manage complexity [26]-[28]. 

These early works illuminated an important facet of good 
modularity, namely that a decision design, particularly one 
that is likely to change, should be isolated in one software 
component. We call this rule for modularity “localization of 
design decisions”. By itself, this rule does not prescribe where 
the implementation of design decision should be placed, just 
that it should not be replicated or spread across multiple 
components. Failure to follow this rule leads to the “Duplicate 
Code” smell [29], which in turn can reduce maintainability. 

Two other propositions or rules that are frequently 
associated with modularity are low coupling and high 
cohesion [4][30]-[32]. Low coupling exists when each 
component of a system is free of unnecessary dependencies 
(explicit or implied) on other components. Although coupling 
was first defined for SP, other definitions have been created 
for OO and AO [30][33]. It has even been applied to LP [34]. 
Cohesion is the degree to which the elements of one 
component relate to each other or the component’s primary 
responsibility [31]. Ideally, each component should have a 
single responsibility, as advocated by SRP [7]. Like coupling, 

definitions for cohesion have been proposed in multiple 
paradigms [35]-[37]. 

Grady Booch said that the objective of modularization is 
“to build modules that are cohesive (by grouping logically 
related abstractions) and loosely coupled (by minimizing the 
dependencies among modules)” [2, p. 54]. It is widely 
believed that achieving low coupling and high cohesion 
results in software programs that are more understandable, 
testable, maintainable, reliable, secure, extensible, and 
reusable. It is also believed that they will avoid common code 
smells, like Long Method, Large Class, Long Parameter List, 
Feature Envy, and Inappropriate Intimacy [29][38]. 

Another facet of modularity deals with how far away from 
some component, C, a developer must look to reason about 
the functionality of C, particularly in preparation for making 
corrections or extensions. The component C has modular 
reasoning if a developer only needs to examine its 
implementation, public abstraction (e.g., its interface), and the 
public abstractions of referenced components [39]. Extended 
modular reasoning is a looser form of modularity, where 
developers also need to examine the internal details of 
referenced components [39]. Global reasoning is the loosest 
form of modularity, where developers may need to examine 
some other component in the system to reason about C [39]. 
A system comprised primarily of components with modular 
reasoning or extended modular reasoning is considered better 
than those with lots of components that require global 
reasoning. Some paradigms try to minimize global reasoning 
by introducing constructs that encourage the localization of 
certain design decisions, e.g., interfaces for responsibilities in 
OO and aspects for crosscutting concerns in AO. 

Below is a definition for modularity, following the 
template given in Section II. This definition addresses the 
issues discussed above and is applicable to multiple 
programming paradigms. Due to the space limitations of this 
paper, the paradigm notes are limited and detailed examples 
are not show. 

A. Essence 
Modularity exists in a software system when it is 

comprised of loosely coupled and cohesive components that 
isolate each significant or changeable design decision in one 
component and ensure that related ideas are as close as 
possible. Modularity can improve understandability, 
testability maintainability, reliability, security, extensibility, 
and reuse. It can also help with collaboration during the 
software development process by outlining loosely coupled 
work units [2, p. 54]. 

B. Practices and Criteria 
1) Localization of design decisions: Design decisions are 

identified and prioritized by significance and likelihood for 
future change. In a system with localization of design 
decisions, every significant or changeable decision is 
implemented in one component. 

2) High cohesion: When making design decisions, a 
developer considers all the responsibilities of a given 
component and tries to ensure that there is just one or that 
responsibilities are all closely related. In a system with high 

TABLE I. PRINCIPLE-DEFINITION TEMPLATE 

Name The name of the principle 
Essence A statement of the truth, proposition, or rule 

embodied in the principle and its relationship 
to hoped-for desirable characteristics 

Practices and 
Criteria 

Processes or criteria that, if followed, should 
help the developer adhere to the principle and 
lead to the hoped-for desirable characteristics 

Tradeoffs Factors that can help a developer decision 
when to go against a principle, in lieu of a 
conflicting objective. These factors may include 
the consequences of not meeting the criteria or 
common tradeoffs 

Paradigm Notes Notes about applying the principle in various 
paradigms 

Examples Good and poor examples in different 
paradigms 
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cohesion, every component has one primary responsibility or 
reason to change. Component’s primary responsibility may be 
a high level, when the component is an aggregate or when it 
directs behaviors in other components. 

