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Abstract—Functional Size Measurement is widely used, especially
to quantify the size of applications in the early stages of
development, when effort estimates are needed. However, the
measurement process is often too long or too expensive, or
it requires more knowledge than available when development
effort estimates are due. To overcome these problems, early
size estimation methods have been proposed, to get approximate
estimates of functional measures. In general, early estimation
methods adopt measurement processes that are simplified with
respect to the standard process, in that one or more phases
are skipped. So, the idea is that you get estimates affected by
some estimation error, instead of accurate measures performed
following the standard measurement process, but at a fraction
of the cost and time required for standard measurement. In
this paper, we consider some methods that have been proposed
for estimating the COSMIC (Common Software Measurement
International Consortium) size of software during the modeling
stage. We apply the most recent methodologies for estimation
accuracy, to evaluate whether early model-based estimation is
accurate enough for practical usage.

Keywords—Functional size measurement; COSMIC Function
Points; Measurement process; Functional size estimation; Accuracy
estimation.

I. INTRODUCTION

Functional Size Measurement (FSM) is widely used.
Among the reasons for the success of FSM is that it can
provide measures of size in the early stages of software
development, when they are most needed for cost estimation.
However, FSM requires that the functional requirements of
the application to be measured are available in a complete and
quite detailed form. Often, this is not possible in the very early
stages of development. Therefore, to get measures even when
requirements are still incomplete or still defined at a coarse
level of detail, estimation models have been proposed. There
are different types of FSM and many estimation methods.
Here, we concentrate on the COSMIC FSM [1] —one of the
most widely used methods— and on model-based COSMIC size
estimation [2].

When applying a size estimation method, we expect that
the method —being applied to incomplete or not thoroughly de-
tailed software specifications— requires less time and effort than
the standard measurement process. However, we also expect
that the size estimates so obtained contain some estimation
error. In general, we are ready to accept a relatively small
estimation error in exchange of being able to get size estimates
without having to apply the standard measurement process. On
the contrary, an excessively large estimation error would defeat
the very reason for measuring. Hence, we are interested in

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

knowing the likely accuracy of measure estimates. To this end,
we need reliable methods to evaluate the accuracy of estimates.

Unfortunately, it has been shown that the most popular
estimate accuracy statistic, the Mean Magnitude of Relative
Errors (MMRE) is flawed, in that it is a biased estimator
of central tendency of the residuals of a prediction system
because it is an asymmetric measure [3][4][5]. So, MMRE and
similar indicators are not suitable for providing practitioners
who are potentially interested in applying estimate methods
with reliable information upon which they can base informed
decisions.

Luckily, sound estimate evaluation methods have been pro-
posed recently (as described in Section III). It is thus possible
to apply such new methods to size estimation methods.

The main purpose of this paper is the evaluation of
the actual accuracy of model-based COSMIC size estimation
method: to this end, we use the new sound evaluation meth-
ods (described in Section III), together with more traditional
statistical tools.

It should be noted that the paper does not aim at intro-
ducing new COSMIC size estimation methods, rather the goal
of the paper is (re)evaluating the accuracy of the formerly [2]
proposed ones. However, by applying these new evaluation
methods, as a side effect we also get some indications on their
expressiveness.

The paper is structured as follows. Section II briefly
illustrates the COSMIC FSM, and the model-based simpli-
fied COSMIC measurement method. Section III illustrates
the methods used for evaluating the accuracy of estimates.
Section IV describes the application of the accuracy evaluation
methods to model-based simplified COSMIC measurement,
while Section V illustrates and discusses the results of the
analysis. Section VI accounts for related work. Finally, Sec-
tion VII draws conclusions and briefly sketches future work.

II. COSMIC FUNCTIONAL SIZE MEASUREMENT AND
MODEL-BASED COSMIC ESTIMATION

COSMIC measurement is based on the analysis of the
specification of functional user requirements (FUR). The FUR
can be described in various ways, including the Unified
Modeling Language (UML): functional size measurement of
UML models was widely studied [6][7][8], also when FUR
concern real-time applications [9]. During the initial stage
of development, UML models are built, progressively in-
corporating more knowledge concerning the software to be
developed: this results in progressively more complete and
detailed specifications. More specifically, the UML modeling
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process can be seen as organized in the phases described in
Figure 1. The more complete and detailed the UML model,
the more elements needed for COSMIC measurement become
available. Figure 1 shows the relationship between the UML
diagrams that are made available by each modeling phase
and the COSMIC measurement elements. During the initial
UML modeling phases —i.e., before the complete and detailed
FUR specifications are available— it is often the case that size
measures are needed anyway. In such cases —not being possible
to measure the COSMIC size of the application— we can think
of estimating the COSMIC size, based on the information that
is present in the available UML diagrams.
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compohent diagram with Sequence
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2 P
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Figure 1. UML modeling process and COSMIC measurement process
phases.

Specifically, del Bianco et al. proposed a few families of
statistical models that can be used to estimate COSMIC size
based on information derived from UML diagrams [2]. These
models are described in Table I.

A first family of COSMIC size estimation models requires
only the knowledge of the number of functional processes
(FPr’s). These models have form ECFP = f(#FPr) where ECFP
is the estimated size in CFP (COSMIC Function Points), and
#FPr is the number of functional processes. As shown in
Figure 1, the statistical model can be built after the completion
of phase a), when class or component diagrams properly
specifying the user interfaces are delivered.

Another family of COSMIC size estimation models re-
quires also that the number of Data Groups (#DG) is known.
These models can be built after phase b), when UML diagrams
fully describing the involved classes are delivered. The models
found by del Bianco et al. involve the parameter AvDGperFPr,
namely the average number of data groups per functional
process, which requires that both the functional process and
the data groups (i.e., classes in UML diagrams) are known.

Figure 1 shows that potentially one could use also the
knowledge of the number of data groups involved in each
functional process, which is available after phase c). However,
no statistically significant models of this type were found.

Finally, we observe that after phase d), i.e., when the
complete UML models of FUR are available, the standard
COSMIC measurement process is applicable, and proper
COSMIC measures —instead of estimates— can be achieved.

It is expected that models based on more information are
more accurate than models based on less information.
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TABLE I. COSMIC SIZE ESTIMATION MODELS.

Name Formula

avgl ECFP =17.3 #FPr

regl ECFP = —16.5 4+ 6.698 #F Pr

avg2 ECFP = AvDGperFPr 1.8 #FPr

reg2 ECFP = —64.6 + 7.63 #FPr 4+ 9.71 AvDGperF Pr
log2 ECFP = 1.588 #FPr! 09357 AyDGperF Prt-0312

In [2], the accuracy of the models given in Table I was
evaluated based on the traditional indicators MMRE —the Mean
Magnitude of Relative Errors— and Pred(25) —the fraction of
applications for which the absolute relative estimation error is
less than 0.25. The evaluation of accuracy performed in [2]
indicated that models using both #FPr and AvDGperFPr (that
is, models avg2, reg2 and log2) are more accurate than models
based only on #FPr (that is, models avgl and regl). However,
it has been shown that indicators based on the magnitude
of relative errors are biased [10]. Hence, we repeat here
(in Section IV) the analysis of accuracy using more reliable
methods (described in Section III).

III. A METHOD FOR EVALUATING THE ACCURACY OF
ESTIMATES

The method we use for evaluating the accuracy of a given
model’s estimates involves two activities: 1) comparing the
model’s estimates with “baseline” estimates, and 2) evaluating
the size effect. The former activity —described in Section III-A—
is aimed at verifying that the given model’s estimates are
“good enough:” if they are less accurate than the estimates
provided by the baseline, the given models does not yield any
improvement, at least as far as accuracy is concerned, and can
be rejected. The second activity —described in Section III-B—
verifies whether the given model provides an increase in
accuracy that is large enough to make the given model a
desirable alternative with respect to the baseline.

A. Baselines

Let us suppose that in n previous projects we measured the
value of interest (in our case, the size of applications, measured
in CFP). Accordingly, we have a set Y = {y;} (with i € [1,n])
of observations (where 1; is the actual size of the i*" project,
expressed in CFP).

A new estimation method P is proposed: for the n known
projects, method P yields n estimates §; with i € [1,n], and
we need to evaluate the accuracy of these estimates.

The most popular way of evaluating estimation accuracy
is the MMRE, the mean of the magnitude of absolute errors,
which is defined as

|yi - yz\ (1)

1
MMRE = — Z "

i=1l..n

MMRE has been shown to be a biased estimator of central
tendency of the residuals of a prediction system, because it
is an asymmetric measure [3], [4], [S]. In practice, MMRE is
biased towards prediction systems that under-estimate [10].

Shepperd and MacDonell [10] proposed that the accuracy
of a given estimation method P is compared to the accuracy
of a reference estimation method P0. The indicator to be used
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is the Mean Absolute Residual (MAR), which, unlike MMRE,
is not biased:

1 X
MARZE > lyi—il) 2)

i=1l..n

So we have M ARp (the MAR of the proposed method) and
MARpo (the MAR of the reference method). Based on the
MAR values, Shepperd and MacDonell propose to compute a
Standardized Accuracy measure (SA) for estimation method
P:

MARp

A=1- 22
o MARp,

3)

Values of SA close to 1 indicate that P outperforms PO,
values close to zero indicate that P’s accuracy is similar to
PO0’s accuracy, negative values indicate that P is worse than
PO, hence it should be rejected.

