
Unifying Definitions for Modularity, Abstraction, and Encapsulation as a Step
Toward Foundational Multi-Paradigm Software Engineering Principles

Stephen W. Clyde
Computer Science Department

Utah State University
Logan, Utah, USA

email: stephen.clyde@usu.edu

Jorge Edison Lascano
Departamento de Ciencias de la Computación

Universidad de las Fuerzas Armadas ESPE
Sangolquí, Ecuador

email: edison_lascano@yahoo.com

Abstract—The concepts of modularity, abstraction, and
encapsulation have been an integral part of software
engineering for over four decades. However, their definitions
and application vary between software development paradigms.
In some cases, conflicting definitions exist for a single paradigm.
This paper first defines the concept of a principle for software-
engineering, in general, and then provides a template for
documenting principles so they can be easily referenced and
taught. Next, it proposes initial unified definitions for
modularity, abstraction, and encapsulation that are applicable
to multiple programming paradigms. It then shows that these
unified definitions for modularity, abstraction, and
encapsulation are non-redundant but complimentary of each
other. Finally, it discusses future work for refining and
validating these unified definitions through a series of empirical
studies.

Keywords-software engineering principles; modularity;
encapsulation; abstraction.

I. INTRODUCTION
Ideally, software engineers aim to build quality products

on time and within budget [1, p. 8], where a quality product is
one that supports the required functionality and has
appropriate levels of understandability, testability,
maintainability, efficiency, reliability, security, extensibility,
openness, interoperability, reusability, and other desirable
characteristics. On the surface, different programming
paradigms appear to embrace different principles for helping
developers achieve these characteristics. However, there are
more commonalities than dissimilarities among these
principles and developers would benefit from more general,
unified definitions, especially as mixed-paradigm software
development becomes more prevalent.

Object orientation (OO), which is currently the most
common paradigm, places considerable importance on
encapsulation and abstraction [2][3], but it also advocates
modularity with low coupling and high cohesion [2][4].
Structural programming emphasizes modularization, but can
be make use of control abstraction, certain kinds of data
abstraction, and encapsulation. Functional programming (FP)
emphasizes modularity and encapsulation using pure
functions that have no side-effects [5][6], but also benefits
from control abstraction. Logic programming (LP)
emphasizes behavior (rule) and data (predicate) abstraction,
but can leverage modularity and encapsulation. LP also takes

advantage of control abstraction by hiding nearly all the
underlying inference algorithm.

The modularity, abstraction, and encapsulation (MAE)
principles are beneficial to virtually every programming
paradigm. Unfortunately, there are no generally accepted
definitions for the MAE principles or agreement on their
application and potential benefits.

One problem is that software-engineering publications
typically focus on a single paradigm, and if they define
principles, do so using concepts and terms specific to that
paradigm. Also, pressure to push the state-of-art forward and
publish innovations encourages authors to reinvent or recast
principles instead of adapting or generalizing existing work.

A lack of general, unifying definitions has led to
overlapping and sometimes conflicting ideas about design
principles. Consider for example, the SOLID principles [7]-
[10], which are five design principles popular in object
orientation (OO). Their definitions, which are specific to OO,
have significant similarities with early work on the MAE
principles, but differ in some subtle ways. Specifically, the
first SOLID principle, called the Single Responsibility
Principle (SRP), overlaps with the original notation of
modularity for high cohesion but only deals with it at a class
level [2, p. 54][11]. Similarly, the Open/Closed Principle
overlaps with modularity for minimal coupling [2, p. 54], at
least at a class-level. The five SOLID principles also overlap
with themselves. For example, the Interface Segregation
Principle can be re-cast as an application of SRP in the context
of interface abstractions.

Literature about design principles is sparser for some
paradigms than others. For example, there is relatively little
written about design principles for FP and LP compared to OO
and SP. This does not mean, that design principles are less
important in these paradigms, but that developers are expected
to carry them over from more mainstream paradigms, like OO
and SP.

Problems caused by the lack of unified definitions for
design principles is becoming more serious as new paradigms
continue to emerge and programming languages evolve to
support multiple paradigms. Java, C#, JavaScript, and C++,
for example, now support mixed-paradigm approaches, where
developers can use constructs from OO, FP, Aspect
Orientation (AO), and Generic Programming (GP), and more,
together within the same system [5][12].

105Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

This paper makes three initial contributions towards
addressing this problem. First, Section II clarifies the purpose
of software-engineering principles, in general, and
distinguishes them from “best practices”, idioms, and
patterns. Section II also purposes a template for documenting
principles that allows a principle’s definition to go beyond just
communicating the underlying concepts. Specifically, it
provides a basis for assessing of adherence to the principle and
a foundation for teaching the principle to programmers. Next,
using this template, Sections III-V propose drafts of
paradigm-independent definitions for the MAE principles.
There are undoubtedly other paradigm-independent design
principles besides the MAE, but these three are a good starting
point because of their non-redundant yet complimentary
relationships with each other. An explanation of these two
relationships is given in Section VI and as another
contribution of this paper.

The work presented here is not about inventing or
reinventing the concepts of modularity, abstraction, or
encapsulation. Instead, it aims to synthesize existing
knowledge into a simple, accessible form for software
developers and software-engineering education. Although this
paper presents three contributions towards meeting this
objective, it is just the first step that provides 1) a starting point
for formulating research questions related to software quality
across multiple paradigms, 2) a foundation for designing and
conducting empirical studies, and 3) a basis for eventually
defining metrics for systematically assessing quality in mixed-
paradigm software systems. Section VII discusses these
follow-on efforts in more detail, in addition to providing a
summary of the contributions of this paper.

