ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

An OO and Functional Framework for Versatile Semantics of Logic-Labelled Finite

State Machines

Callum M¢Coll

Vladimir Estivill-Castro

René Hexel

School of Information and Communication Technology
Griffith University, Nathan QLD 4111, Australia

callum.mccoll@griffithuni.edu.au

v.estivill-castro@griffith.edu.au

r.hexel@Qgriffith.edu.au

Abstract—Logic-Labeled Finite State Machines (LLFSMs) offer
model-driven software development (MDSD) while enabling cor-
rectness at a high level due to their transparent semantics that
enables testing as well as formal verification. This combination of
the three elements (MDSD, validation, and verification) results in
more reliable behaviour of software components, but semantics
is constrained to specific scheduling. We offer a framework that
allows to obtain significant variations that suit specific domains
while maintaining the capability to generate Kripke structures for
formal verification or to execute corresponding monitor or testing
LLFSMs for validation in a test-driven development framework.
The framework is Object-Oriented so new software patterns
for scheduling can be derived to suit a particular embedded,
robotic, or cyber-physical system, while at the same time enabling
functional programming constructs.

Keywords—Logic-labelled finite-state machines; Model-Driven
Engineering; Real-Time Systems; Verification; Validation.

I. INTRODUCTION

By following a transparent semantics that includes a
synchronous model, Logic-Labelled Finite State Machines
(LLFSMs) enable the design of software that can achieve high
levels of complexity and sophistication while guaranteeing
deterministic execution and facilitating formal verification [1].

The semantics specify precisely when variables affected
by sensors outside the system are inspected as well as the
particular points in the execution of the software where snap-
shots of the environment variables are taken [2]. However, this
constrains the execution to just one specific semantics, and in
particular, to one specific frequency and pace, which may not
be suitable in another robotic or embedded system. It should
be possible to configure rapidly and efficiently the semantics
and constructs of LLFSMs providing developers the freedom
to adapt or tailor the system semantics to particular cases.
This paper enables such versatility. We provide the capacity
to instantiate new scheduling semantics with incarnations of
template methods and classes while still providing the capacity
to generate the corresponding Kripke structure for formal
verification with standard tools, such as NuSMV.

Therefore, this new framework removes the need to adhere
to the strict semantics currently implemented in tools such
as clfsm. Importantly, we maintain the ability to perform
formal verification. We illustrate two areas where we create
abstractions to the semantics of LLFSMs and show how in-
stantiation of these abstractions into concrete derivations main-
tain the ability to perform formal verification. We introduce

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

swiftfsm [3], a framework for LLFSMs written in Swift,
which enables formal verification, but allows developers more
freedom to design, adapt and create new LLFSM models that
are particular to application-specific use cases.

II. LoGIic-LABELLED FINITE STATE MACHINES

Finite state machines are ubiquitous models of system
behaviour. Variants of finite-state machines appear in many
system modelling languages, most prominently SysML [4]
and UML [5], [6]. Despite their widespread use and pene-
tration in model-driven software development, the semantics
of SysML [4] and UML [7] are ambiguous [8] and restricted
versions are offered to create executable models [9], real-
time systems [10] or enable formal verification [11]. More-
over, languages such as SysML and UML have historically
adopted the event-driven form of finite-state machines inspired
by Harel’s STATEMATE. Unfortunately, event-driven systems
cannot offer a simple semantics, as it becomes cumbersome
to manage event queues and the concurrent arrival of events
while handling the current event. The issue is intrinsic to these
types of machines, where a system is modelled as being in a
finite set S of states, and where transitions ‘immediately’ fire
upon arrival of an event (more complexity usually results as
executing a transition can itself fire a series of other events).

