
A Reusable Adaptation Component Design for Learning-Based Self-Adaptive Systems

Kishan Kumar Ganguly, Kazi Sakib
Institute of Information Technology

University of Dhaka, Dhaka, Bangladesh
Emails: bsse0505@iit.du.ac.bd, sakib@iit.du.ac.bd

Abstract—In self-adaptive systems, according to the separation
of concern principle, the adaptation logic and the business logic
components should be kept apart for reusability. However, this
promotes reuse of the whole adaptation component while reuse of
its subcomponents and their classes can also be helpful. Existing
techniques do not consider this. Moreover, existing approaches
also do not consider application and environment factors together
for a more accurate adaptation. In this paper, a learning-based
adaptation component design has been proposed which supports
these. Machine learning is used to express metrics that measure
system goals, as a combination of application and environment
attributes. These are used to select application components to
turn on or off by solving an optimization problem, aimed at
maximizing system goal conformance. Components are turned on
or off using a customizable effector component. Design patterns
are utilized for increasing the reusability of the adaptation
subcomponents. The proposed method was validated using the
popular Znn.com problem. The reusability and learning accuracy
metrics used indicate that it performs well for both. The system
was also put under high load for observing adaptation of response
time. It was seen that adaptation occurred as soon as the response
time was over a provided threshold.

Keywords–Reusable Adaptation Component; Environment Fea-
ture; Application Feature; Design Pattern.

I. INTRODUCTION

For self-adaptive systems, developing the business logic
and then, augmenting it with the adaptation logic are easier
due to the adaptation component complexity. Apart from this
component-level reuse, subcomponent-level reuse (i.e., reuse
of adaptation subcomponents and their classes) can further
reduce development time. For this, the adaptation component
needs to be customizable to easily add or remove any classes.
Moreover, adaptation effectiveness should be ensured for max-
imum goal conformance (e.g., performance, cost, etc.) [1].

In self-adaptive systems, goals are generally non-functional
requirements. These requirements are expressed using metrics
(e.g., response time, throughput, etc.), which help to detect
goal violation by checking metric thresholds. Goal violation
leads to adaptation which triggers reconfiguration to toggle
(turn on or off) components. These components, also called
features, are variation points of the system [2]. For example,
modules for turning on and off a server can be called separate
features. Generally, adaptation logic is a mathematical model
that provides a feature selection to toggle. In the proposed
methodology, these features, which can be toggled are called
application features. However, environment features may exist
that have impact on adaptation (e.g., service time, bandwidth,
etc.) but cannot be toggled. The challenge is to incorporate
these two types of features for effective adaptation and struc-
turing the adaptation logic modularly for reusability.

A number of design techniques for self-adaptive systems
have been proposed where a few seem to have considered

reusability. Garlan et al. proposed the Rainbow framework
where adaptation condition-action rules were hardwired into
the system which hampered reuse [1]. Esfahani et al. pro-
posed the FUSION framework, which used learning to derive
equations for predicting metrics and used these to construct
an optimization problem. This was solved to get a feature
selection. However, incorporating environment features in the
optimization problem leads to a feature selection that provides
specific numerical values for the environment features. This is
not useful because environment features cannot be controlled
or selected, rather these depend on the underlying system
environment. So, environment features cannot be directly used
with the FUSION framework. Ramirez et al. discussed twelve
design patterns for self-adaptive systems [3]. However, break-
ing these down to lower level patterns can facilitate reuse [4].

The contributions of this work are: 1) A generic design
for the adaptation component that supports both component
and subcomponent-level reuse. 2) A learning-based adaptation
technique that considers environment features and generates
training data automatically. The proposed approach applies
machine learning to derive feature-metric equations to predict
metric values from application feature statuses (on or off) and
environment feature values. These more accurate metric equa-
tions are combined with the user provided metric thresholds to
construct utility functions. These are used to devise an integer
linear optimization problem similar to FUSION in case of
goal violations. However, unlike FUSION, the environment
features are also considered. The feature selection given by
solving the optimization problem is applied to the system
using components called customizable effectors. The proposed
methodology also introduces a technique to automatically
derive the data for learning. All these make the adaptation
logic generic, which helps to reuse the component as a whole.
For subcomponent-level reuse, design patterns are utilized to
structure the adaptation component modularly.