II. DESIGN PRINCIPLES
Before considering the MAE principles in detail and

presenting unified definitions for them, it is necessary to first
establish the meaning and purpose of software design
principles and distinguish them from desirable characteristics,
metrics, processes, best practices, patterns, idioms, and
artifacts. This is important to reduce potential confusion,
because existing literature uses a term, like “abstraction” to
represent more than one of these ideas. For example, some
authors define abstraction as the process or practice of
isolating and distinguishing common features among objects
[13]-[15]. Others define abstraction as software artifacts that
specify conceptual boundaries between objects or types of
objects [2, p. 38][16]. In this paper, we will define abstraction
as a principle, and not as a process or artifact.

The Merriam-Webster and Oxford dictionaries define a
principle as 1) a truth or proposition that supports reasoning,
2) a rule or code of conduct, or 3) an ingredient that imparts a
characteristic quality (e.g., desirable characteristic) [17][18].
We specialize these definitions for software as follows: a
software design principle is 1) a truth or proposition that
supports reasoning about the desirable characteristics of a
software system, 2) a rule for creating software with certain
desirable characteristics, or 3) an aspect of software design
that imparts certain desirable characteristics. In other words, a
principle is a foundational concept (truth, proposition, rule,
etc.) that leads to and supports reasoning about desirable

characteristics, such as maintainability, efficiency, openness,
reusability, etc.

If some concept, P, is a good principle for achieving a set
of desirable characteristics Q, then the degree to which a
software engineer adheres to P should predicate the degree to
which Q is present in the software artifacts. In other words,
the presence of Q is the goal or purpose of P. Ideally, the
presence of Q in artifacts should be detectable or measurable
through metrics based on the P [19][20]. However, creating
valid and reliable metrics for measuring desirable qualities has
proven to be challenging. We believe that one reason for this
is that the principles upon which they are supposed to be based
are not yet sufficiently defined and details about their
relationships to desirable characteristics are still lacking.

Best practices are procedures or techniques that help
developers adhere to principles without having to consider the
details of a situation at a theoretical level. For example,
consider the practices of “prefer aggregation over inheritance”
and “program to an interface or abstract” [21][22]. By
knowing and using these practices, a developer can improve
modularity, abstraction, and encapsulation, without having to
analyze in detail all the alternatives in terms of their resultant
desirable characteristics. Unfortunately, best practices like
these two tend to be specific to a programming paradigm or
language.

Patterns also help developers achieve desirable
characteristics; they exemplify principles by providing proven
solutions to reoccurring problems in specific contexts [23].
Similarly, an idiom can help developers adhere to a principle
by providing a solution for expressing a certain algorithm or
data structure in a specific programming language [24].

Although software design principles are themselves not
desirable characteristics, practices, patterns, idioms, or
artifacts, they are at the heart of software engineering and their
definitions should give developers the means to 1) reason
about design decisions, 2) assess whether or how well a design
either conforms to a principle, and 3) balance choices between
conflicting objectives and design alternatives. The latter is
important because software engineers must often make
choices that weaken one desirable characteristic in favor of
strengthening another. For example, a developer may have to
sacrifice some extensibility in favor of efficiency.

Table I shows a template for capturing the definition of a
software design principle in a way that accomplishes the three
objectives listed above. As with practices, patterns, and
idioms, a principle’s name must accurately express the nature
of the concept, because that name will become part of a
vocabulary. The essence of a principle’s definition is a short
statement that aims to covey the fundamental concept at level
that is understandable for most programmers and can be
taught to beginning programmers. The essence should
highlight the principles relationship to hoped-for desirable
characteristics.

The next element of the template is a section that describes
practices for following the principle and criteria that can be
used to determine if a software system or component adheres
to the principles. Like the essence, the practices and criteria
need to be paradigm-agnostic and written a level that is
understandable for most programmers.

106Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

The next element is a section that describes costs or other
factors associated with following the principle that can help
developers decide when to violate a principle, in lieu of some
other conflicting objective. It may also include notes about the
consequences of not meeting following the suggested
practices or meeting the adherence criteria.

The last two elements of the template are optional, but
serve to help developers apply a principle for a specific
paradigm and to teach the principle to new programmers.
Naturally, the knowledge captured in these two elements will
be paradigm specific and could refer to a wide range of
artifacts, like source code, build scripts, hyper-text, style
sheets, and configuration files.

III. MODULARITY
Over the last 50 years, many respected authors have

addressed the topic of modularity or modularization, which is
the process of trying to achieve good modularity. One of the
first was David Parnas, who, in 1972, outlined criteria for
decomposing software into modules such that individual
design decisions could be hidden in specific components [25].
His landmark paper set the stage for other research on using
modularization to manage complexity [26]-[28].

These early works illuminated an important facet of good
modularity, namely that a decision design, particularly one
that is likely to change, should be isolated in one software
component. We call this rule for modularity “localization of
design decisions”. By itself, this rule does not prescribe where
the implementation of design decision should be placed, just
that it should not be replicated or spread across multiple
components. Failure to follow this rule leads to the “Duplicate
Code” smell [29], which in turn can reduce maintainability.