Complementary to this, LLFSMs model a system as being
in a finite set S of states. As before, each state (s € S)
represents a possible situation that the system may find itself
in. But here it is more explicit that while in that state, the
LLFSM will execute some actions. The system also moves
from state to state by means of transitions. However, in sharp
contrast with the event-driven approach, each transition is
predicated by a logical expression. States are executable states.
A state machine is not waiting for events to happen and
reacting to them. It is executing its current state s., and at
a precise point in the execution, the expressions labelling the
associated transitions are evaluated. If one of these expressions
evaluates to true, the system moves to the target state of the
transition, updating the current state. Each LLFSM has a state
designated as the initial state (sg € S), representing the state
at the point when execution commences.

Each state contains a set of executable actions. These
actions are executed at specific times and under certain condi-
tions. For example Wagner et al. define four distinct types of
actions [12]:

238

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

(OnENty_s
Me e

(b) Diagram providing
semantics for Entry Actions.

(a) Diagram for Entry
Actions.

Figure 1. Equivalence Wagner et al. [12] Entry Actions in terms of states
without sections and transitions.

1) Entry Actions: Executed when the system first enters
a state.

2) Exit Actions: Executed when the system leaves the
state.

3) Transition Actions: Executed when the system is
transitioning between states.

4) Input Actions: Executed when an input satisfies a
particular condition. These actions can be indepen-
dent of the state.

We use Wagner et al. to illustrate the first point of why a gen-
eral framework is of interest. We suggest that the fundamental
execution cycle is the very simple notion of two states between
a transition: a source state sg and target state s;. The distinction
of an Entry Action a is merely semantic sugar for the removal
of an extra state. We illustrate this in Figure 1. Wagner et al.’s
Entry Actions [12] are essentially a pre-state to the state s.
Figure la is the construct that actually has the semantics of
Figure 1b. This is important, because if the expression e in
Figure 1 is also true, it becomes very transparent that the
action a will be performed at least once even if execution exits
state s immediately (we note that ambiguities of this type were
already identified in standards like SCXML).

The proper specification of semantics becomes even more
important when the actions in a state access a set of variables
that affect subsequent actions and transitions. That is, the
attached Boolean expressions (usually named guards) involve
variables. The first issue is the scope of the variables and
the second issue is the potential race conditions that could be
generated upon such variables if they are shared in some way.
Common cases of variables that are shared are the variables
where sensors record a status of the environment. Thus, while
the software is executing, the value of a sensor variable may
change. Similarly, control variables for effectors are shared.
The software modelled by LLFSMs may set a control variable
and the driver of the effector reads such a variable to act.
The prototype clfsm [2] for LLFSMs provides three levels
of scope for variables.

1) External Variables: Variables external to the system
from the perspective of the software, usually cor-
responding to the sensors and effectors. They may
change at any point in time.

2) FSM Local Variables: These are variables that are
shared between all states within a single LLFSM.

3) State Local Variables: These are variables that are
local to a state.

Naturally, one can specify more variants. For example, why not
have variables that are shared between all the LLFSMs of a
system, but not sensors and effectors? Why not have variables
whose scope is even more local than that of a state, e.g., only
local to the OnEntry section? These examples illustrate the
need for a flexible approach to extending the possibilities of

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

LLFSM constructs and form the proposed framework of this
paper.

III. PROTOCOL ORIENTED DESIGN

Protocols (akin to interfaces in Java) are a common
mechanism to establish the contract a module (or set of classes
under a main class) is to adhere to in order to participate
and implement some functionality. he protocol itself defines
the signatures (names and parameters) of the methods (and if
appropriate return values with types) in order for objects to
cooperate. In some cases the protocol also specifies invariants
and exceptions.

Our swiftfsm framework uses protocols extensively to
stipulate the required functionality. However, typically, the
protocols themselves contain no implementation (although it
is possible in Swift to have a default implementation),
thus a type (class) that conforms to a protocol provides its
specific implementation for the functionality that the protocol
encapsulates. We use protocol-oriented design to model the
semantics of a model, and thus, we focus on describing a
set of protocols. When a software engineer wants to develop
an implementation of the semantics; these shall conform to
a specific set of protocols and implement the required func-
tionality. This therefore enables a developer to design how
different parts of the system interact and function, without
the need to create a global implementation of behaviour
or a new implementation to generate Kripke structures for
verification. Moreover, the framework allows the developer
to create different implementations for specific, convenient
modelling of constructs that conform to the same semantics
modelled by these protocols.