3) Low coupling: When making design decisions, a 
developer aims to minimize the degree and number of 
dependencies (explicit or hidden) between components. In a 
system with low coupling, the components are free of hidden 
dependent and unnecessary explicit dependencies. Also, 
explicit dependencies are directly visible in the code, e.g., 
data-type references and function calls. 

4) Modular reasoning: Developers should give 
preference to decompositions with modular reasoning over 
extended modular reasoning, and to extended modular 
reasoning over global reasoning. A system has modular 
reasoning if developers can understand the details of a 
component by examining only its implementation, public 
abstraction, and the public abstractions of referenced 
components. 

C. Tradeoffs 
Localization of design decisions and high cohesion can 

lead to many fine grain components. Although these help with 
testability, extensibility, and reuse, it can sometimes hinder 
readability. One common solution is to package small, related 
components into aggregation components. 

Although modularity by itself will not guarantee 
understandability, testability maintainability, reliability, 
security, extensibility, and reuse, the lack modularity will 
compromise these desirable characteristics.  Adherence or 
violation of the modularity principles typically affects 
multiple components.  For example, if a design decision is not 
localized, then it can comprise the maintainability of every 
component that deals with that design decision. 

D. Paradigm Notes 
Only snippets of the paradigm notes from the full principle 

definition are shown here. 
For OO, packages, classes, and methods are the primary 

types of components that developers need to work with when 
modularizing, but they may also consider other types of 
artifacts like build scripts, configuration files, and style sheets. 
Composite components, like packages, often have multiple 
responsibilities, but those responsibilities should be cohesive 
as described above in practices and criteria section. 

For FP, the components are primarily functions, but could 
also include other artifacts like build scripts. By definition, a 
pure function in FP only depends on values that are passed in 
as input parameters, so developers can minimize coupling by 
ensuring that a function’s parameters represent nothing than 
exactly what the function needs. 

For LP, the components are primarily predicates, rules, 
and facts.  Modularity is achieved by doing three things. First, 
developers must ensure every predicate represents a single 
idea or responsibility.  In other words, every predicate should 
be highly cohesive. Second, every interesting or potentially 
changeable decision decisions need to be localized.  This is 
done by defining a predicate and set of rules for each design 
decision. 

IV. ABSTRACTION 
From a process perspective, abstraction is the act of 

bringing certain details to the forefront while suppressing all 
others. John Guttag said that “the essence of abstractions is 
preserving information that is relevant in a given context, and 
forgetting information that is irrelevant in that context” [40]. 
This is something that most humans learn naturally as part of 
their cognitive and social development, in conjunction with 
learning to think conceptually and symbolically [41]. 

Nevertheless, it is interesting that a significant percentage 
of computer science students, and by extension software 
engineers, struggle with creating good software abstractions 
[15]. Perhaps, this is because creating good software 
abstractions are much harder to create than everyday 
abstractions. Software abstraction requires developers to sift 
through large and diverse collections of details about legacy 
systems, current and future requirements, existing and 
emerging technologies, tool-stack idiosyncrasies, work 
allocation nuances, and more, and then determine the most 
salient and distinguishing concepts. Fittingly, Abbott et al. 
described an abstraction as the “reification and 
conceptualization of a distinction” [13]. 

From an artifact perspective, every software component 
has an abstraction, independent of whether the developer 
thought about or declared it explicitly. A component’s 
abstraction is everything about the component that is visible 
externally. Examples of common elements that contribute to 
component abstractions include descriptive or identifying 
labels like function names, class names, predicate names, and 
CSS style names; the public data members and methods of 
classes; the parameters of a function or method; meta-data 
annotations; and much more. None of these elements alone 
can represent a complete abstraction for the component to 
which they belong. A component’s full abstraction consists of 
everything that other components might explicitly or 
implicitly depend on. Ideally, a full abstraction should be 
programmatically declared or documented, so it is readily 
accessible to developers and other components. However, this 
is rarely the case. Instead, components typically end up with 
leaky abstractions [42]. One reason for this is that developers 
often do not take the time to document all external discernable 
characteristics, like performance properties and side effects. 
Other sources of leaky abstractions are incomplete thinking, 
design errors, and implementation bugs that do not 
immediately contradict required functionality or exhibit 
damaging characteristics. Overtime, other components can 
come to depend on those erroneous characteristics. Then, 
when the original problems are corrected, all the components 
that depended on the erroneous characteristics fail. 