The proposed technique was applied to the Znn.com model
problem [1]. This system was deployed in five servers with a
load balancer. Reusability was assessed using renowned met-
rics (e.g., Afferent Coupling, Rate of Component Observabil-
ity, etc.). Effectiveness was validated by observing whether the
response time stays under an empirically derived threshold in a
high load environment. The reusability metric values indicate
higher reusability in both component and subcomponent-level.
The proposed technique also performs better in the high load
as it brings down the response time once it rises. Moreover,
learning accuracy metrics (e.g., Adjusted R2, Correlation Co-
efficient, etc.) were used to show that considering environment
feature produces more accurate metric equations.

The rest of the paper is structured as follows. In Section
II, the proposed reusable adaptation component design is
presented. In Section III, a case study is provided along with

244Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



Solve Optimization Problem
Maximize total utility subject to 
1. each utility > 0, feature constraints and
2. environment feature value =  
current environment metric value

Execute

Customized 
Effector

metric values
Monitor Analyze

Plan

metric1=c1xFeature1+c2xFeature2+c3xFeature3
metric2=c1xFeature1+c2xFeature2+c3xFeature4

Adaptation

if(utilityValues
>thresholds){
    plan();
}

if(failedAdaptations
>threshold){
    preprocess();
    train();
}

metric=c1xFeature1+
           c2xFeature2+
           c3xFeature3...

Preprocessing

Training Accuracy TestingLearning

Knowledge Base Construction
1. Randomly turn on/off features maintaining dependency
2. Read metric values for the selection
3. Write feature selection and metric values to training file

1,0,0,1,0,0.51

Feature Selection Metric Values

1,0,1,0,1,0.22

80.65

60.55

Figure 1. The Logical View of the Proposed Methodology.

an evaluation of reusability and effectiveness of the proposed
approach. Section IV contains the related works. Section V
holds the conclusion and future research directions in this area.

II. REUSABLE ADAPTATION COMPONENT DESIGN

Here, a generic adaptation logic has been designed based
on learning. Although this ensures reusability of the whole
adaptation component, reusability of the subcomponents (for
example, learning, preprocessing algorithm, etc.) is not guar-
anteed. For this, the subcomponents are structured with design
patterns. These two perspectives are discussed below.

A. Logical View
The adaptation logic consists of three processes - Knowl-

edge Base Construction (KBC), Learning and Adaptation.
These three processes and the required system specific inputs
are depicted in Figure 1 and discussed below.

1) Input: Information about application and environment
feature, feature dependency, metric, utility and initial feature
selection are required where application feature information
consists of feature name only.

For feature dependency, the dependent features and their
types are needed. The proposed method uses the dependency

TABLE I. CONSTRAINTS FOR FEATURE RELATIONSHIPS

Feature Constraint Feature Relation∑
∀fn∈zero-or-one-of-group

fn ≤ 1 zero-or-one-of-group∑
∀fn∈exactly-one-of-group

fn = 1 exactly-one-of-group∑
∀fn∈at-least-one-of-group

fn ≥ 1 at-least-one-of-group∑
∀fn∈zero-or-all-of-group

fn mod n = 0 zero-or-all-of-group

∀child ∈ Conflicting Feature Setfparent − fchild ≥ 0 parent child relation

types mentioned by Esfahani et al. [2] (Table I) because these
cover common feature relationships and can be represented
mathematically for the optimization problem. Here, zero-or-
one-of-group means more than one feature cannot be enabled.
Exactly-one-of-group means exactly one feature can be enabled
at a time. At-least-one-of-group means at least one of the
features must be enabled. Zero-or-all-of-group indicates either
all or none of the features can be turned on. Parent child
relation means enabling a specific (parent) feature requires all
other features of the group to be enabled.

The existing system needs to expose an API for metric
calculation. The metric information contains metric names,
types, thresholds and API location (e.g., URL, class file path
etc.). Two types of metrics are used representing maximization
and minimization goals. For maximization goals, the metric
values must be greater than the thresholds and the opposite for
minimization goals. Metric types are used to form the utility
equations using (1).

un =

{
mn − thn if Typen = Maximization

thn −mn otherwise
(1)

Where un and mn represent the utility and metric values
respectively. thn is the threshold value for the nth metric.

The initial feature selection is the feature selection for the
first run. This is used in KBC. The environment features are
also given. These features must have corresponding metrics
provided in the aforementioned metric information. The met-
rics calculate current values for these environment features. In
the optimization problem, these current values are considered
for better accuracy of the solution.