IV. MODELLING STATES AND TRANSITIONS

We are now ready to present our first abstraction: the type
for transitions. To introduce the idea, consider the following
scenario where allowing developers to create custom semantics
leads to more robust designs. Let’s focus on a state A (Fig. 2).
The c1fsm semantics [1] explicitly specifies that the onEntry
action will execute once and only once for each state, after
which the sequence of transitions will be evaluated in the order
«, then f3. If the associated expression (not shown) evaluates
to true, the corresponding transition will fire and the state
will execute its onExit action. If none of the transitions fire,
the Internal action will be run. In either case, the execution
token passes to the next LLFSM in the arrangement.

Importantly, this way it is not possible to implement an
atLeastOnce semantics for the Internal action without adding
another state. If transitions « or [cause a state transition,
(in the c1lfsm semantics [1]), then the Internal action will
never execute. If this functionality is required, a pattern similar
to Figure 3 needs to be implemented. Note that this involves
creating two states and copying (duplicating) implementation,
obstructing factorisation and creating the danger of introducing
failures. Both a1 and a3 need to be copied into the new state
AOQ in order to implement the atLeastOnce semantics. State
Al is almost the same as the original state A. This becomes
arduous to maintain and modify as the developer must keep
the AO actions in sync with the Al actions.

With swiftfsm, we overcome this problem by allowing
developers to define custom state types. The result is shown
in Figure 4. Because of the wide breadth of state models,
swiftfsm only assumes that a state has a unique name.

239

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Figure 2. A simple scenario

(
onEntry:
al()

A0 N 4 Al N

onEntry:

Figure 3. Implementing “atLeastOnce” semantics in c1fsm

Therefore swiftfsm defines a StateType protocol only
containing that name. The developer has complete freedom to
define any number of phase-actions that make up a state.

The swiftfsm framework does not even assume that a
state can transition. This is a separate requirement, modelled
as a separate protocol. The Transitionable protocol adds
a sequence of transitions to conforming states. All transitions
contain

1) a predicate function that, when it evaluates to true,
represents a situation where the LLFSM will transi-
tion; and

2) a target state the LLFSM will transition to.

The type of the transition predicate function is defined as:
StateContext — Boolean

This abstracts a state context type that encapsulates all (and
only) the necessary variables that influence the evaluation of
the predicate function. In this way, a transition function can ac-
cess the necessary variables through its source state. This is an
important concept when generating the corresponding Kripke
structure of an executable model in order to perform formal
verification. The generation of the Kripke structure depends on
referential transparency, i.e., transitions will be evaluated with
any possible combination of state context variations passed in
with no further dependencies or side-effects.

This allows for an important optimisation. Typically, an
LLFSM state corresponds to several Kripke states, because of

e state sections (e.g., onEntry, onExit, Internal,
atLeastOnce, etc.), and

e the potential semantics of snapshotting external vari-
ables between these state sections.

However, our semantics recognises that external variables that
are not involved in a transition will not need to create a new
transition evaluation context. Therefore, the above transition
type is side-effect free and removes the need to consider
all possible combinations of external variables outside those
appearing in the transaction.

The traditional conceptualisation of the class of transitions
is that transitions have a source and a target state. Such a
conceptualisation complicates the optimisation we just men-
tioned, as the transition is in a static relationship with its source

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

atLeastOnce:
a3()

Figure 4. Implementing “atLeastOnce” semantics in swiftfsm

state (typically implemented as a reference). Our approach
does not need to change the source state of a transition in an
LLFSM to create the Kripke states for sections. Our framework
only updates the possible changes to the external variables
of relevance, and submits the State with this new context
for evaluation to the transition (which is a pure function).
Importantly, this means that the evaluation of any transition
is referentially transparent as it is a pure function with explicit
inputs and outputs. The Kripke structure generated in this way
is guaranteed to obtain the effect of evaluation of the transition
without possible side effects influencing the transition as all
the variables are in the context attached to the state.