Another potential problem is too much abstraction. This 
occurs when a component’s abstraction does not expose all 
elements that others need to use or the abstraction does not 
provide sufficient parameterization for the elements that need 
to be customizable. These kinds of problem lead to lack of 
flexibility, which in turn leads to sloppy hacks that can 
compromise the overall quality of a system. 

Below is a simple definition for the abstraction principle 
that can help developers capture and communicate meaningful 
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abstractions without leakage or over abstraction. The 
definition is sufficiently broad to cover control, function, 
behavior, and data abstraction. Note that the abstraction 
principle by itself does not address the placement or 
organization of design decisions, i.e., the decomposition of a 
system into components. The modularity principle guides 
decomposition and refactoring. Instead, the abstraction 
principle focuses on exposing and communicating the right 
aspects of a component, namely those that others will need to 
depend on. 

A. Essence 
For each component, there is an explicit and clear 

declaration of the component’s accessible features or 
functionality. Depending on the paradigm and programming 
language, this declaration may be part of the source code, meta 
data, or documentation.  The exposed features and 
functionality should be no more and no less than what other 
components may need or depend on. 

Adherence to the abstraction principle can improve 
understandability, testability, maintainability, and reusability. 
It can also allow developers to follow modularity more 
effectively, because it will bring to light weakness with 
localization of design decisions, unnecessary coupling, and 
low cohesion. 

B. Practices and Criteria 
1) Meaningful labels and identifiers: A system has 

meaningful labels and identifiers, when each one expresses 
the essence and distinguishing aspect(s) of its associated 
component or element. 

2) Context-aware labels and identifiers: This exists when 
the label or identifier for a component does not contain 
redundant information that can be inferred from the 
component’s context or scope. For example, a method called 
GetFirstName in a Person class makes for better abstraction 
than GetPersonFirstName, because the context of person can 
be derived from the class name. 

3) Abstraction completeness: Whenever possible, all 
externally visible characteristics for a component are 
explicitly declared as part of the component’s definition, 
implementation, or meta data. When that is not possible, 
documentation must explain these characteristics clearly and 
concisely, and the closer document is to the component’s 
implementation, the better. 

4) Abstraction sufficiency: This exists when all the 
elements of a component that should be visible to outside 
components are exposed through the component’s 
abstraction. 

C. Tradeoffs 
Not following the practices and criteria listed above can 

result in the loss of the hoped-for desirable characteristics in 
portion to the degree and amount of non-adherence. 

D. Paradigm Notes 
Only snippets from the notes for LP are shown here to give 

the reader a sense of what this part of the full definition 
contains.) As mentioned, the primary components in LP are 

predicates, rules, and facts.  The abstractions for these 
components expose the “logic” of system while hiding most 
of its control aspects, namely the process for drawing 
conclusions or deductions.  Predicates represent relations 
from the problem domain or design decision.  Given a 
predicate, all the rules with the predicate in their heads and 
facts stated with that predicate form another kind of higher 
level abstraction in LP.  One of these abstractions exposes all 
that is known about a relation or decision. 

The abstraction for a predicate is comprised of a name and 
some number of parameters. A developer should choose a 
name that expresses the predicate’s essence clearly, concisely, 
and accurately.  Doing so not only improves understandability 
from an abstraction perspective, it helps with modular 
reasoning, which in turn contributes to better modularity. 
Facts and rules are typically given labels in LP, but can be 
grouped together into higher level packages to form higher 
level abstractions.  

V.  ENCAPSULATION 
Encapsulation is typically equated with OO, but it is not 

unique to OO nor did it originate with OO. In fact, many old 
devices, like mechanical clocks from the middle ages, are good 
examples of encapsulation. All their implementation details, 
e.g., the time keeping mechanisms, are hidden behind a clock 
face in a sealed container. 

In English, encapsulation means to enclose something 
inside a capsule or container [43]. In other words, it involves 
two things: the thing is being enclosed and the enclosure. In 
physical systems, like a train station that needs a clock, the 
choices for enclosures are relatively limited compared to those 
available in software systems, where developers have total 
control over the system’s decomposition. As described in 
Section III, modularity can guide a developer in making good 
choices for the components, i.e., enclosures, such that each has 
a cohesive purpose and is loosely coupled to others. 
Abstraction, as discussed in Section IV, can help developers 
communicate the essence of component and expose only 
external characteristics. The principle of encapsulation can 
then help developers isolate or hide the internal characteristics 
of a component so others do not accidently become dependent 
on them. 