2) KBC: This component generates training data for the
learning process. As seen from Figure 1, training data con-
sists of feature combination and metric values. Environment
features generally have numeric values. So, the number of
possible feature combination is infinite and cannot be gen-
erated. So, the application is put under a simulated or real
environment and application features are toggled randomly
(Figure 1). The environment feature values and metric values
are read from the Monitor process and all the feature-metric
values are written as training data. For example, in Figure 1,
the random application feature selection is 1, 0, 0, 1, 0 for the
first row and 0.51 is the environment feature value. Here, 1
and 0 indicates application feature status (enabled or disabled).
This feature selection results in metric value 80.65. All these
are written as the training data.

Features in each of the feature dependency groups are
randomly toggled maintaining the dependency. For example,
in case of at-least-one-of group, when one feature is randomly
selected to turn on, all the other features are turned off. For
parent-child relation, a number between 0 and 1 is chosen to

245Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



Figure 2. The Structural View of the Learning Component.

Figure 3. The Structural View of the Adaptation Component.

toggle the parent feature and all the child features are turned
off or on accordingly. This random sampling with dependency
groups ensures that feature dependency is maintained and the
generated training data represents the population of training
data appropriately.

3) Learning: Learning process aims to generate equations
that predict metric values from feature selection. These equa-
tions are used in the Plan process. The generated training data
from KBC is preprocessed to be properly used in the learning
algorithm. For example, training data can be normalized for
scaling. Preprocessing methods depend on the training data
and the learning algorithm. So, it needs to be customizable.
Strategy pattern is used for this purpose (Section II-B).

The next step is training where the preprocessed data is
passed to a learning algorithm to derive metric equations.
These equations help to predict metric values provided appli-
cation and environment feature values. Training can be done
using a regression algorithm. For example, in Figure 1, the
metric equation from training is a linear regression equation.

As adaptation process will show, the training data is
gradually updated with monitored metric values and feature
selection. However, as the adaptation decision is taken using
metric equations derived from previous training data, this can
lead to failed adaptation when new patterns of data arrive.
In this case, training is rerun when the number of failed
adaptations exceed an empirically defined threshold (Figure
1).

4) Adaptation: Adaptation process consists of Monitor,
Analyze, Plan and Execute components following the MAPE-
K approach [5]. This process detects violated goals using the
utility equations and solves an optimization problem to find
a feature selection with maximum total utility function value.
Although this technique closely resembles FUSION [2], the
environment features are incorporated for better adaptation,
which is one of the contributions of this work. The four
components of Adaptation are discussed below.

a) Monitor: This collects metric values from the system
using the metric API. These are stored in the knowledge base
along with the current feature selection as training data.

b) Analyze: The metric values from Monitor are used
in the utility equations for goal violation detection. From
Equation (1), goal violations lead to un < 1. This is used
to detect goal violations in this technique.

c) Plan: Detection of goal violation invokes Plan com-
ponent. The metric equations from the learning process are
used to find conflicting goals. The conflicting goal detection
mechanism has been shown in Figure 1. The violated goal
metric equation is matched with other metric equations to find
overlapping features (shaded area in Figure 1). If overlapping
features are present, these metrics are conflicting to the vi-
olated metric and these need to be considered together for
optimization. Then, an optimization problem is formed.

Fselection = maximize(

nc∑
i=1

Ui(Mi(F )))

Subject To
∀i ≤ nc . Ui(Mi(F )) > 0
∧ ∀f ∈ F . Fd(f)
∧ ∀fe ∈ Fe . fe = c
Where
∀i ≤ nc,Mi(F ) =

∑
c× f (2)

Here, Fselection is the feature selection after solving the
optimization problem. This feature selection contains all the
feature values (0 or 1) to toggle. The optimization problem
states that the total utility for nc conflicting goals needs to
be maximized. The constraints show that all utility functions
in the maximization function must be greater than zero be-
cause individual goals must not be violated. Besides, feature
dependencies must be maintained (i.e., Fd must be true). All
the environment features fe from the environment feature set
Fe will have corresponding environment metric values. All
The metrics Mi(F ) in the utility equation will be replaced by
metric equations from the learning process.

d) Execute: Execute component helps to toggle selected
features in the existing system. This component consists of
some effectors which are used to toggle each of the features.
These effectors are specific to the system and so, and abstrac-
tions are provided for later customization.