As a referenced model, Shepperd and MacDonell suggest
to use random estimation, based on the known (actual) values
of previously measured projects. A random estimation ¢; is
obtained by picking at random y;, with j # ¢. Of course, in
this way there are n—1 possible estimates for y;, so to compute
the MAR of rnd we need to average all these possible values.
Shepperd and MacDonell suggest to make a large number of
random estimates (typically, 1000), and then take the mean
M AR,.,q. Langdon et al. showed that it is not necessary to
make 1000 guesses, since the average of the random estimates
can be computed exactly [11].

So, a first evaluation consists in computing

MARp

MAand

“)

Achieving a value substantially greater than zero is clearly
a sort of necessary condition that the estimation method P
must satisfy, otherwise we could simply guess (instead of
estimating using P) and get similarly accurate estimates.

Lavazza and Morasca [12] observed that the comparison
with random estimation is not very effective in supporting
the evidence that P is a good estimation model. Instead, they
proposed to use a “constant model” (CM), where the estimate
of the size of the i*" project is given by the average of the
sizes of the other projects, that is

R 1
Yi = T . Z Yj )
JEY —{yi}
So, we can compute the M AR¢ ) of these estimates, and
then compute SA, but this time comparing P with C'M:

MARp
MARc M ’

Again, we require that SA is substantially greater than zero,
to deem P acceptable.

SA=1- (©6)

Finally, note that SA can be used to compare a method
P against any other model P1 used as a reference method,
simply by computing

MARp

SA=1— ———.
MARPp,

(M
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B. Size Effect

Suppose that we have two estimation methods P1 and P2,
and MARpy; < MARp, (hence, SA =1 — %ﬁgf > 0).
We can conclude that P2 is more accurate than P1. Anyway,
suppose that we are using P1 and we are considering the
possibility of switching to using P2, which involves some
effort, because P2 requires some activity or data or programs
that P1 does not require. We would like to know if the
improvement that P2 offers in terms of accuracy is possibly
so inconsequential as to not be worth the effort.

To judge the effect size, Shepperd and MacDonell suggest
using Glass’s A [13] or Hedges’s g, which might be preferred
when the sample size is small [14]. The effect size —which
is scale-free— can be interpreted in terms of the categories
proposed by Cohen [15] of small (= 0.2), medium (= 0.5)
and large (= 0.8).

IV. EXPERIMENTAL EVALUATION

The five size estimation models given in Table I were
applied to the projects in the dataset that was used to derive
the models [2]. The MAR for each model was then computed.
Similarly, the data from the same dataset were used to compute
MAR,,q and MARc);, as described in Section III. The
values of the methods’ MAR are given in Table II.

Note that here we do not explicitly compute SA. Instead,
we give the values of MAR needed for the computation. The
reason is that with 7 methods there are 21 possible comparison
among methods, hence 21 values of SA. Listing all these SA
values could create confusion, while to compare two methods’
accuracies, we just need to compare their SA’s: the model
featuring the smaller SA is likely the best.

TABLE II. MEAN ABSOLUTE RESIDUALS OF MODELS.

Name  Formula MAR
rnd - 146
CM - 114
avgl ECFP =17.3 #FPr 56
regl ECFP = —16.5 + 6.698 #F Pr 48
avg2 ECFP = AvDGperFPrl.8 #FPr 28
reg2 ECFP = —64.6 + 7.63 #FPr +9.71 AvDGperF Pr 40
log2 ECFP = 1.588 #F Pr1-99%%7 Ay DGperF Prt-0312 25

Table II provides a first piece of evidence: model-based
COSMIC size estimation are definitely more accurate than both
the random and constant models.

Table II also confirms that the constant model is always
more accurate than the random model, as demonstrated by
Lavazza and Morasca [12]. For this reason, in the remainder
of the paper the random model is no longer used.

To establish if the estimations of one method were sig-
nificantly better than the estimations provided by another
method, we tested the statistical significance of the absolute
errors achieved with the two estimation methods [3]. Namely,
we compared the absolute residuals provided by every pair
of methods via Wilcoxon Sign Rank Test. To check for
statistical significance we used the Wilcoxon Signed Rank
Test [16] because it is a safe test to apply to both non-normally
distributed (as are often MAR distributions) and normally
distributed populations.

The results are given in Table III, where in each cell the

9 G

sign “>” (respectively, “<”, “=") indicates that the absolute
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residuals of the model on the cell’s row are larger (resp.,
smaller, equal) than the absolute residuals of the model on
the cell’s column.

TABLE III. COMPARISON OF ABSOLUTE RESIDUALS USING WILCOXON
SIGN RANK TEST.

CM  avgl regl avg2  reg2  log2

CM > > > > >
avgl < > > > >
regl < < = > >
avg2 < < = = >
reg2 < < < = =
log2 < < < < =

The results provided by Wilcoxon Sign Rank Test confirm
the indications provided by MAR and SA in that the constant
model is outperformed by all other models and that avgl
is outperformed by all other model-based size estimation
methods. However, Wilcoxon Sign Rank Test provides further
insights with respect to MAR and SA:

e  There is no sufficient evidence to conclude that log2
is better than reg2 (this fact could be guessed, based
on the fact that M AR;,q2 and MAR,.4o are quite
close).

e  Similarly, there is no evidence that reg2 (which has
MAR, .42 = 40) is actually more accurate than regl
(which has M AR, ¢4 = 48).

e  Somewhat surprisingly, there is no evidence that avg2
(which has M AR,42 = 28) is actually more accurate
than reg2 (which has M AR,4o = 40).

The latter result is especially interesting, in that by just looking
at the MAR values we could have concluded that avg2 is more
accurate than reg2, while —according to Wilcoxon Sign Rank
Test— there is no statistically significant evidence of this fact.
The explanation of why MAR can be somewhat misleading
in this case is given in Figure 2, where the boxplots of the
absolute residuals of models avg2 and reg?2 are given: it is easy
to see that the distributions are similar, but reg2 has a greater
MAR because of three applications, whose size estimation
error is quite large.
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Figure 2. Absolute residuals of models avg2 and reg2.

Now, as recommended by Shepperd and MacDonell (see
Section III-B) we evaluate the size effect. To this end, we
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computed Hedges’s g for all model pairs. The results are given
in Table IV.

TABLE IV. EFFECT SIZE (HEDGES’S g).

CM avgl regl avg2 reg2 log2

CM - 0.75 0.82 1.30 0.98 1.36
avgl -0.75 - 0.12 0.58 0.27 0.66
regl -082  -0.12 - 0.38 0.13 0.44
avg2  -130 -058 -038 - -026  0.12
reg2 -098  -027 -0.13 026 0.33

log2 -136  -066 -044 -0.12 -033 -

It is easy to see that all model-based size estimation meth-
ods appear definitely preferable with respect to the constant
model. Models avg2 and log2 appear preferable to the other
model-based estimation methods, with log2 only marginally
better than avg?2.

The indications provided by Hedges’s g are also consistent
with the indications obtained from Wilcoxon Sign Rank Test,
e.g., according to Hedges’s g avg2 is only marginally better
than reg?2.

V. DISCUSSION OF RESULTS

With reference to Figure 1, at the end of phase a), we
know the number of Functional Processes (#FPr), thus models
avgl and regl are applicable. At the end of phase b), the other
models are also applicable.

According to the analysis of experimental data, we have
that the models that are applicable at the end of phase b) are
—to different extents— more accurate than the models that are
applicable at the end of phase a). This was expected, since
by progressing from phase a) to phase b), more information
concerning the application is made available through UML
models, thus we can exploit this information to achieve more
accurate size estimates. However, having reliable empirical
evidence that progressing trough application modeling phases
enable the construction of progressively more accurate models
of the functional size is quite important. It also indicates that
collecting measures of COSMIC elements (especially #FPr
and #DG, hence AvDGperFPr) and building several statistical
models of COSMIC size is useful to get a progressively more
accurate notion of the size of the application being built.
Actually, the size effect indicators (see Table IV) suggest that
the models available at the end of phase b) allow only for a
medium-small improvement over the best model available at
the end of phase a), especially as far as regl is concerned.
However, to achieve this moderate improvement, all you have
to do is counting the data group (i.e., classes in UML models):
since this counting is very easy (it can even be automated)
building more accurate models at the end of phase b) is not
only possible, but most probably always convenient.

Like in any empirical study, we have to deal with some
threats to the validity of our analysis.

We see no construction issues with our analysis, since all
the used techniques are statistically sound; in fact, they have
been proposed to correct the problems with previous indicators,
such as MMRE.

The main problem we face is probably the generalizabil-
ity of results. In fact, our results derive from the analysis
of a dataset that collects data from only 21 projects. It is
possible that other datasets could support somewhat different
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conclusions. However, the fact that our dataset includes several
industrial projects, and that the size of the dataset is not
excessively small (especially in the context of empirical soft-
ware engineering studies) supports the hypothesis the results
presented here are sufficiently representative in general. Also,
the logical coherence of the results —namely the fact that the
more information is available from UML models, the more
accurate is size estimation— supports the hypothesis the results
presented here are valid.

VI. RELATED WORK

The accuracy evaluation techniques used in this paper are
being increasingly used by researchers that need to evaluate
the accuracy of new effort estimation proposals. For instance,
Sarro et al. used the Mean Absolute Error and the Standardized
Accuracy to assess the accuracy of a bi-objective effort esti-
mation algorithm that combines confidence interval analysis
and assessment of mean absolute error [17]. To establish if
the estimations of one method were significantly better than
the estimations provided by another method, they tested the
statistical significance of the absolute errors achieved with
different estimation methods via the Wilcoxon Signed Rank
Test, as we did in Section IV.

The techniques used here are becoming quite popular, but
there are also several alternative proposal, actually too many
to be mentioned here. As an example of an alternative to SA,
Tofallis proposed to use the logarithm of the accuracy ratio:
log% [18]. As an example of an alternative to Hedges’s
g, Vargha and Delaney proposed the Al2 statistic, a non-
parametric effect size measure: given a performance measure
M, Al12 indicates the probability that running algorithm A
yields higher M values than running another algorithm B [19].
Finally, a quite different but interesting proposal is StatREC, a
Graphical User Interface statistical toolkit designed to provide
a variety of graphical tools and statistical hypothesis tests to
facilitate strategies for an intelligent decision-making [20].

Concerning the assessment of accuracy of functional size
estimation methods, to the best of the author’s knowledge, very
little work has been done. In general, some evaluation is done
when a method is proposed, as in [21], where the NESMA
estimated method is proposed and its accuracy is evaluated
on the training set. A noticeable exception is [22], where
several early estimation methods for Function Point measures
are evaluated via an empirical study.

VII. CONCLUSION

In this paper, the accuracy of a set of model-based methods
to estimate the COSMIC size of software applications has been
evaluated. The relevance of the paper is based on two factors:

e  For practitioners (as well as for researchers) knowing
the accuracy that can be achieved via size estimation
methods is very important. Consider for instance that
the application of the considered size estimation meth-
ods could provide the most important piece of infor-
mation upon which the cost of software is estimated.

e To evaluate the accuracy of estimates, you need re-
liable indicators. Traditional indicators like MMRE
have been proved to be biased. So, finding and testing
more reliable indicators is necessary. Consider for
instance a new estimation technique proposed by
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some researchers: how can they confidently claim that
their new technique is good, and possibly even better
than existing techniques? They need reliable accuracy
evaluation techniques and indicators.

According to our empirical study, we can recommend that the
accuracy of estimates be evaluated by

e  Computing the mean of absolute residuals (MAR) of
all the models to be tested.

e For any estimation method, doing better than the
baseline models (the constant model and the random
model) is a must. Hence, one should always test
models against the constant model. In addition, one
should also evaluate new estimation methods against
the currently used estimation technique, to see it the
change is worthwhile.

e Using Wilcoxon Sign Rank Test is advisable, since
it can give statistically significant indications that are
particularly informative when two methods’ MAR
values are close.

e Also looking at the boxplots of absolute residuals can
help, especially when a few outliers affect the MAR
at a great extent (as in Figure 2).

e  Finally, assessing the effect size using Hedges’s g (or
similar indicators) is useful to assess the extent of the
improvement that a new technique can guarantee over
another one.

When evaluating the accuracy of model-based COSMIC
size estimation methods, we got easily quite representative
indications via the MAR, as shown in Table II. By means
of more sophisticated statistical tools —such as the Wilcoxon
Sign Rank Test and Hedges’s g— we achieved indications that
are slightly more informative, e.g., that there is no statistically
significant evidence that the log 2 model is more accurate than
the reg2 model.

As a final observation, we note that the analyses reported
in this paper were carried out quite easily via simple R [23]
programs. So, practitioner and researchers that need to evaluate
estimation accuracy can invest a small amount of effort to
program a few hundred lines of R code that will make the
analysis reported here totally automatic.

Future work includes:

e  Further evaluating model-based COSMIC size estima-
tion methods via additional evaluation methods and
against additional datasets.

e  Experimenting the accuracy evaluation methods used
in this paper with other estimation techniques and
using other datasets.
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