Two other propositions or rules that are frequently
associated with modularity are low coupling and high
cohesion [4][30]-[32]. Low coupling exists when each
component of a system is free of unnecessary dependencies
(explicit or implied) on other components. Although coupling
was first defined for SP, other definitions have been created
for OO and AO [30][33]. It has even been applied to LP [34].
Cohesion is the degree to which the elements of one
component relate to each other or the component’s primary
responsibility [31]. Ideally, each component should have a
single responsibility, as advocated by SRP [7]. Like coupling,

definitions for cohesion have been proposed in multiple
paradigms [35]-[37].

Grady Booch said that the objective of modularization is
“to build modules that are cohesive (by grouping logically
related abstractions) and loosely coupled (by minimizing the
dependencies among modules)” [2, p. 54]. It is widely
believed that achieving low coupling and high cohesion
results in software programs that are more understandable,
testable, maintainable, reliable, secure, extensible, and
reusable. It is also believed that they will avoid common code
smells, like Long Method, Large Class, Long Parameter List,
Feature Envy, and Inappropriate Intimacy [29][38].

Another facet of modularity deals with how far away from
some component, C, a developer must look to reason about
the functionality of C, particularly in preparation for making
corrections or extensions. The component C has modular
reasoning if a developer only needs to examine its
implementation, public abstraction (e.g., its interface), and the
public abstractions of referenced components [39]. Extended
modular reasoning is a looser form of modularity, where
developers also need to examine the internal details of
referenced components [39]. Global reasoning is the loosest
form of modularity, where developers may need to examine
some other component in the system to reason about C [39].
A system comprised primarily of components with modular
reasoning or extended modular reasoning is considered better
than those with lots of components that require global
reasoning. Some paradigms try to minimize global reasoning
by introducing constructs that encourage the localization of
certain design decisions, e.g., interfaces for responsibilities in
OO and aspects for crosscutting concerns in AO.

Below is a definition for modularity, following the
template given in Section II. This definition addresses the
issues discussed above and is applicable to multiple
programming paradigms. Due to the space limitations of this
paper, the paradigm notes are limited and detailed examples
are not show.

A. Essence
Modularity exists in a software system when it is

comprised of loosely coupled and cohesive components that
isolate each significant or changeable design decision in one
component and ensure that related ideas are as close as
possible. Modularity can improve understandability,
testability maintainability, reliability, security, extensibility,
and reuse. It can also help with collaboration during the
software development process by outlining loosely coupled
work units [2, p. 54].

B. Practices and Criteria
1) Localization of design decisions: Design decisions are

identified and prioritized by significance and likelihood for
future change. In a system with localization of design
decisions, every significant or changeable decision is
implemented in one component.

2) High cohesion: When making design decisions, a
developer considers all the responsibilities of a given
component and tries to ensure that there is just one or that
responsibilities are all closely related. In a system with high

TABLE I. PRINCIPLE-DEFINITION TEMPLATE

Name The name of the principle
Essence A statement of the truth, proposition, or rule

embodied in the principle and its relationship
to hoped-for desirable characteristics

Practices and
Criteria

Processes or criteria that, if followed, should
help the developer adhere to the principle and
lead to the hoped-for desirable characteristics

Tradeoffs Factors that can help a developer decision
when to go against a principle, in lieu of a
conflicting objective. These factors may include
the consequences of not meeting the criteria or
common tradeoffs

Paradigm Notes Notes about applying the principle in various
paradigms

Examples Good and poor examples in different
paradigms

107Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

cohesion, every component has one primary responsibility or
reason to change. Component’s primary responsibility may be
a high level, when the component is an aggregate or when it
directs behaviors in other components.

3) Low coupling: When making design decisions, a
developer aims to minimize the degree and number of
dependencies (explicit or hidden) between components. In a
system with low coupling, the components are free of hidden
dependent and unnecessary explicit dependencies. Also,
explicit dependencies are directly visible in the code, e.g.,
data-type references and function calls.

4) Modular reasoning: Developers should give
preference to decompositions with modular reasoning over
extended modular reasoning, and to extended modular
reasoning over global reasoning. A system has modular
reasoning if developers can understand the details of a
component by examining only its implementation, public
abstraction, and the public abstractions of referenced
components.

C. Tradeoffs
Localization of design decisions and high cohesion can

lead to many fine grain components. Although these help with
testability, extensibility, and reuse, it can sometimes hinder
readability. One common solution is to package small, related
components into aggregation components.

Although modularity by itself will not guarantee
understandability, testability maintainability, reliability,
security, extensibility, and reuse, the lack modularity will
compromise these desirable characteristics. Adherence or
violation of the modularity principles typically affects
multiple components. For example, if a design decision is not
localized, then it can comprise the maintainability of every
component that deals with that design decision.

D. Paradigm Notes
Only snippets of the paradigm notes from the full principle

definition are shown here.
For OO, packages, classes, and methods are the primary

types of components that developers need to work with when
modularizing, but they may also consider other types of
artifacts like build scripts, configuration files, and style sheets.
Composite components, like packages, often have multiple
responsibilities, but those responsibilities should be cohesive
as described above in practices and criteria section.

For FP, the components are primarily functions, but could
also include other artifacts like build scripts. By definition, a
pure function in FP only depends on values that are passed in
as input parameters, so developers can minimize coupling by
ensuring that a function’s parameters represent nothing than
exactly what the function needs.

For LP, the components are primarily predicates, rules,
and facts. Modularity is achieved by doing three things. First,
developers must ensure every predicate represents a single
idea or responsibility. In other words, every predicate should
be highly cohesive. Second, every interesting or potentially
changeable decision decisions need to be localized. This is
done by defining a predicate and set of rules for each design
decision.

IV. ABSTRACTION
From a process perspective, abstraction is the act of

bringing certain details to the forefront while suppressing all
others. John Guttag said that “the essence of abstractions is
preserving information that is relevant in a given context, and
forgetting information that is irrelevant in that context” [40].
This is something that most humans learn naturally as part of
their cognitive and social development, in conjunction with
learning to think conceptually and symbolically [41].

Nevertheless, it is interesting that a significant percentage
of computer science students, and by extension software
engineers, struggle with creating good software abstractions
[15]. Perhaps, this is because creating good software
abstractions are much harder to create than everyday
abstractions. Software abstraction requires developers to sift
through large and diverse collections of details about legacy
systems, current and future requirements, existing and
emerging technologies, tool-stack idiosyncrasies, work
allocation nuances, and more, and then determine the most
salient and distinguishing concepts. Fittingly, Abbott et al.
described an abstraction as the “reification and
conceptualization of a distinction” [13].

From an artifact perspective, every software component
has an abstraction, independent of whether the developer
thought about or declared it explicitly. A component’s
abstraction is everything about the component that is visible
externally. Examples of common elements that contribute to
component abstractions include descriptive or identifying
labels like function names, class names, predicate names, and
CSS style names; the public data members and methods of
classes; the parameters of a function or method; meta-data
annotations; and much more. None of these elements alone
can represent a complete abstraction for the component to
which they belong. A component’s full abstraction consists of
everything that other components might explicitly or
implicitly depend on. Ideally, a full abstraction should be
programmatically declared or documented, so it is readily
accessible to developers and other components. However, this
is rarely the case. Instead, components typically end up with
leaky abstractions [42]. One reason for this is that developers
often do not take the time to document all external discernable
characteristics, like performance properties and side effects.
Other sources of leaky abstractions are incomplete thinking,
design errors, and implementation bugs that do not
immediately contradict required functionality or exhibit
damaging characteristics. Overtime, other components can
come to depend on those erroneous characteristics. Then,
when the original problems are corrected, all the components
that depended on the erroneous characteristics fail.

Another potential problem is too much abstraction. This
occurs when a component’s abstraction does not expose all
elements that others need to use or the abstraction does not
provide sufficient parameterization for the elements that need
to be customizable. These kinds of problem lead to lack of
flexibility, which in turn leads to sloppy hacks that can
compromise the overall quality of a system.

Below is a simple definition for the abstraction principle
that can help developers capture and communicate meaningful

108Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

abstractions without leakage or over abstraction. The
definition is sufficiently broad to cover control, function,
behavior, and data abstraction. Note that the abstraction
principle by itself does not address the placement or
organization of design decisions, i.e., the decomposition of a
system into components. The modularity principle guides
decomposition and refactoring. Instead, the abstraction
principle focuses on exposing and communicating the right
aspects of a component, namely those that others will need to
depend on.

A. Essence
For each component, there is an explicit and clear

declaration of the component’s accessible features or
functionality. Depending on the paradigm and programming
language, this declaration may be part of the source code, meta
data, or documentation. The exposed features and
functionality should be no more and no less than what other
components may need or depend on.

Adherence to the abstraction principle can improve
understandability, testability, maintainability, and reusability.
It can also allow developers to follow modularity more
effectively, because it will bring to light weakness with
localization of design decisions, unnecessary coupling, and
low cohesion.

B. Practices and Criteria
1) Meaningful labels and identifiers: A system has

meaningful labels and identifiers, when each one expresses
the essence and distinguishing aspect(s) of its associated
component or element.

2) Context-aware labels and identifiers: This exists when
the label or identifier for a component does not contain
redundant information that can be inferred from the
component’s context or scope. For example, a method called
GetFirstName in a Person class makes for better abstraction
than GetPersonFirstName, because the context of person can
be derived from the class name.

3) Abstraction completeness: Whenever possible, all
externally visible characteristics for a component are
explicitly declared as part of the component’s definition,
implementation, or meta data. When that is not possible,
documentation must explain these characteristics clearly and
concisely, and the closer document is to the component’s
implementation, the better.

4) Abstraction sufficiency: This exists when all the
elements of a component that should be visible to outside
components are exposed through the component’s
abstraction.

C. Tradeoffs
Not following the practices and criteria listed above can

result in the loss of the hoped-for desirable characteristics in
portion to the degree and amount of non-adherence.

D. Paradigm Notes
Only snippets from the notes for LP are shown here to give

the reader a sense of what this part of the full definition
contains.) As mentioned, the primary components in LP are

predicates, rules, and facts. The abstractions for these
components expose the “logic” of system while hiding most
of its control aspects, namely the process for drawing
conclusions or deductions. Predicates represent relations
from the problem domain or design decision. Given a
predicate, all the rules with the predicate in their heads and
facts stated with that predicate form another kind of higher
level abstraction in LP. One of these abstractions exposes all
that is known about a relation or decision.

The abstraction for a predicate is comprised of a name and
some number of parameters. A developer should choose a
name that expresses the predicate’s essence clearly, concisely,
and accurately. Doing so not only improves understandability
from an abstraction perspective, it helps with modular
reasoning, which in turn contributes to better modularity.
Facts and rules are typically given labels in LP, but can be
grouped together into higher level packages to form higher
level abstractions.

V. ENCAPSULATION
Encapsulation is typically equated with OO, but it is not

unique to OO nor did it originate with OO. In fact, many old
devices, like mechanical clocks from the middle ages, are good
examples of encapsulation. All their implementation details,
e.g., the time keeping mechanisms, are hidden behind a clock
face in a sealed container.

In English, encapsulation means to enclose something
inside a capsule or container [43]. In other words, it involves
two things: the thing is being enclosed and the enclosure. In
physical systems, like a train station that needs a clock, the
choices for enclosures are relatively limited compared to those
available in software systems, where developers have total
control over the system’s decomposition. As described in
Section III, modularity can guide a developer in making good
choices for the components, i.e., enclosures, such that each has
a cohesive purpose and is loosely coupled to others.
Abstraction, as discussed in Section IV, can help developers
communicate the essence of component and expose only
external characteristics. The principle of encapsulation can
then help developers isolate or hide the internal characteristics
of a component so others do not accidently become dependent
on them.

Unfortunately, the close relationship among encapsulation,
abstraction, and modularity has led to some ambiguity in use
of these terms. This is particularly true for encapsulation. The
various definitions for encapsulation in software engineering
literature can be grouped into three categories. The first
category includes definition that equate encapsulation to the
bundling of data with operations on that data to create Abstract
Data Types [44][45]. These definitions take either a process or
artifact perspective, but typically lack a proposition, rule, or
practice that qualify them as principle definitions. Also, these
definitions sometimes overshadow or ignore modularity and its
associated criteria like localization of design decisions, low
coupling, high cohesion, and modular reasoning.

The second category includes definitions that represent
encapsulation as a process or technique for hiding decisions
behind logical barriers, preventing outsiders from modifying or
even viewing the implementation details of components. This

109Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

category of encapsulation definitions stems from work on
information hiding, which is the dual of abstraction. It has
given rise to access-restricting language constructs, such as the
private and protected modifiers in class-based languages.
Although definitions of this category are valuable by
themselves, they do not capture encapsulation’s full potential.

In the third category, definitions explain encapsulation as a
process for organizing components so the implementation
details of one component can be modified without causing a
ripple effect to other components [46]. These definitions focus
on the minimization of inter-component dependencies, i.e.,
coupling. By themselves, these definitions miss other
important aspects of encapsulation and blur it with
modularization.

There are many documented “best practices” that experts
believe can help programmers achieve good encapsulations.
For example, in C#, experts believe that the use of auto-
implemented properties is much better than public data
members because they provide for stronger barrier between the
abstraction and implementation details [47]. Unfortunately,
such “best practices” tend to be language or paradigm specific.

As mentioned earlier, a design principle must be a truth,
proposition, rule, or practice that yields desirable qualities.
Below is a definition for encapsulation that aims to comply
with this requirement for principles and can guide a developer
achieve good encapsulation, independent developer’s
adherence to the principles of modularity and abstraction.

A. Essence
Ensure that the private implementation details (i.e., the

internal characteristics) of a component are insulated so they
cannot be accessed or modified by other components. Doing
so will lead to better testability, maintainability, and
reliability. It will also help with a clear separation of concerns
and avoid accidental coupling.

B. Practices and Criteria
1) Conceptual barriers: For each component, a developer

should identify the internal structures, behaviors, procedures,
and definitions of that component and ensure that they are
protected behind conceptual barriers. More specifically,
developers should try to identify the minimum required scope
for each internal element. For example, in OO, if a data
member is only used within the scope invocations for a single
method, then that data member should be refactored to a local
variable of the method.

2) Programmatic barriers: Developers should ensure that
the modifiability and visibility of every internal element is
programmatically restricted to the desired scope. Developers
should leverage the available features of the chosen
programming language, whenever possible.

3) Usage barriers: If there are internal elements that
cannot be isolated programmatically, then document
appropriate rules for correct usage of the component, so
developers can avoid accidental violations of the intended
encapsulation.

C. Tradeoffs
Failure to protect a component’s internal characteristics

from other components opens the doors for abstraction
leakage and hidden dependencies, which can damage
testability, maintainability, and reliability in surreptitious
ways. In cases where programmers are tempted to weaken the
encapsulation of some element in a component, like make a
data member in a class definition public, they could at least
document the intended usage to minimize the formation of
accidental hidden dependencies.

D. Paradigm Notes
Only a few snippets of the full paradigm notes are shown

here. The mechanisms for achieving encapsulation vary
greatly among paradigms and programming languages. For
FP in compiled languages, functions can be strongly
encapsulated behind their declarations. This is true even for
anonymous function. But, for interpretative languages that
support FP, functions are just other forms of data and the
decisions they encapsulate may be externally visible and
modifiable. In those cases, developers need to document
what others may and may not access or change.

For OO and typed languages, developers can restrict the
scope for each element to the smallest scope within which the
element is used. Data members, for example, are typically
private and made accessible only through methods. Some
languages provide convenience short hands for getter and
setter methods to help programming adhere to this best
practice. Only methods that need to be used by other
components should be public. Also, developers can use
package-level scoping to restrict access to public classes or
method that are only needed within a package.

VI. THE NON-REDUNDANCY AND COMPLIMENTARY
NATURE OF THE MAE PRINCIPLES

To be effective for multiple paradigms and for the long-
term advancement of software engineering, it is important for
general principles to be non-redundant with each other in two
ways: 1) no general principle can be a special case of or
subsumed by another principle or combination of principles
and 2) developers should be able to choose to follow one
principle but not the others.

The case for MAE principles meeting the first is condition
is relatively straight forward. The essence of modularity deals
with the decomposition of a system into components. Neither
of the other two principles prescribe guidelines for organizing
a system into modules. So, modularity cannot be subsumed by
abstraction or encapsulation, and conversely. Abstraction and
encapsulation both apply to individual components, which
from an artifact perspective, can be thought of as “abstractions”
and “encapsulations.” However, abstraction and encapsulation
from a principle perspective are fundamentally different from
each other. In fact, from a principle perspective, they are
approximate duals of each other. Abstraction guides a
developer in exposing just the right elements of a component
so it is easy to understand and use. Encapsulation guides a
developer in hiding internal design decisions so other
components cannot intentionally or accidentally depend on

110Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

them. Abstraction cannot be recast or explained as a special
type, variation, or subpart of encapsulation. Similarly,
encapsulation cannot be fully explained in terms of just
abstraction.

 The satisfaction of the second condition for non-
redundancy can be shown using a simple example plus three
variations, where each one illustrates adherence to one
principle but not the others. The example, shown in Figure 1,
consists of two classes: Line and Point, where the Point class
represents movable points in a 2D coordinate space and the
Line class represents lines comprised of two points and that
know how to compute their own lengths. Fig. 1 shows an
implementation that of this simple system that has good
modularity, abstraction, and encapsulation according to the
definition given in Sections III-V.

In the first variation (see Fig. 2), the designs decisions are
still localized, the classes still have low coupling and high
cohesion, and they support modular reasoning. In other words,
the system’s decomposition has good modularity. However,
the system has poor abstraction or encapsulation, caused
unnecessary exposure of the internal design decisions and by
poor identifiers, which are either do not communicate the true
essence of the elements. Of course, there could be other ways
that the abstraction and encapsulation could be degraded, but

the purpose of this example is to simply show that modularity
can exist without abstraction and encapsulation.

In the second variation (see Fig. 3), the Line and Point
classes have good abstractions, but lack modularity and
encapsulation. Specifically, the class definition expose the
functionality that other components need to use, with sufficient
flexibility. However, the decision for calculating the distance
between two points is not localized, which goes against the
modularity principle, and the data members in both classes are
public, which violates the intended encapsulation.

A third variation with good encapsulation but poor
modularity and abstraction would be an implementation that
had the poor names, i.e., poor abstraction, from the first
variation plus the lack of localization of decision designs, i.e.,
poor modularity, from the second variation.

These three variations show that it is possible for a
developer to apply each of the three MAE principles,
independently of each other. In fact, there may be some special
circumstances where this is exactly what a developer needs to
do to meet external requirements or adjust for limitations of a
programming language or framework. However, such cases
should be rare.

Although the MAE principles are non-redundant, they
complement each other nicely. In other words, adherence to
one encourages, but does not require, adherence to the others.
Specifically, adhering to modularity will set the stage for
adherence both abstraction and encapsulation, because
modularity brings to light what the components need to know
about each other and which the design decisions need to be

public class Line {
 private Point point1;
 private Point point2;

 public Line(Point point1, Point point2) {
 this.point1 = point1;
 this.point2 = point2;
 }

 public double ComputeLength() { /* .. */ }
}

public class Point {
 private double x, y;

 public Point(double x, double y) {
 this.x = x; this.y = y; }

 public double getX() { return x; }
 public void moveX(double deltaX) { x += deltaX;}
 public double getY() { return y; }
 public void moveY(double deltaY) { y += deltaY;}
}

Figure 1. A simple example implementation with good modularity,
abstraction, and encapsulation.

public class Line {
 public XY point1;
 public XY point2;
 public Line(XY point1, XY point2) { /* … / }
 public double Calc() { /* Compute length … */ }
}

public class XY {
 public double x, y;
 public XY(double x, double y) { /* … / }
}

Figure 2. A simple example implement with good modularity, but poor
abstraction and encapsulation.

public class Line {
 public Point point1;
 public Point point2;

 public Line(Point point1, Point point2) {/* … */}

 public double ComputeLength()
 {
 return Math.sqrt(Math.pow(point2.getX() –
 point1.getX(), 2) +
 Math.pow(point2.getY() –
 point1.getY(), 2));
 }
}

public class Point {
 public double x, y;

 public Point(double x, double y) { /* … *. }

 public double getX() { return x; }
 public void moveX(double deltaX) { x += deltaX;}
 public double getY() { return y; }
 public void moveY(double deltaY) { y += deltaY;}

 public double ComputeDistance(Point otherPoint)
 {
 return Math.sqrt(Math.pow(otherPoint.x - x, 2) +
 Math.pow(otherPoint.x - y, 2));
 }
}
Figure 3. A simple example implementation with good abstraction, but

poor modularity and encapsulation.

111Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

encapsulated. Likewise, abstraction can lead to better
understanding of the inter-component couplings and therefore
better modularization. Also, elements that are not part of a
component’s abstraction are candidates for encapsulation.
Finally, doing encapsulation will act as a double check and
balance for both modularization and abstraction.

VII. SUMMARY AND FUTURE WORK
This paper has explained the purpose of design principles,

in general, and provided a template for establishing working
definitions that can help with teaching the principles to
software developers, assessing adherence, and pursuing
research questions. This paper then provided an overview of
existing ideas related to modularity, abstraction, and
encapsulation and unifying them into initial paradigm-
independent definitions. Finally, it showed that these principles
are non-redundant and complimentary, in the sense that no
combination of two could replace the third and that adherence
to one encourage adherence to the others.

The work reported in this paper is just one step forward in
a larger effort. Our next step is to formulate research questions
related the application of MAE principles in mixed-paradigm
environments and then setup concrete empirical studies to
explore those questions. Below is a sampling of the research
questions that we hope to pursue soon:

• When using OO together with LP, what kinds of

functionality or responsibility are best handled using LP?
• When using OO with LP, FP, or GP, is it best to design

the overall architecture using an OO approach and
encapsulate specific responsibilities in LP-based, FP-
based, or GP-based components? If so, why and what
kinds of components are best suited for LP, FP, and GP?

• What kinds of responsibilities are best encapsulated in
aspects when using AO with OO?

• When using FP with OO, how can developer know if
high-order functions are following the MAE principles?

After exploring these and other research questions, we

believe that another important step would be to explore
metrics for systematically assessing quality in mixed-
paradigm software systems. The details of any given metric
may end up being platform dependent. However, if there were
a suite of metrics based on a unified principle definition, then
the metrics might yield measurements that are comparable
across software components, even when those components are
implemented with different languages or paradigms.

Finally, our plans for future work include investigations
into other design principles beyond MAE. For example, we
hope to unify definitions for classification and generalization/
specialization. Although these principles are heavily used in
OO, they can apply to other paradigms as well.

Overall, the effort to unify principle definitions is important
as programming languages continue to expand to support
multi-paradigm software development. This effort will require
input from many different sources and involve a wide range of
subfields within software engineering. To this end, we
welcome and encourage collaboration from all who are

interested in creating a stronger foundation for software
methods, teaching software engineering, improving
development tools, or assessing software quality.

REFERENCES
[1] I. Sommerville, Software Engineering, 10 edition. Boston:

Pearson, 2015.
[2] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J.

Conallen, and K. A. Houston, Object-Oriented Analysis and
Design with Applications, 3 edition. Upper Saddle River, NJ:
Addison-Wesley Professional, 2007.

[3] “Abstraction (software engineering),” Wikipedia. 06-Jun-
2017.

[4] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using
Cohesion and Coupling for Software Remodularization: Is It
Enough?,” ACM Trans Softw Eng Methodol, vol. 25, no. 3,
pp. 24:1–24:28, Jun. 2016.

[5] “Functional programming,” Wikipedia. 03-Jun-2017.
[6] “Purely functional programming,” Wikipedia. 10-Apr-2017.
[7] R. C. Martin, “The Principles of OOD,” PrinciplesOfOod,

2005. [Online]. Available:
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.
[Accessed: 07-Jun-2017].

[8] R. C. Martin, “Getting a SOLID start. - Clean Coder,” 2009.
[Online]. Available:
https://sites.google.com/site/unclebobconsultingllc/getting-a-
solid-start. [Accessed: 07-Jun-2017].

[9] S. Metz, “SOLID Object-Oriented Design - GORUCO 2009.”
[Online]. Available: http://confreaks.tv/videos/goruco2009-
solid-object-oriented-design. [Accessed: 07-Jun-2017].

[10] R. C. Martin, Agile Software Development, Principles,
Patterns, and Practices, International ed edition. Harlow:
Pearson Education Limited, 2013.

[11] T. DeMarco and P. J. Plauger, Structured Analysis and
System Specification, 1 edition. Englewood Cliffs, N.J:
Prentice Hall, 1979.

[12] “Comparison of multi-paradigm programming languages,”
Wikipedia. 22-Mar-2017.

[13] R. Abbott and C. Sun, “Abstraction Abstracted,” in
Proceedings of the 2Nd International Workshop on The Role
of Abstraction in Software Engineering, New York, NY,
USA, 2008, pp. 23–30.

[14] “abstraction | cognitive process,” Encyclopedia Britannica.
[Online]. Available:
https://www.britannica.com/topic/abstraction. [Accessed: 06-
Sep-2017].

[15] J. Kramer, “Is Abstraction the Key to Computing?,” Commun
ACM, vol. 50, no. 4, pp. 36–42, Apr. 2007.

[16] W. R. Cook, “On Understanding Data Abstraction,
Revisited,” in Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems
Languages and Applications, New York, NY, USA, 2009, pp.
557–572.

[17] “Definition of PRINCIPLE.” [Online]. Available:
https://www.merriam-webster.com/dictionary/principle.
[Accessed: 07-Jun-2017].

[18] “principle - definition of principle in English | Oxford
Dictionaries,” Oxford Dictionaries | English. [Online].
Available:
https://en.oxforddictionaries.com/definition/principle.
[Accessed: 07-Jun-2017].

112Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

[19] V. R. Basili, G. Calderia, and H. D. Rombach, “The Goal
Question Metric Approach,” in Encyclopedia of Software
Engineering, vol. 2, John Wiley & Sons Ltd, 1994, pp. 528–
532.

[20] C. N. Sant’Anna, A. F. Garcia, C. von F. G. Chavez, C. J. de
L. Lucena, and A. von Staa, “On the reuse and maintenance
of aspect-oriented software: An assessment framework,” in
Proc. 17th Brazilian Symposium on Software Engineering,
Manaus, Brazil, 2003.