B. Structural View of The Model
In the structural view, the subcomponents of Learning and

Adaptation have been organized with Gang of Four (GoF) de-
sign patterns [6] for reusability and customization. These were
chosen by comparing the functionality of the subcomponents
with the applicability of the design patterns [6].

Figure 2 and 3 show the design patterns for the Learning
and the Adaptation components. Decorator pattern is used to
provide additional functionality at runtime. In preprocessing,
the training data is dynamically filtered with algorithms such as
normalization, feature selection, etc., using this pattern (Figure
2). In optimization problem construction, decorators that add
the feature, utility and environment feature constraints, and
the objective function, build a complete optimization problem
(Figure 3). Strategy pattern helps to support interchangeable
algorithms. So, it has been used to support different learning
algorithm and failed adaptation testing strategies in Learning.

246Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



TABLE II. DEFINITIONS AND THRESHOLDS FOR REUSABILITY METRICS

Metric
Name Level Definition Range/

Value
RCO Component Rate of Component Observability [0.17, 0.42]
RCC Component Rate of Component Customizability [0.17, 0.34]
SCCr Component Self-Completeness of Components Return Value [0.61, 1.0]
SCCp Component Self-Completeness of Components Parameter [0.42, 0.77]
LCOM4 Class Lack of Cohesion of Methods 4 1
DIT Class Depth of Inheritance Tree 2
AC Class Afferent Coupling [0,1]
WMC Class Weighted Methods per Class [0,24]

In Adaptation, it has been used to support different algorithms
for monitoring, analyzing goal violation and optimization.

Observer pattern helps to notify all the dependent objects.
This has been used to notify the learning process to restart
when a new pattern arrives. In the Adaptation component,
Analyze component notifies the Plan component about goal
violations using this pattern. Facade pattern provides a set of
interfaces to a group of components. This is used to provide
interfaces for the Preprocessing and Training, and the Plan
component. Command pattern helps to decouple the caller and
receiver of a request. It has been used to validate the feature
selection from the Plan facade and pass to the effectors. This
helps to separate the effectors and the Plan component.

The logical view indicates effective adaptation and sep-
aration of the adaptation logic from the business logic. The
structural view enables reuse of the whole subcomponents and
their classes. So, the proposed methodology supports effective
adaptation with component and subcomponent-level reuse.

III. CASE STUDY: ZNN.COM

Znn.com is a model problem used in numerous papers
[7]. It is a news serving application where a load balancer
is connected to a server group. Its business goal is to serve
with a minimum content fidelity and within the budget while
maintaining a minimum performance. These interrelated goals
demand a self-adaptive mechanism to operate optimally.

In Znn.com, every server is an application feature as these
need to be added or removed at runtime. Content fidelity
types (high, low and text) are application features as these can
be toggled. Server and content fidelity features belong to at-
least-one-of and exactly-one-of dependency types respectively.
Performance, content fidelity and cost can be calculated by
response time, content size and number of active servers
respectively. Service time and request arrival rates can be
considered as environment features.

A. Experimental Setup
Znn.com was deployed on five virtual machines running

Apache2 web server, which were connected to a load balancer.
Two more virtual machines were used to collect metric values
and to simulate user requests respectively. An adaptation
component was developed in Java following the proposed
approach and incorporated with Znn.com.

Prior to the experiment, the inputs mentioned previously
were provided. Moreover, in a simulated environment, Queue-
ing Theory was used to calculate response time where the
M/M/c queue model was utilized to represent a system with c
servers. Reusability was evaluated using metrics mentioned in
Table II. To assess effectiveness, an experiment similar to [8]
was performed with a higher load, which is, 1) 15 seconds of
load with 30 visits/min 2) 2.5 minutes of ramping up to 3000

TABLE III. CLASS-LEVEL REUSABILITY METRIC VALUES

Metric Components Mean Max Min
%-Acceptable
Classes

LCOM4
Monitor 1 1 1 100
Analyze 1 1 1 100
Plan 1 4 1 87.5
Execute 1 2 1 75
Learning 1 2 1 80
KBC 1 2 1 85.7

DIT
Monitor 1.33 2 1 100
Analyze 1 1 1 100
Plan 1.35 2 1 100
Execute 1.25 2 1 100
Learning 1.2 2 1 100
KBC 1 1 1 100