V. SCHEDULING

Here, we introduce a new abstraction over the original
concept of an LLFSM ringlet [1]. A ringlet defines how the
sections within a state are executed, and more specifically, how
and in what order each action is executed. We propose to view
ringlets as pure functions that take a state and return the next
state to execute. Therefore we have them as objects of the
following type.

State — State.

If a new state is returned, then the LLFSM has transitioned.
By modelling a ringlet in this fashion, we enable developers
to create custom ringlets which determine how their states are
executed. As an illustration of the adaptability of this approach,
it is also possible to create different ringlets that execute the
same states in different ways. Importantly, the execution of the
state becomes orthogonal to the definition of the state.
However, in practice it is common that a ringlet may re-
quire to modify state information. To this end, the swiftfsm
framework provides the Ringlet protocol which defines an
execute function. If we look at previous semantics for
LLFSMs, and in particular to the semantics offered by the
clfsm compiler, we can see that the ringlet only executes the
onEntry section when the previously executed state does not
equal the current state being executed (in particular, if a state
has a transition to itself, this is a legal construct, but if the
transaction executes, in c1fsm this does not re-run the onEn-
try section). If a developers wished to extend the semantics
that all arriving transitions (including self-transitions) cause the
onEntry section to execute, our framework here allows the cre-
ation of a CLFSMRinglet that contains a previousState
member variable that the execute function refers to and
manages when executing the current state. That is we are using
the Method pattern, and the developer supplies the method
that defines the specific ringlet to sequence sections of a state.
Because LLEFSM are not event-driven, they are scheduled
using a round robin scheduler. We provide such scheduling as
the default in the framework swiftfsm. Therefore, a single

240

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

ringlet, for the current state of each LLFSM, is executed in
a sequential fashion. This creates concurrent execution in a
predictable manner reducing state explosion for formal verifi-
cation. The sequential execution avoids thread management
and avoids complexities associated with parallel execution,
(there are essentially no critical sections or mutual exclusion
challenges). Because of the sequential scheduling, we have a
deterministic execution of an arrangement of the LLF SMs, thus
when the Kripke structure is created for the entire arrangement,
we have a smaller Kripke model (a smaller NuSMYV input file)
that with unconstrained concurrency of event-driven systems.
By preventing side-effects (as shown in the previous Section),
we further reduce the size of the Kripke structure enhancing
the feasibility of performing model checking.

Furthermore, swift fsmuses a stricter snapshot semantics
when executing the ringlets. A snapshot is taken of the
external variables before the ringlet is executed. The state
then uses the snapshot when executing actions and evaluating
transitions (recall our execution context). Only once the ringlet
has finished executing, any modifications made made visible
externally (e.g., to the environment). This defines the granu-
larity at which the system is reactive to changes observable
by sensors in the environment and does not need to make
a dangerous assumption of well-behaved environments and
that the software always runs faster than any external part
of the system. Compare this with many formal verification
approaches that only work with ideal event-driven systems,
that do not exist in practice. For example, approaches where
extended finite-state machines handling of external variables
is simply assumed to be irrelevant. “During a macrostep, the
values of the inputs do not change and no new external events
may arrive; in other words, the system is assumed to be in-
finitely faster than the environment” [13, p. 172]. Alternatively,
the environment is assumed to be well-behaved, so that it
sends the input the software requires at the right time, forming
“a closed model corresponding to the complete mathematical
simulation of the pair formed by the software controller and the
environment” [14, p. 89]. Finally, a simplistic approach where
any external stimulus (change of external variables) will not
happen until all internal changes take place “giving priority to
internal actions over external actions” [15].