[21] “GOF Advice: Favor Aggregation over Inheritance | Net
Objectives.” [Online]. Available:
http://www.netobjectives.com/competencies/favor-
aggregation-over-inheritance. [Accessed: 06-Sep-2017].

[22] E. Freeman, B. Bates, K. Sierra, and E. Robson, Head First
Design Patterns: A Brain-Friendly Guide, 1st edition.
Sebastopol, CA: O’Reilly Media, 2004.

[23] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch,
Design Patterns: Elements of Reusable Object-Oriented
Software, 1 edition. Reading, Mass: Addison-Wesley
Professional, 1994.

[24] A. J. Perlis and S. Rugaber, “Programming with Idioms in
APL,” in Proceedings of the International Conference on
APL: Part 1, New York, NY, USA, 1979, pp. 232–235.

[25] D. L. Parnas, “On the Criteria to Be Used in Decomposing
Systems into Modules,” Commun ACM, vol. 15, no. 12, pp.
1053–1058, Dec. 1972.

[26] G. J. Myers, Composite/Structured Design. New York: Van
Nostrand Reinhold, 1978.

[27] B. H. Liskov, “A Design Methodology for Reliable Software
Systems,” in Proceedings of the December 5-7, 1972, Fall
Joint Computer Conference, Part I, New York, NY, USA,
1972, pp. 191–199.

[28] D. L. Parnas, P. C. Clements, and D. M. Weiss, “The Modular
Structure of Complex Systems,” IEEE Trans. Softw. Eng.,
vol. SE-11, no. 3, pp. 259–266, Mar. 1985.

[29] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, and E.
Gamma, Refactoring: Improving the Design of Existing Code,
1 edition. Reading, MA: Addison-Wesley Professional, 1999.

[30] Y. Press and L. L. Constantine, Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design, 1 edition. Englewood Cliffs, N.J: Prentice
Hall, 1979.

[31] W. P. Stevens, G. J. Myers, and L. L. Constantine,
“Structured Design,” IBM Syst J, vol. 13, no. 2, pp. 115–139,
Jun. 1974.

[32] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for
Object Oriented Design,” IEEE Trans Softw Eng, vol. 20, no.
6, pp. 476–493, Jun. 1994.

[33] M. H. Samadzadeh and S. J. Khan, “Stability, Coupling, and
Cohesion of Object-oriented Software Systems,” in
Proceedings of the 22Nd Annual ACM Computer Science
Conference on Scaling Up : Meeting the Challenge of
Complexity in Real-world Computing Applications: Meeting
the Challenge of Complexity in Real-world Computing
Applications, New York, NY, USA, 1994, pp. 312–319.

[34] S. Kramer and H. Kaindl, “Coupling and Cohesion Metrics
for Knowledge-based Systems Using Frames and Rules,”
ACM Trans Softw Eng Methodol, vol. 13, no. 3, pp. 332–358,
Jul. 2004.

[35] G. Gui and P. D. Scott, “Coupling and Cohesion Measures for
Evaluation of Component Reusability,” in Proceedings of the

2006 International Workshop on Mining Software
Repositories, New York, NY, USA, 2006, pp. 18–21.

[36] A. Kumar, R. Kumar, and P. S. Grover, “Towards a Unified
Framework for Cohesion Measurement in Aspect-Oriented
Systems,” in Proceedings of 19th Australian Conference on
Software Engineering, Australia, 2008, pp. 57–65.

[37] B. C. da Silva, C. Sant’Anna, and C. Chavez, “Concern-based
Cohesion As Change Proneness Indicator: An Initial
Empirical Study,” in Proceedings of the 2Nd International
Workshop on Emerging Trends in Software Metrics, New
York, NY, USA, 2011, pp. 52–58.

[38] “Code Smells,” Code Smells. [Online]. Available:
https://sourcemaking.com/smells. [Accessed: 08-Jun-2017].

[39] G. Kiczales and M. Mezini, “Aspect-oriented Programming
and Modular Reasoning,” in Proceedings of the 27th
International Conference on Software Engineering, New
York, NY, USA, 2005, pp. 49–58.

[40] J. Guttag, Introduction to Computation and Programming
Using Python. The MIT Press, 2013.

[41] J. Piaget and B. Inhelder, The Psychology Of The Child, 2
edition. New York: Basic Books, 1969.

[42] “The Law of Leaky Abstractions,” Joel on Software, 11-Nov-
2002. [Online]. Available:
https://www.joelonsoftware.com/2002/11/11/the-law-of-
leaky-abstractions/. [Accessed: 18-May-2017].

[43] “Definition of ENCAPSULATE.” [Online]. Available:
https://www.merriam-webster.com/dictionary/encapsulate.
[Accessed: 10-Jun-2017].

[44] “Encapsulation (computer programming),” Wikipedia. 08-
Jun-2017.

[45] “Abstract data type,” Wikipedia. 10-Jun-2017.
[46] “Encapsulation & Modularity.” [Online]. Available:

https://atomicobject.com/resources/oo-
programming/encapsulation-modularity. [Accessed: 10-Jun-
2017].

[47] B. Wagner, “Auto-Implemented Properties (C# Programming
Guide).” [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/classes-and-structs/auto-
implemented-properties. [Accessed: 10-Jun-2017].

113Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