AC
Monitor 1.14 2 1 87.5
Analyze 1 1 1 100
Plan 1.37 5 1 84.21
Execute 1.33 3 1 83.33
Learning 1.13 2 1 87.5
KBC 1 1 1 100

WMC
Monitor 2.67 8 1 100
Analyze 2 3 1 100
Plan 4.6 18 1 100
Execute 5.5 15 1 100
Learning 2.92 9 1 100
KBC 2.83 9 1 100

TABLE IV. COMPONENT-LEVEL REUSABILITY METRICS VALUES

Metric Monitor Analyze Plan Execute Learning KBC
RCO 0.17 0.33 0.29 0.33 0.25 0.2
RCC 0.33 0.33 0.29 0.33 0.5 0.6
SCCr 1 1 1 1 0.67 1
SCCp 1 0.67 0.67 1 0.67 0.75

visits/min 3) 4.5 minutes of fixed load to 3000 visits/min 4) 9
minutes of ramping down to 60 visits/min.

This experiment was performed five times starting from a
single server and high fidelity feature selection as this results
in the worst performance. The load was increased by 120
visits/min on every run and the system reached its maximum
memory limit after five runs. Following the literature, the main
objective (response time) was compared in two situations,
namely adaptation and without adaptation [2][7][9].

B. Metrics
Table II shows the metrics used to assess reusability of

Monitor, Analyze, Plan, Execute, Learning and KBC com-
ponents. Reusability was evaluated for the whole component
as well as for its classes. Four popular reusability metrics
by Washizaki et al. were used to evaluate component-level
reusability [10] (Table II). Reusability of the classes was
evaluated by Lack of Cohesion of Methods 4 (LCOM4) and
Afferent Coupling (AC) as these are well-known and valid
reusability metrics [11][12]. Depth of Inheritance Tree (DIT)
and Weighted Methods per Class (WMC) were also used
as these are well-understood and well-validated [13]. The
thresholds for LCOM4, WMC, DIT and AC are provided in
[11], [14] and [15]. It is notable that multiple metrics have been
used as no single metric can represent the overall reusability
of the system [12].

1) Reusability of Adaptation: Table III summarizes the
reusability metric values for classes from each aforementioned
component. It shows the minimum, maximum and average
of the metric values for the classes and the percentage of
acceptable classes according to the metric thresholds. From
the table, the mean LCOM4 values are close to the ideal value
(i.e.,1). Here, Execute component has the lowest acceptable
classes as it contains system-dependent customizable effectors.
For DIT and WMC, all the classes are acceptable as per their

247Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



0 10 20 30 40 50 60 70
0

5

10

0 10 20 30 40 50 60 70
0

8

16

0 10 20 30 40 50 60
0

6

12

0 10 20 30 40 50 60 70
0

8

16

0 10 20 30 40 50
0

10

20

Re
sp

on
se

 T
im

e 
(m

s)
Re

sp
on

se
 T

im
e 

(m
s)

Re
sp

on
se

 T
im

e 
(m

s)
Re

sp
on

se
 T

im
e 

(m
s)

Requests

Requests

Requests

Requests

Re
sp

on
se

 T
im

e 
(m

s)

Requests

 With Adaptation  Without Adaptation

Figure 4. Comparison of Performance: Adaptation vs Without Adaptation.

thresholds. However, the average WMC values are much lower
than the threshold because using design patterns have resulted
in smaller methods. For AC, 87.5, 100, 84.21, 83.33, 87.5
and 100 percent classes are acceptable. Here, Execute has the
lowest AC value for the aforementioned reason.

The component-level reusability metric values are shown
in Table IV. Here, all the Rate of Component Observability
(RCO) and Self-Completeness of Components Return Value
(SCCr) values are within the threshold. The RCC values are
also within the acceptable range except for Learning. This
is because Learning component is highly customizable as
all the preprocessing, learning algorithms etc. can be easily
substituted. For Self-Completeness of Components Parameter
(SCCp), only Monitor and Execute have out of range values as
these depend on the metric API and system-specific effectors
respectively.

2) Effectiveness of Adaptation: Figure 4 shows the five
runs of the experiment. By analyzing the system average
performance, the response time threshold was chosen to be
6.2 ms. In the first run, response time gradually decreases
after about 12 requests and rises after about 20 requests.
Then, the response time is almost constant due to the constant
load scenario (Section III-A). With adaptation, the response
time gradually decreases under 6.2 ms and remains as such.
However, without adaptation, response time remains more
frequently over 6.2 ms. Second run shows a similar pattern.