Unfortunately, the close relationship among encapsulation, 
abstraction, and modularity has led to some ambiguity in use 
of these terms.  This is particularly true for encapsulation.  The 
various definitions for encapsulation in software engineering 
literature can be grouped into three categories. The first 
category includes definition that equate encapsulation to the 
bundling of data with operations on that data to create Abstract 
Data Types [44][45]. These definitions take either a process or 
artifact perspective, but typically lack a proposition, rule, or 
practice that qualify them as principle definitions. Also, these 
definitions sometimes overshadow or ignore modularity and its 
associated criteria like localization of design decisions, low 
coupling, high cohesion, and modular reasoning. 

The second category includes definitions that represent 
encapsulation as a process or technique for hiding decisions 
behind logical barriers, preventing outsiders from modifying or 
even viewing the implementation details of components. This 
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category of encapsulation definitions stems from work on 
information hiding, which is the dual of abstraction. It has 
given rise to access-restricting language constructs, such as the 
private and protected modifiers in class-based languages. 
Although definitions of this category are valuable by 
themselves, they do not capture encapsulation’s full potential. 

In the third category, definitions explain encapsulation as a 
process for organizing components so the implementation 
details of one component can be modified without causing a 
ripple effect to other components [46]. These definitions focus 
on the minimization of inter-component dependencies, i.e., 
coupling. By themselves, these definitions miss other 
important aspects of encapsulation and blur it with 
modularization. 

There are many documented “best practices” that experts 
believe can help programmers achieve good encapsulations. 
For example, in C#, experts believe that the use of auto-
implemented properties is much better than public data 
members because they provide for stronger barrier between the 
abstraction and implementation details [47]. Unfortunately, 
such “best practices” tend to be language or paradigm specific. 

As mentioned earlier, a design principle must be a truth, 
proposition, rule, or practice that yields desirable qualities. 
Below is a definition for encapsulation that aims to comply 
with this requirement for principles and can guide a developer 
achieve good encapsulation, independent developer’s 
adherence to the principles of modularity and abstraction. 

A. Essence 
Ensure that the private implementation details (i.e., the 

internal characteristics) of a component are insulated so they 
cannot be accessed or modified by other components. Doing 
so will lead to better testability, maintainability, and 
reliability. It will also help with a clear separation of concerns 
and avoid accidental coupling. 

B. Practices and Criteria 
1) Conceptual barriers: For each component, a developer 

should identify the internal structures, behaviors, procedures, 
and definitions of that component and ensure that they are 
protected behind conceptual barriers. More specifically, 
developers should try to identify the minimum required scope 
for each internal element. For example, in OO, if a data 
member is only used within the scope invocations for a single 
method, then that data member should be refactored to a local 
variable of the method. 

2) Programmatic barriers: Developers should ensure that 
the modifiability and visibility of every internal element is 
programmatically restricted to the desired scope. Developers 
should leverage the available features of the chosen 
programming language, whenever possible. 

3) Usage barriers: If there are internal elements that 
cannot be isolated programmatically, then document 
appropriate rules for correct usage of the component, so 
developers can avoid accidental violations of the intended 
encapsulation. 

C. Tradeoffs 
Failure to protect a component’s internal characteristics 

from other components opens the doors for abstraction 
leakage and hidden dependencies, which can damage 
testability, maintainability, and reliability in surreptitious 
ways. In cases where programmers are tempted to weaken the 
encapsulation of some element in a component, like make a 
data member in a class definition public, they could at least 
document the intended usage to minimize the formation of 
accidental hidden dependencies. 

D. Paradigm Notes 
Only a few snippets of the full paradigm notes are shown 

here. The mechanisms for achieving encapsulation vary 
greatly among paradigms and programming languages.  For 
FP in compiled languages, functions can be strongly 
encapsulated behind their declarations. This is true even for 
anonymous function.  But, for interpretative languages that 
support FP, functions are just other forms of data and the 
decisions they encapsulate may be externally visible and 
modifiable.  In those cases, developers need to document 
what others may and may not access or change. 

For OO and typed languages, developers can restrict the 
scope for each element to the smallest scope within which the 
element is used.  Data members, for example, are typically 
private and made accessible only through methods.  Some 
languages provide convenience short hands for getter and 
setter methods to help programming adhere to this best 
practice. Only methods that need to be used by other 
components should be public.  Also, developers can use 
package-level scoping to restrict access to public classes or 
method that are only needed within a package. 

VI. THE NON-REDUNDANCY AND COMPLIMENTARY 
NATURE OF THE MAE PRINCIPLES 

To be effective for multiple paradigms and for the long-
term advancement of software engineering, it is important for 
general principles to be non-redundant with each other in two 
ways: 1) no general principle can be a special case of or 
subsumed by another principle or combination of principles 
and 2) developers should be able to choose to follow one 
principle but not the others. 

The case for MAE principles meeting the first is condition 
is relatively straight forward. The essence of modularity deals 
with the decomposition of a system into components. Neither 
of the other two principles prescribe guidelines for organizing 
a system into modules. So, modularity cannot be subsumed by 
abstraction or encapsulation, and conversely. Abstraction and 
encapsulation both apply to individual components, which 
from an artifact perspective, can be thought of as “abstractions” 
and “encapsulations.” However, abstraction and encapsulation 
from a principle perspective are fundamentally different from 
each other. In fact, from a principle perspective, they are 
approximate duals of each other. Abstraction guides a 
developer in exposing just the right elements of a component 
so it is easy to understand and use. Encapsulation guides a 
developer in hiding internal design decisions so other 
components cannot intentionally or accidentally depend on 
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them. Abstraction cannot be recast or explained as a special 
type, variation, or subpart of encapsulation. Similarly, 
encapsulation cannot be fully explained in terms of just 
abstraction. 

 The satisfaction of the second condition for non-
redundancy can be shown using a simple example plus three 
variations, where each one illustrates adherence to one 
principle but not the others.  The example, shown in Figure 1, 
consists of two classes: Line and Point, where the Point class 
represents movable points in a 2D coordinate space and the 
Line class represents lines comprised of two points and that 
know how to compute their own lengths. Fig. 1 shows an 
implementation that of this simple system that has good 
modularity, abstraction, and encapsulation according to the 
definition given in Sections III-V. 

In the first variation (see Fig. 2), the designs decisions are 
still localized, the classes still have low coupling and high 
cohesion, and they support modular reasoning.  In other words, 
the system’s decomposition has good modularity. However, 
the system has poor abstraction or encapsulation, caused 
unnecessary exposure of the internal design decisions and by 
poor identifiers, which are either do not communicate the true 
essence of the elements. Of course, there could be other ways 
that the abstraction and encapsulation could be degraded, but 

the purpose of this example is to simply show that modularity 
can exist without abstraction and encapsulation.  

In the second variation (see Fig. 3), the Line and Point 
classes have good abstractions, but lack modularity and 
encapsulation. Specifically, the class definition expose the 
functionality that other components need to use, with sufficient 
flexibility.  However, the decision for calculating the distance 
between two points is not localized, which goes against the 
modularity principle, and the data members in both classes are 
public, which violates the intended encapsulation. 

A third variation with good encapsulation but poor 
modularity and abstraction would be an implementation that 
had the poor names, i.e., poor abstraction, from the first 
variation plus the lack of localization of decision designs, i.e., 
poor modularity, from the second variation.  

These three variations show that it is possible for a 
developer to apply each of the three MAE principles, 
independently of each other.  In fact, there may be some special 
circumstances where this is exactly what a developer needs to 
do to meet external requirements or adjust for limitations of a 
programming language or framework.  However, such cases 
should be rare. 

Although the MAE principles are non-redundant, they 
complement each other nicely. In other words, adherence to 
one encourages, but does not require, adherence to the others. 
Specifically, adhering to modularity will set the stage for 
adherence both abstraction and encapsulation, because 
modularity brings to light what the components need to know 
about each other and which the design decisions need to be 

public class Line { 
  private Point point1; 
  private Point point2; 
 
  public Line(Point point1, Point point2) { 
      this.point1 = point1; 
      this.point2 = point2; 
  } 
 
  public double ComputeLength() { /* .. */ } 
} 
 
public class Point { 
  private double x, y; 
 
  public Point(double x, double y) { 
    this.x = x; this.y = y; } 
 
  public double getX() { return x; } 
  public void moveX(double deltaX) { x += deltaX;} 
  public double getY() { return y; } 
  public void moveY(double deltaY) { y += deltaY;} 
} 

Figure 1.  A simple example implementation with good modularity, 
abstraction, and encapsulation. 

public class Line { 
  public XY point1; 
  public XY point2; 
  public Line(XY point1, XY point2) { /* … / } 
  public double Calc() { /* Compute length … */ } 
} 
 
public class XY { 
  public double x, y; 
  public XY(double x, double y) { /* … / } 
} 

Figure 2. A simple example implement with good modularity, but poor 
abstraction and encapsulation. 

public class Line { 
  public Point point1; 
  public Point point2; 
 
  public Line(Point point1, Point point2) {/* … */} 
 
  public double ComputeLength() 
  { 
    return Math.sqrt(Math.pow(point2.getX() – 
                              point1.getX(), 2) + 
                     Math.pow(point2.getY() – 
                              point1.getY(), 2)); 
  } 
} 
 
public class Point { 
  public double x, y; 
 
  public Point(double x, double y) { /* … *. } 
 
  public double getX() { return x; } 
  public void moveX(double deltaX) { x += deltaX;} 
  public double getY() { return y; } 
  public void moveY(double deltaY) { y += deltaY;} 
 
  public double ComputeDistance(Point otherPoint) 
  { 
    return Math.sqrt(Math.pow(otherPoint.x - x, 2) + 
                     Math.pow(otherPoint.x - y, 2)); 
  } 
} 
Figure 3. A simple example implementation with good abstraction, but 

poor modularity and encapsulation. 
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encapsulated. Likewise, abstraction can lead to better 
understanding of the inter-component couplings and therefore 
better modularization. Also, elements that are not part of a 
component’s abstraction are candidates for encapsulation. 
Finally, doing encapsulation will act as a double check and 
balance for both modularization and abstraction. 

VII. SUMMARY AND FUTURE WORK 
This paper has explained the purpose of design principles, 

in general, and provided a template for establishing working 
definitions that can help with teaching the principles to 
software developers, assessing adherence, and pursuing 
research questions. This paper then provided an overview of 
existing ideas related to modularity, abstraction, and 
encapsulation and unifying them into initial paradigm-
independent definitions. Finally, it showed that these principles 
are non-redundant and complimentary, in the sense that no 
combination of two could replace the third and that adherence 
to one encourage adherence to the others. 

The work reported in this paper is just one step forward in 
a larger effort.  Our next step is to formulate research questions 
related the application of MAE principles in mixed-paradigm 
environments and then setup concrete empirical studies to 
explore those questions.  Below is a sampling of the research 
questions that we hope to pursue soon: 

 
• When using OO together with LP, what kinds of 

functionality or responsibility are best handled using LP? 
• When using OO with LP, FP, or GP, is it best to design 

the overall architecture using an OO approach and 
encapsulate specific responsibilities in LP-based, FP-
based, or GP-based components? If so, why and what 
kinds of components are best suited for LP, FP, and GP? 

• What kinds of responsibilities are best encapsulated in 
aspects when using AO with OO? 

• When using FP with OO, how can developer know if 
high-order functions are following the MAE principles? 

 
After exploring these and other research questions, we 

believe that another important step would be to explore 
metrics for systematically assessing quality in mixed-
paradigm software systems. The details of any given metric 
may end up being platform dependent. However, if there were 
a suite of metrics based on a unified principle definition, then 
the metrics might yield measurements that are comparable 
across software components, even when those components are 
implemented with different languages or paradigms. 

Finally, our plans for future work include investigations 
into other design principles beyond MAE. For example, we 
hope to unify definitions for classification and generalization/ 
specialization.  Although these principles are heavily used in 
OO, they can apply to other paradigms as well. 

Overall, the effort to unify principle definitions is important 
as programming languages continue to expand to support 
multi-paradigm software development. This effort will require 
input from many different sources and involve a wide range of 
subfields within software engineering. To this end, we 
welcome and encourage collaboration from all who are 

interested in creating a stronger foundation for software 
methods, teaching software engineering, improving 
development tools, or assessing software quality. 
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