We argue that the specification of when a snapshot is
taken defines the level of atomicity of the sections within the
state run by the ringlet with respect to the external variables.
This becomes particularly important when performing formal
verification.

VI. FORMAL VERIFICATION

If one strictly follows the derivation of Kripke structures
from the artefact of sequential program constructs [16], the
corresponding Kripke states would not only be the bound-
aries of sections of LLFSM states, but every assignment and
operation in those sections correspond to extended FSMs,
containing programming language statements (e.g., in Swift).
The sequential execution of LLFSMs and its default snapshot
semantics enables more succinct Kripke structures, where the
delicate point is the handling of the external variables [17],
[18]. Nevertheless, as we mentioned, such a default semantics
requires recording all of the variables influencing the execution
before and after every state section in order to generate the
Kripke structure [17]. For consistency, we configured a version
of swiftfsm that followed such an approach [3].

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

These earlier approaches relied on the ringlet itself to
record variables, influencing the execution of a state. How-
ever, a more succinct approach can be used and a further
optimisation can be made. Since the swiftfsm framework
not only uses a sequential scheduling similar to c1fsm, but
a ringlet’s execution is atomic with respect to the external
variables, ringlet execution can now be treated as a black box.

Consequently, a snapshot should only be taken of the vari-
ables before and after the entire ringlet for a state is executed.
This variation also prevents statements being executed that
make modification to variables that are not reflected in the
final context for the next Kripke state. For example, a state
may make changes to an external variable during an onEntry
section that is cancelled by a further modification in the onExit
section. Since no effect of this will occur during the state’s
execution, as we now identify a Kripke state before and after
an entire ringlet execution, interim changes are not reflected
in the resulting Kripke structure.

Importantly, we argue that this is a benefit, not a problem!
In swiftfsm, the statements within sections of the state
operate within a context derived from a snapshot of the
external variables, which gets taken precisely when the state
is scheduled. There is absolutely no way that any modification
could (nor should) affect the environment until the snapshot
is saved. External variables are updated precisely once when
the ringlet has finished executing. Similarly, since swiftfsm
uses sequential scheduling, there is no way for the modification
of non-external variables to have side-effects and influence
the execution of other machines, because the semantics is
equivalent to a single thread. The only important record for
the construction of the Kripke states (to be part of the Kripke
structure or verification) is the context (of the variables) before
and after each ringlet is executed.

VII. CASE STUDY

We present a case study where we simplify the model
of a microwave oven, a ubiquitous example in the software
engineering literature of behaviour modelling through states
and transitions [19]. This model has been extensively studied
in formal verification [20, p. 39], as the safety feature of
disable cooking when the door is open is analogous to the
requirement that a radiation machine should have a halt-
sensor [21, p. 2]. Software models for microwave behaviour are
widely discussed [22], [23], [24], [25], [26], [27]). Figure 5
shows the standard executable model with LLFSMs. While
this model is transparent and formal verification establishes
requirements, the full machinery of Kripke states for each of
the three state-sections is not required (note that all Internal
sections are empty and the only onExit section that is used
is in the timer LLEFSM, in state 3 to ADD_60. Moreover, the
model would also be simplified if the timeLeft variable
were to be removed by making it equivalent to the condition
O<currentTime. With respect to the requirements specified
in Myers and Dromey [27, p. 27, Table 1] or in Shlaer and
Mellor [23, p. 36] the behaviour of such a simplification is
irrelevant. But, for model checking, removing the Boolean
variable timeLeft alone would half the number of Kripke
states (and the corresponding size of the NuSMYV file where
formal verification is conducted is thus halved). By removing
the state sections, the number of Kripke states would be halved
again. Thus, it would be advantageous to derive LLFSMs,
where states have no onExit nor Internal actions.

241

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

M v _2esT

{int currentTime; extern buttonPushed;
extern doorOpen; extern timeleft;
currentTime=0;}

{timeLeft=0<currentTine;}
On Entry

On Entry 4

0 On Exit
On Exit

Internal Internal

v _4_DECREMENT v 340060

{currentTime=currentTime-1;}

1d00rOpen &8 timetsTi && timeout(1000000)

On Entry
{+ {timeLeft=1;}
on Exit

Internal

(a) A 4-state FSM for the timer.

¥ _2.NOT_COOKING
Vv 1.COOKING

{ motor=1;}

{ extern doorOpen;
extern timeLeft;
extern motor; motor=0; }

On Entry

doorOpen || ! timeLeft
On Entry

{3

!doorOpen && timeLeft
ir On Exit

Internal

On Exit
Internal

(c) A 2-state machine for controlling the cooking engine.

buttonPushed && ldoorOpen & (currentTime<4035)

{currentTime=60+currentTime;}
On Entry

On Exit

Internal

v OFF

{ extern timeLeft;

extern sound; timeLeft

sound=0; }
) On Exit
i} Internal !wne%eﬂ
‘\h ¥ RINGING
timeout(2000006)- { sound=1; } onEntry
{11} On Exit
{1} Internal

(h\ A 2_ctate machina far cantralline the bell.

¥ _2_NOT_SHINE_LIGHT
¥ _1_SHINE_LIGHT
{light=1;}

On Entry

{extern doorOpen; doorOpen || timeLeft
extern timeLeft;
extern light; light=0;}

On Entry {+

A4 1doorOpen && ! timeLeft On Exit
On Exit

Internal

Internal

(d) A 2-state machine for the light.

Figure 5. Complete model of one-minute microwave.

v NT

{int currentTime; extern buttonPushed;
extern doorOpen; extern currentTime=0;}

On Entry

timeout(1000000)

Vv _4_DECREV
{currentTime=currentTime-1;}
On Entry

IdoorOpen && currentTime>(/&&

buttonPushed && !doorOpen &&
(currentTime<4035)

Vv _3.ADD60
{currentTime=60+currentTime;}
On Entry

Figure 6. Simplified timer with onEntry sections only.

The new model would globally replace timeLeft by
O<currentTime. All declarations of extern timeleft
disappear from all LLFSMs. Thus, the timer machine changes
to Figure 6. We point out the slight change of behaviour. With
the executable model of Figure 5, when the button is pressed
for the first time and not released, nothing would happen.
With the changes suggested, when the button is pressed for
the first time and not released, if the door is closed, cooking
will commence and the light will go on. As long as the button
is pressed and not released such cooking with the light on will
continue and the timer will not be decremented. This behaviour
does exist in a slightly similar form in Figure 5, but only
happens from the second time onwards. That is, the user must
press the button; upon releasing the button, cooking starts and
the light turns on. If the user presses and holds the button
now that cooking has started, it also blocks timing counting
down. Again, we do not consider this subtle difference in
behaviour relevant as it is never identified in the requirement.
However, the variation simplifies the Kripke structure radically
for more efficient formal verification of the requirements. With
our framework, the designers can easily alternate between the
two executable models, and conduct model checking on both.

A further optimisation can be made when considering
how swiftfsm currently handles the snapshots of external

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

variables. Recall that a snapshot is taken before the ringlet
executes, and then saved back to the environment once the
ringlet has finished executing. By changing these semantics
to a per-schedule cycle, as opposed to a per-ringlet cycle, we
can further minimise the number of Kripke States that are
generated. Taking the microwave as an example, instead of
taking a snapshot of the external variables before executing
each state, we instead take a single snapshot of the environment
before executing the ringlet for the current state within each
LLFSM. Each LLFSM would therefore share the same snapshot
and any modifications made to the snapshot will only be saved
once each LLFSM has executed its current state.

This has a drastic impact to the number of Kripke States
that are generated for the Kripke Structure. Consider all
possible combinations of a snapshot of the external variables.
The microwave uses three Boolean variables, therefore this
results in 22 = 8 possible combinations. There are normally
four snapshots taken per schedule cycle as there are four
LLFSMs executing and a snapshot is taken when a ringlet
in each LLFSM is executed. Therefore, there are 23" — 4096
possible combinations of snapshots per schedule cycle. When
taking a single snapshot at the start of the schedule cycle,
the result is 23" = 8 possible combinations of snapshots.
Removing the timeLeft variable further reduces this to

242

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

22" = 4 combinations of snapshots per schedule cycle, a
reduction by three orders of magnitude.

VIII. CONCLUSION

In this paper, we have introduced a flexible semantic model
for logic-labelled finite-state machines. Compared to tradi-
tional event-driven state machines and LLF SMs, our approach
allows a more direct mapping of UML semantics [5], [6],
allowing high-level, executable models, which are less error-
prone and eliminate duplication. Moreover, we have shown
these semantics can be modelled in a referentially transparent
way that creates simpler Kripke structures, allowing formal
verification of our executable models, that is orders of magni-
tudes faster for the same model than previous approaches.

In software engineering, there is a prevalence for modelling
using UML state charts (which is a derivation of Harel’s
State Charts [28]) and which are event-driven. Moreover,
Sommerville [29], states that “state models are often used
to describe real-time systems” [29, p. 544], citing UML. We
note that Sommerville also uses a microwave to illustrate how
FSMs model the behaviour of systems [29, p. 136]. Because of
these associations among systems that respond to stimuli, we
thank the reviewers for suggesting to clarify the terminology
regarding what constitutes an event-driven system, a reactive
system and more importantly, a real-time system.

We refer to an event-driven system as one typically based
on a software architecture built around stimuli-driven call-
backs, a subscribe mechanism and listeners that enact such
call-backs (very much as GUIs are composed for desktops
today). Reacting to stimuli in this way implies uncontrolled
concurrency (e.g. using separate threads or event queues). The
counterpart to event-driven systems are time-triggered systems.
Lamport [30] provided fundamental proofs of the limitations of
event-driven systems. Reactive-systems are responsive systems
without much processing, as opposed to deliberative systems
(which reason, plan, learn). Real-time systems are required to
meet time-deadlines in response to stimuli. Therefore, although
closely related, these terms are not the same, and in this
paper, we argue (supported by the work of Lamport [30]) that
there are many solid reasons why real-time systems may be
better served by time-triggered systems and pre-determined
schedules, rather than the unbounded delays that may occur in
event-driven systems.

The work presented in this paper illustrates how LLFSMs
can be used as executable models. Moreover, we argue that
their deterministic execution and verifiability is more suitable
for real-time systems than systems where threads proliferate.

REFERENCES

[11 V. Estivill-Castro and R. Hexel, “Arrangements of finite-state machines
- semantics, simulation, and model checking,” in MODELSWARD,
S. Hammoudi, L. F. Pires, J. Filipe, and R. C. das Neves, Eds.
SciTePress, 2013, pp. 182-189.

[2] V. Estivill-Castro, R. Hexel, and C. Lusty, “High performance relaying
of c++11 objects across processes and logic-labeled finite-state ma-
chines.” Springer Int. 2014, pp. 182-194.

[3] C. M¢Coll, “swiftfsm - A Finite State Machines Scheduler,” Honours
Thesis, Griffith University, Nathan QLD, 4111, Australia, 2016.

[4] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML:
The systems Modeling Language. San Mateo, CA: Morgan Kaufmann,
2009.

[5] M. Samek, Practical UML Statecharts in C/C++, Second Edition: Event-
Driven Programming for Embedded Systems. Newton, MA, USA:
Newnes, 2008.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22])

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

D. Pilone and N. Pitman, UML 2.0 in a Nutshell.
2005.

M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman, 2003.

R. Rumpe, “Executable modeling with UML — a vision or a nightmare?
-, in Issues and Trends of Information Technology Management in
Contemporary Associations Volume 1, M. Khosrowpour, Ed. Idea
Group, 2002, pp. 697-701.

S. J. Mellor and M. Balcer, Executable UML: A foundation for model-
driven architecture. Reading, MA: Addison-Wesley, 2002.

B. P. Douglass, Real Time UML: Advances in the UML for Real-Time
Systems (3rd Edition). Redwood City, CA, USA: Addison Wesley
Longman, 2004.

A. Krupp, O. Lundkvist, T. Schattkowsky, and C. Snook, “The adaptive
cruise controller case study — visualisation, validation, and temporal
verification,” in UML-B Specification for Proven Embedded Systems
Design, J. Mermet, Ed. Springer US, 2004, pp. 199-210.

F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme, Modeling
Software with Finite State Machines: A Practical Approach. CRC
Press, Boca Raton, FL 2006.

W. Chan, R. J. Anderson, P. Beame, D. Notkin, D. H. Jones, and W. E.
Warner, “Optimizing symbolic model checking for statecharts,” IEEE
Trans. Softw. Eng., vol. 27, no. 2, Feb. 2001, pp. 170-190.

J.-R. Abrial, Modeling in Event-B - System and Software Engineering.
Cambridge Uni., 2010.

L. Grunske, K. Winter, N. Yatapanage, S. Zafar, and P. A. Lindsay,
“Experience with fault injection experiments for FMEA,” Software,
Practice and Experience, vol. 41, no. 11, 2011, pp. 1233-1258.
E. M. Clarke, O. Grumberg, and D. Peled, Model checking.
Press, 2001.

V. Estivill-Castro and D. A. Rosenblueth, Model Checking of
Transition-Labeled Finite-State Machines. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 61-73.

V. Estivill-Castro, R. Hexel, and D. A. Rosenblueth, “Efficient mod-
elling of embedded software systems and their formal verification,” 19th
Asia-Pacific Software Engineering Conf., vol. 1, 2012, pp. 428-433.
Boston, MA, USA:

O’Reilly Media,

MIT

I. Sommerville, Software engineering (9th ed.).
Addison-Wesley Longman, 2010.

E. M. Clarke, O. Grumberg, and D. Peled, Model checking.
Press, 2001.

C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

S. J. Mellor, “Embedded systems in UML,” OMG White paper, 2007,
www.omg.org/news/whitepapers/ label: “We can generate Systems To-
day” Retrieved: April 2017.

S. Shlaer and S. J. Mellor, Object lifecycles : modeling the world in
states. Englewood Cliffs, N.J.: Yourdon Press, 1992.

F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme, Modeling
Software with Finite State Machines: A Practical Approach. NY: CRC
Press, 2006.

L. Wen and R. G. Dromey, “From requirements change to design
change: A formal path,” 2nd Int. Conf. Software Engineering and
Formal Methods (SEFM 2004). Beijing, China: IEEE Computer Soc.,
2004, pp. 104-113.

R. G. Dromey and D. Powell, “Early requirements defect detection,”
TickIT Journal, vol. 4Q05, 2005, pp. 3—13.

T. Myers and R. G. Dromey, “From requirements to embedded software
- formalising the key steps,” 20th Australian Software Engineering Conf.
Gold Cost, Australia: IEEE Computer Soc., 2009, pp. 23-33.

D. Harel and M. Politi, Modeling Reactive Systems with Statecharts:
The Statemate Approach. New York, NY, USA: McGraw-Hill, 1998.
I. Sommerville, Software Engineering, 9th ed. USA: Addison-Wesley,
2010.

L. Lamport, “Using time instead of timeout for fault-tolerant distributed

systems,” ACM Transactions on Programming Languages and Systems,
vol. 6, 1984, pp. 254-280.

MIT

243