In the third run, for with adaptation scenario, the re-
sponse time gradually drops down the threshold after about
22 requests and remains stable up to about 36th request
when a sudden performance goal violation occurs. However,
adaptation quickly reduces the response time under the thresh-
old. The fourth run shows a similar structure. The fifth run

TABLE V. COMPARISON OF REGRESSION MODEL ACCURACY WITH AND
WITHOUT ENVIRONMENT FEATURES

Runs With Environment Features Without Environment Features

RMSE Adjusted
R2

Correlation
Coefficient RMSE Adjusted

R2
Correlation
Coefficient

1 0.7428 0.6637 0.7093 0.9373 0.278 0.4553
2 0.8626 0.7804 0.8683 1.6502 0.12322 0.3184
3 0.862 0.787 0.869 1.6444 0.16069 0.3439
4 0.7944 0.8114 0.888 1.4944 0.28563 0.5043
5 0.7884 0.8126 0.8946 1.6054 0.19748 0.4165

represents the highest load run of all. In this case, the system
becomes unstable and response time varies a lot. However, the
mechanism without adaptation produces response time above
the threshold where the system with adaptation crosses the
threshold only about five times, but runs down within threshold
instantly.

Table V shows the accuracy of the regression model
regarding environment features. In this case, three metrics,
namely Root Mean Squared Error (RMSE), Adjusted R2

and Correlation Coefficient are used. Among these, RMSE
is smaller by 0.6563 on average considering environment
features. Adjusted R2 and Correlation Coefficient are higher
by 0.562 and 0.4382 on average respectively. These indicate
that considering environment features results in more accurate
metric prediction, and so, better adaptation decision.

C. Discussion
The following observations can be made from the results.

• The class reusability metrics indicate overall high
reusability of the component classes on average. The 100
percent accepted classes for DIT and WMC, and low
mean WMC values indicate that using design patterns
have resulted in classes with smaller methods and lower
inheritance depth. This makes the behavior of the classes
more predictable. Besides, LCOM4 and Afferent coupling
indicate that an overall higher cohesion and lower cou-
pling is achieved, leading to higher reusability.

• The component reusability metrics indicate that all the
components have higher reusability. However, Learning
has the highest customizability and, Monitor and Execute
have external dependencies.

• Figure 4 and Table V indicate that adaptation improves
the performance of the system gradually. As knowledge
base is gradually enriched, this justifies the effectiveness
of this process. Moreover, the accuracy measures for the
first run from Table infers that knowledge base generation
provides useful training data. The high accuracy scores
also indicate that adaptation decisions are effective.

• Table V infers that accuracy largely suffers when environ-
ment features are not considered. This validates the use
of environment features in the proposed approach.

IV. RELATED WORK

In the literature, most of the learning-based self-adaptive
systems aim to achieve effectiveness. Kim et al. proposed a Q-
learning-based approach where learning derived Q-values and
adaptation actions with maximum Q-values were chosen [9].
Han et al. proposed a reinforcement learning-based approach
where learning discovered the model of the environment in
context in order to pick adaptation policies [16]. None of
[9] and [16] considered application factors and reusability.
Elkhodary et al. proposed supervised learning-based FUSION

248Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances



technique, which applied learning to derive relationships be-
tween application features and metrics, and used these to opti-
mally select features [2]. However, environment features were
not considered. FUSION tool also could not be effectively
reused as it needed to be changed from system to system [2]. It
also could not be applied when training data was not available.

A few techniques that address reusability have been pro-
posed. Garlan et al. proposed the Rainbow framework [1] for
adaptation with infrastructural reusability. Rainbow captured
commonalities using architectural styles where systems with
same architectural style could reuse elements such as rules,
parameters etc. However, reuse among different architectural
styles was limited. Component Model-based approaches such
as the K-Component Framework [17] and the Fractal com-
ponent model-based approach [18] relied on structuring the
system with a specific component model for reusability. How-
ever, a specific component model made reuse between different
component models costly because the full code base needs to
be refactored. Ramirez et al. produced a list of twelve design
patterns for self-adaptive systems and applied these in Rainbow
[1]. However, it would be better if these patterns could be
mapped into more well-known GoF patterns [4].

None of the proposed techniques consider application and
environment features together for more effectiveness. Besides,
the learning-based approaches do not consider increasing
reusability. Learning-based approaches like FUSION also fails
if training data is absent. The proposed approach overcomes all
these by considering application and environment features, ap-
plying design patterns for reusability and providing a training
data generation mechanism.

V. CONCLUSION AND FUTURE WORK

This paper introduces an adaptation component design
considering reusability and effectiveness. A knowledge base
constructor is presented that randomly toggle features and
considers corresponding metric values to derive training data.
This data is used to produce equations to predict metrics from
application and environment features using Machine Learning.
These equations and the feature dependencies help to derive
an optimization problem. Solving this, a feature selection
with maximum total utility function value is obtained, which
can be executed through customizable effectors. This overall
generic logic supports component-level reuse. Design patterns
are used to enable reuse of the subcomponents. The reusability
metric values for each subcomponent are within the acceptable
threshold, indicating high reusability. Adaptation effectiveness
is also achieved as the system gradually decreases the response
time under a provided threshold when goal violation occurs.
The learning accuracy regarding environment features also val-
idates adaptation effectiveness and utilization of these features.

In future, the technique will be enhanced to take adaptation
decision by foreseeing future effects of the decision on the
system. It will also be extended to automate threshold selection
for metrics and failed adaptations.

REFERENCES
[1] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,

“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” IEEE Computer, vol. 37, no. 10, pp. 46–54, 2004.

[2] N. Esfahani, A. Elkhodary, and S. Malek, “A learning-based frame-
work for engineering feature-oriented self-adaptive software systems,”
Software Engineering, IEEE Transactions on, vol. 39, no. 11, pp. 1467–
1493, 2013.

[3] A. J. Ramirez and B. H. Cheng, “Design patterns for developing dynam-
ically adaptive systems,” in Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems. ACM,
2010, pp. 49–58.

[4] M. L. Berkane, L. Seinturier, and M. Boufaida, “Using variability
modelling and design patterns for self-adaptive system engineering:
application to smart-home,” International Journal of Web Engineering
and Technology, vol. 10, no. 1, pp. 65–93, 2015.

[5] IBM Corporation, “An architectural blueprint for autonomic comput-
ing,” IBM White Paper, 2006.

[6] E. Gamma, Design patterns: elements of reusable object-oriented
software. Pearson Education India, 1995.

[7] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-based self-
adaptation in the presence of multiple objectives,” in Proceedings of
the 2006 international workshop on Self-adaptation and self-managing
systems. ACM, 2006, pp. 2–8.

[8] S.-W. Cheng, Rainbow: cost-effective software architecture-based self-
adaptation. ProQuest, 2008.

[9] D. Kim and S. Park, “Reinforcement learning-based dynamic adaptation
planning method for architecture-based self-managed software,” in
Software Engineering for Adaptive and Self-Managing Systems, 2009.
SEAMS’09. ICSE Workshop on. IEEE, 2009, pp. 76–85.

[10] H. Washizaki, H. Yamamoto, and Y. Fukazawa, “A metrics suite for
measuring reusability of software components,” in Software Metrics
Symposium, 2003. Proceedings. Ninth International. IEEE, 2003, pp.
211–223.

[11] M. Hitz and B. Montazeri, “Measuring coupling and cohesion in
object-oriented systems,” in Proceedings of International Symposium
on Applied Corporate Computing, 1995, pp. 25–27.

[12] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC Press, 2014.

[13] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, pp.
476–493, 1994.

[14] R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software met-
rics threshold values using roc curves,” Journal of software maintenance
and evolution: Research and practice, vol. 22, no. 1, pp. 1–16, 2010.

[15] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and H. C.
Almeida, “Identifying thresholds for object-oriented software metrics,”
Journal of Systems and Software, vol. 85, no. 2, pp. 244–257, 2012.

[16] H. N. Ho and E. Lee, “Model-based reinforcement learning approach
for planning in self-adaptive software system,” in Proceedings of the
9th International Conference on Ubiquitous Information Management
and Communication. ACM, 2015, p. 103.

[17] J. Dowling and V. Cahill, “The k-component architecture meta-model
for self-adaptive software,” in International Conference on Metalevel
Architectures and Reflection. Springer, 2001, pp. 81–88.

[18] P.-C. David and T. Ledoux, “Towards a framework for self-adaptive
component-based applications,” in Distributed Applications and Inter-
operable Systems. Springer, 2003, pp. 1–14.

249Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances


