
Validation of Specification Models Based on Petri

Nets

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic

{koci,janousek}@fit.vutbr.cz

Abstract—Each validation process of the software system re-
quirements should include an analysis of all possible scenarios.
Whereas only some of them are valid, some scenarios are redun-
dant, and some scenarios cause unsafe behavior of the system. An
important factor for successful checking of all possible scenarios is
the appropriate support of searching and evaluation of scenarios.
In this area, there is a gap between what formal approaches can
offer and how they are actually used. It comes from the belief
that formal approaches are difficult for understanding and using,
and that they are not suitable for validation because they have
no executable form. Nevertheless, systematic formal description
techniques allow to specify the system properties and the detailed
form of the solution during the design process and to analyze
system specification, including user interactions, and implement
architectural design decisions. This work focuses on the use of
Petri nets for specifying requirements and generating and analysis
scenarios to validate this specification.

Keywords–Object Oriented Petri Nets; Use Cases; Sequence
Diagrams; requirements specification; requirements validation.

I. INTRODUCTION

This work builds on the paper [1] and describes possible
validation procedures for the specification models. It is part
of the Simulation Driven Development (SDD) approach [2],
which combines basic models of the most used modeling
language Unified Modeling Language (UML) [3][4] and the
formalism of Object-Oriented Petri Nets (OOPN) [5].

One of the fundamental problems associated with software
development is the specification and validation of the system
requirements [6]. The use case diagram from UML is often
used for requirements specification, which is then developed
by other UML diagrams [7]. The disadvantage of such an
approach is an inability to validate the specification models
and it is usually necessary to develop a prototype, which is no
longer used after fulfilling its purpose. Utilization of OOPN
formalism enables the simulation (i.e., to execute models),
which allows to generate and analyze scenarios from spec-
ification models. All changes enforced during the validation
process are entered directly in the specification model, which
means that it is not necessary to implement or transform
models.

There are methods of working with modified UML models
that can be transformed to the executable form automatically.
Some examples are the MDA methodology [8], Executable
UML (xUML) [4] language, or Foundational Subset for xUML
[9]. These approaches are faced with a problem of model

transformations. It is hard to transfer back to model all changes
that result from validation process and the model becomes
useless. Further similar work based on ideas of model-driven
development deals with gaps between different development
stages and focuses on the usage of conceptual models during
the simulation model development process [10]. This approach
is called model continuity. While it works with simulation
models during design stages, the approach proposed in this
paper focuses on live models that can be used in the deployed
system.

The paper is organized as follows. Section II summarizes
concepts of the design method with using use cases and Petri
nets. It also introduces the simple case study. Section III
demonstrates possibilities of recording scenarios based on Petri
nets. Section IV deals with scenarios exploration including
generating scenarios and sequence diagrams. The summary and
future work is described in Section V.

II. DESIGN METHOD

In this section we will briefly introduce basic concepts of
the design method [11] and will demonstrate these concepts
on a simple case study.

A. Case Study in Basic Diagrams

The basis of design method is to identify use cases and
roles that interact with individual use cases; the use case
diagrams from the UML language are used. The behavior
of use cases and roles are described by special variant of
Petri nets, Object-Oriented Petri Nets (OOPN). Use cases and
roles correspond to classes of OOPN. One use case invocation
corresponds to creating an instance, i.e., an object of the
class. The basic behavior of each element is described by one
object net that represents independent autonomous behavior
of the object. Because the life of object and its object net is
closely related, we can use the notion object and net in the
same meaning. The object net, i.e., the basic behavior, can be
supplemented with method nets. Nets describing behavior of
roles are called role nets, nets describing behavior of use cases
are called activity nets.

The case study consists of simplified robotic system. For
our purposes, we will consider only one robot whose motion
is controlled by a predefined algorithm. So that the model
consists of one role of Robot and one use case Algorithm1. The
actor Robot represents a role of the real robot in the system.

232Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Figure 1. The basic class diagram.

The real actor, i.e., robot, has to have own representation is the
system too. For terminological reasons we denote a real actor
by the term subject. The actor Robot has its subject called
RobotDevice. The classes of role, activity, and subject nets are
shown in Figure 1. A more detailed description of the model
can be found in the paper [1].

B. Behavioral modeling

Each object net, i.e., use case or role specification, de-
scribes a set of scenarios of the same type. From the Petri
nets definition, the common behavior is defined as an ori-
ented graph consisting of two kinds of nodes, transitions
and places. Transitions representing actions or commands and
places representing partial states of the scenario. Only nodes
from different kinds can be connected by arcs.

The system state is represented by places of the nets.
System is in a particular state if an appropriate place contains
a token. Actions that can be performed in a particular state
are modeled as part of the transition whose execution is con-
ditioned by a presence of tokens in that state. The transition is
modeled as an element that moves tokens between places, i.e.,
particular states. Except the input places, the transition firing
can be conditioned by a guard. The guard contains expressions
resulting in boolean value. The expression may also be a
synchronous port call. Synchronous port is a special variant
of transition, i.e., it may have input places, output places, and
a guard. Synchronous port cannot be fired independently but
has to be called from another transition or sycnhronous port.
These ports serve for synchronous communication between
nets, i.e., calling transition and called port have to be fired
simultaneously.

The transition can be fired only if the guard is evaluated
as true. It means that every boolean expression gets true and
every called synchronous port gets fireable. If the transition
fires, it executes all called synchronous ports that can have a
side effect, i.e., the executed synchronous port can change a
state of the called net.

C. Activity Net Algorithm1

The activity net Algorithm1 of the use case Algorithm1
(see Figure 2) consists of states testing, walking, stopped,

turnRight, and turnRound that are represented by appropriate
places. States turnRight and turnRound are only temporal and
the activity goes through these states to the one of stable states
walking or stopped. This net describes the following algorithm.
The robot goes straight and if it encounters an obstacle, it turns
to the right and tries to go straight. If it can not go straight, it
turns around. If it can not go straight, it stops.

walking

r isCloseToObstacle.

t1

r stop.

r turnRight.

r

r

turnRight

r isCloseToObstacle.

t2

r turnRight.

r turnRight.

r

r isClearRoad.

t11

r

r isCloseToObstacle.

t3 stopped

r isClearRoad.

t12 r

r

r go.

r go.

r

turnRound

r

r

r

testing

r isClearRoad.

t10

r go.

r

r

r

Figure 2. Model of the use case Algoritm1.

Control flow is modeled as the sequence of transitions.
Each transition execution is conditioned by events representing
the state of the robot. Let us take one example for all, the
state testing and linked transitions t10 and t1. The transition
t1 is fireable, if the condition isCloseToObstacle is met. This
condition is modeled by calling the synchronous port in the
guard. When firing the transition, actions stop and turnRight
the robot are performed and the system moves to the state
turnRight. The transition t10 is fireable, if the condition
(modeled by the synchronous port) isClearRoad is met. When
firing the transition, the action go (the robot goes straight) is
performed and the system moves into the state walking.

Both testing condition and message passing represent the
interaction between the system (especially the activity net
Algorithm1) and the role of robot (the role net Robot). The
object of the robot role serves as token moving through
the control flow. Presence of this token in places represents
particular states and allows the activity net to communicate
with the robot at the same time.

D. Role Net Robot

As already mentioned, actor represents a role of the user
or device (i.e., a real actor), which the actor can hold in the
system. One real actor may hold multiple roles, so that it can
be modeled by various actors.

A role is modeled as a use case and its behavior by Petri
nets. Interactions between use cases and actors are synchro-
nized through synchronous ports that test conditions, convey

233Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

subject

self delay: 10

d := s getDistance.

100

isCloseToObstacle

dist

d <= 10.
d

d

isClearRoad

d > 10.

s

d

oldD

p1

p2

t1

t2

Figure 3. Model of the role net Robot.

the necessary data and can initiate an alternative scenario on
both sides. For instance, the robot state is tested by a pair of
synchronous ports isClearRoad and isCloseToObstacle.

subject

 s turnRight.

turnRight

s

 s stop.

stop

s
return return

tr ts

Figure 4. Methods of the role net Robot.

The net can send or receive instructions through messages
too. In our example, the role Robot checks the distance from an
obstacle each 10 time unit by sending the message getDistance
to the robot subject. Methods turnRight, go, and stop that
control the robot moving are delegated to the subject. They
are shown in Figure 4.

III. MODELING OF SCENARIOS

Petri nets models describe possible scenarios of one type of
behavior, i.e., a behavior of a use case or an actor. For testing
purposes it is necessary to investigate specific scenarios for
individual situations. This section demonstrates possibilities of
recording individual scenarios based on Petri nets models.

A. Scenario records

To record one scenario, we use the notation common to
the Petri nets, the sequence of fired transitions. The basic
notation of the record is <tName1, tName2, . . .>. For in-
stance, the record <t10, t1, t11> means that the robot will
go straight, after a while it encounters an obstacle, turns
right, and continuous walking. The record may be comple-
mented with data including place markings and constraints.
The previous example may be complemented with place

markings after the scenario ends. At this moment, all places
are empty except the place walking, which contains object
of the class Robot as the control token. The sequence is
<t10, t1, t11, . . . , t3{stopped(ERobot)}>, where the nota-
tion ERobot means an instance of the class Robot. If it is
needed to name the instance, we will write nameERobot.

B. Subject Model

To have the model complete, we will simulate the subject
representing the real robot and the environment the robot is
moving in. We come out of the labyrinth model, which is
shown in Figure 5. The subject RobotDevice is modeled by
the Petri net, which is captured in Figure 6.

14

100

200

40

Figure 5. Labyrinth scheme.

The model has two places representing stable states of
the net—state (the symbol in this place indicates whether
the robot walks or not) and distance (the pair of numbers
represents the position in labyrinth and the distance from
an obstacle). If the net is in the state to go (symbol #g
is placed in the state state), the distance from the obstacle
is reduced by two length units each time unit. If the robot
reaches the obstacle, the distance does not change anymore.
The shape of labyrinth is modeled by pairs of values in the
place listDistances. The first value denotes the position, i.e.,
the corridor the robot should walk in, and the second value
denotes the length of this corridor. The position changes by
calling method turnRight.

(1,100) (2,40)

 (3,0) (4,40)

 (5,200) (6,0)

d > 2

nd := d - 2.

(i,d)

(i,nd)

#g

self hold: 1.#s

(1,20)
i <= 6

ni := i + 1.

i > 6

(i, d)

(i,old)

(ni,d)

i

turnRight

d <= 2

d

p1

state

dist

return

t1

t2

t3 p2

listDistances

Figure 6. Model of the subject RobotDevice simulating the real device.

The formalism of OOPN allows working with time using
a special method delay that is called from transitions. When

234Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

transition containing a delay message is invoked, this transition
is delayed for the specified time. It has the same meaning as
the timed transition in Timed Petri Nets. The simulator can
interpret the time in two ways. Either it works with model
time that simulates real time during simulation run or directly
real time.

C. Sequence of events

The transition sequence of the net Algorithm1 representing
the particular scenario, which corresponds to the labyrinth
model, is shown in Figure 7. Such listings are well machine-
readable, but are less readable for humans. It is possible to
graphically record the sequence of the performed transitions,
which can include additional information about the selected
states or time.

<t10, t1, t11, t1, t11, t1, t2, t12, t1, t2, t3>

Figure 7. The transition sequence of the Algorithm1 net.

An example of the graphical notation of the record is shown
in Figure 8. The record is a sequence of fired transition with no
conditions and branches. The information about chosen places
are displayed above arcs before and after the transition fires.
For our purposes, we have chosen the place Robot.dist (first
line, e.g., (100)) and the place RobotDevice.dist (second line,
e.g., (1, 20)). Each record of fired transitions can be supple-
mented by an information about model time (e.g., t = 0).

(100)

(1,20)
t10

(0)

(1,0)

(0)

(2,100)
t1

(100)

(2,100)
t=0 t=10

t11

t=10

(100)

(2,100)

(0)

(3,0)

t1

(40)

(3,40)

(40)

(3,40)

t11

(0)

(3,40)

t=80 t=60

t1

t=60 (0)

(2,0)

(0)

(6,200)
t2

(200)

(6,200)

(200)

(6,200)
t12

(0)

(6,0)
t=80 t=180

t1

t=180

(0)

(7,0)

t13

t=180

t2

t=180

(0)

(4,0)

(0)

(4,0)

(0)

(7,0)

(0)

(7,0)

(0)

(7,0)

Figure 8. Graphic record of the expected scenario.

The transition sequence can be recorded manually or
automatically. The first approach serves as a test case, which
is compared to the sequence obtained by model simulation.
In the case of manual recording, it is not advisable to declare
states and model time for all transitions, but only for significant
points in the sequence of transitions. In our example, there are
important locations before performing transitions t11, t12, and
t13. Figure 9 shows the initial part of the declared sequence
(show at the top) and the obtained (real) sequence (shown at
the bottom). By comparison, we can find out that the real
sequence differs from expected sequence in the third step
(transition).

IV. EXPLORATION OF SEQUENCES

In this section, we will explore the difference between
expected and obtained sequences. Since the model simulation
is not limited to one net, we have to take into account the
behavior of other interconnected networks. Therefore, we will
analyze transitions over time across all participating nets.

A. Records of sequence

To save space, we will not display sequences of
events graphically, but describe them in a table. The
table record includes model time t, fired transitions
trans, states of chosen places Alg1.walking (p1),
Alg1.turnRight (p2), Alg1.turnRound (p3), Robot.dist
(Rdist), RobotDevice.dist (Ddist), and RobotDevice.state
(Dstate).

(100)

(1,20)
t10

(0)

(1,0)

(0)

(2,100)
t1

(100)

(2,100)
t=0 t=10

t11

t=10

(100)

(2,100)

(100)

(1,20)
t10

(0)

(1,0)

(0)

(1,100)
t1

(0)

(2,100)
t=0 t=10

t2

t=10

(0)

(2,100)

Figure 9. Graphic record of the declared and obtained scenarios.

TABLE I. SEQUENCE OF EVENTS OF THE BASIC SCENARIO.

t trans p1 p2 p3 Rdist Ddist Dstate

0 Alg1.t10 r 100 (1, 20) #g
Robot.t1 r 100 (1, 20) #g
RDev.t1 r 100 (1, 20) #g

1 RDev.t2 r 100 (1, 18) #g
RDev.t1 r 100 (1, 18) #g

2 RDev.t2 r 100 (1, 16) #g
. .

9 RDev.t2 r 100 (1, 2) #g
RDev.t1 r 100 (1, 2) #g

10 RDev.t2 r 100 (1, 0) #g
Robot.t2 r 0 (1, 0) #g

<S>Alg.t1 0 (1, 0) #g
Robot...t 0 (1, 0) #g
RDev...t 0 (1, 0) #s
Robot...t 0 (1, 0) #s
RDev...t 0 (2, 100) #s

<F>Alg.t1 r 0 (2, 100) #s
<S>Alg.t2 0 (2, 100) #s
Robot...t 0 (2, 100) #s
RDev...t 0 (3, 40) #s
Robot...t 0 (3, 40) #s
RDev...t 0 (4, 0) #s

<F>Alg.t2 r 0 (4, 0) #s
Alg.t3 0 (4, 0) #s

Table I shows the sequence of transitions from the be-
ginning of the simulation, i.e., from the Alg1.t10 transition.
We find out that the transitions of nets Robot and RDev are
performed between the transitions Alg1.t10 and Alg1.t1 of
the base sequence. Sequence of these transitions simulates
the robot movement and updates the distance information.
Transition Alg.t1 is activated when information of the distance
is updated to value of 0. This activation corresponds to the

235Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

line with <S>Alg.t1 symbol. When this transition fires, the
transitions of Robot.stop and RDev.turnRight nets are per-
formed. After completing the Alg1.t1 transition, the system is
in a state that is captured on the line with <F>Alg.t1 symbol.
The next step is an activation of the Alg1.t2 transition even
though the declared sequence of events expects an activation
of Alg1.t11. There is a problem because the Alg.t1 transition
did not change the condition guarding transitions Alg.t2 and
Alg.t11.

TABLE II. SEQUENCE OF EVENTS OF THE CORRECTED SCENARIO.

t trans p1 p2 p3 Rdist Ddist Dstate

0 Alg1.t10 r 100 (1, 20) #g
Robot.t1 r 100 (1, 20) #g
RDev.t1 r 100 (1, 20) #g

1 RDev.t2 r 100 (1, 18) #g
RDev.t1 r 100 (1, 18) #g
Robot.t2 r 18 (1, 18) #g
Robot.t1 r 18 (1, 18) #g

2 RDev.t2 r 18 (1, 16) #g
. .

5 RDev.t2 r 12 (1, 10) #g
RDev.t1 r 12 (1, 10) #g
Robot.t2 r 10 (1, 10) #g
Robot.t1 r 10 (1, 10) #g

<S>Alg.t1 10 (1, 10) #g
Robot...t 10 (1, 10) #g
RDev...t 10 (1, 10) #s
Robot...t 10 (1, 10) #s
RDev...t 10 (2, 100) #s

<F>Alg.t1 r 10 (2, 100) #s
<S>Alg.t2 10 (2, 100) #s

. .

According to the state analysis, it can be deduced that the
information in the Robot net about distance to the obstacle
has not been updated. In addition, there is a long delay in
passing the current information from the subject RobotDevice
to the role Robot. If we focus on this problem, the solution
is relatively simple. We need to change the interval in which
the information is obtained so that the response is faster. We
change the action of Robot.t1 transition to the self hold: 1
statement. The resulting sequence is shown in Table II. The
information is being updated but the previous issue is not
addressed—the actual scenario is still different from the ex-
pected one. We will analyze this situation in next subsections.

B. Sequence Diagrams

It is not easy to get an overview of the communication
between objects in large models. One scenario corresponds to
a sequence of interactions between system objects. Interactions
are usually described by diagrams. The activity diagram and
the sequence diagram of the UML language being widely used
in this area. The activity diagram is suitable for modeling the
behavior of the use case, i.e., modeling all possible scenarios
in general way. The sequence diagram models one particular
scenario and makes it possible to better represent the external
view of the system dynamic, i.e., the messaging sequence. We
will present the possibilities of using sequence diagrams in
conjunction with Petri nets.

The Petri net model is conceived as a sequence of internal
and external events. Internal events may represent message
sending to another objects, external events may arise in re-
sponse to incoming events. Having a classical concept into

account, it is necessary to map the external events to methods.
Nevertheless, it makes the model less readable and understand-
able. When using Petri nets, the scenario is clearly defined as
a sequence of events. One can then monitor system dynamics
directly in the base model without event mapping. On the
other hand, the sequence diagram makes it possible to better
represent the external view of the system dynamic, i.e., the
sequence of messages.

Figure 10. Sequence diagram modeling the scenario.

In addition to statistical data, the information needed to
generate the sequence diagram can be collected during the
simulation. It is therefore possible to generate individual
scenarios in the form of sequence diagrams. The message
linked to the event is generated to the sequence diagram as the
message between sender and receiver. The synchronous port
connected to an event is captured in the sequence diagram as
the state of the object on which the port has been executed.

<Alg1.t10,Robot.isClearRoad,Robot.go.t1,
RobotDevice.go.t1>

Figure 11. Part of the complete transition sequence.

Let us get back to our example. Since we know that the
problem occurs before executing the transition Algorithm1.t2,
it is sufficient to generate a sequence diagram from the
first event Algorithm1.t10 to the event Algorithm1.t2. The
resulting sequence diagram is shown in Figure 10. For instance,
at time 0, the object o1EAlg1 sends a message go to the
object o2ERobot from the transition Alg1.t10. This execution
is conditioned by synchronous port isClearRoad and the
initial marking of the place Robot.dist is 100. The object
o2 responds by forwarding the message to o3ERobotDevice
object. This sequence corresponds to the initial part of the
scenario shown in Table II, the formal notation is captured in

236Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Figure 11.

subject

100

dist

 s turnRight.

d := s getDIstance.

turnRight

s

oldD

d

tr

Figure 12. Fixed method of the role net Robot.

In Figure 10, there is a special symbol
⊗

marking the
position in the sequence where is a difference between ex-
pected and obtained scenario. We knew there is a problem
of transmitting information about robot’s distance. In the
sequence diagram, we can find out that the message of getting
distance is not called after turning the robot. We fix this by
calling the message getDistance inside the transition Robot.tr
as shown in Figure 12.

C. Interface to real robot

In the next step, we will analyze the behavior of model
connected to the real robot. From the model point of view,
only the subject stored in the place Robot.subject changes.
Because we work with a real component, we run the simulation
in real time rather than model time. The first steps of the
simulation are shown in Table III.

TABLE III. SEQUENCE OF EVENTS OF THE OBTAINED SCENARIO.

t trans p1 p2 p3 Rdist

0.00 Alg1.t10 r 100
Robot.t1 r 100

1.03 Robot.t2 r 18
.

5.10 Robot.t2 r 9
5.10 Robot.t1 r 9
5.10 <S>Alg.t1 9
5.11 Robot...ts 9
5.11 Robot...tr 0
5.11 <F>Alg.t1 r 0
5.12 <S>Alg.t2 0
.

We have got the same situation—the robot stops prema-
turely. Looking at the sequence of events, we find out that the
robot turns too early and stands in front of the wall of corridor
that it came. It is necessary to adjust the role behavior so that
it can slow down and gradually stop just before the obstacle.

V. CONCLUSION

The paper dealt with the concept of modeling software
system requirements using the formalism of OOPN. This
concept allows to model and validate specifications through
the scenarios exploration in simulated or real surroundings

with no need to transform models. We presented basic concepts
based on declaration, generation, and comparison of individual
scenarios. The concept is supported by mapping Petri net
model to sequence diagrams helping display the sequence of
messages. During the process of model analysis, we discovered
several inaccuracies in the description of role behaviors, but
own algorithm, i.e., the basic work-flow of the system, was
not modified. This approach of creating the requirements
specification combines an abstract view of the system with
implementation details, all of which are implemented by the
same formalisms.

At present, we have developed the tool supporting require-
ments modeling using use cases and the formalism of OOPN.
In the future, we will focus on the tool completion, a possibility
to interconnect model to others languages, and feasibility study
for different kinds of usage.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project
FIT-S-17-4014 and The Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme
of Sustainability (NPU II); project IT4Innovations excellence
in science - LQ1602.

REFERENCES

[1] R. Kočı́ and V. Janoušek, “Modeling System Requirements Using Use
Cases and Petri Nets,” in ThinkMind ICSEA 2016, The Eleventh
International Conference on Software Engineering Advances. Xpert
Publishing Services, 2016, pp. 160–165.

[2] R. Kočı́ and V. Janoušek, “Modeling and Simulation-Based Design
Using Object-Oriented Petri Nets: A Case Study,” in Proceeding of the
International Workshop on Petri Nets and Software Engineering 2012,
vol. 851. CEUR, 2012, pp. 253–266.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

[4] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model
Driven Architecture with Executable UML. Cambridge University
Press, 2004.

[5] M. Češka, V. Janoušek, and T. Vojnar, “Modelling, Prototyping, and Ver-
ifying Concurrent and Distributed Applications Using Object-Oriented
Petri Nets,” Kybernetes: The International Journal of Systems and
Cybernetics, vol. 2002, no. 9, 2002.

[6] K. Wiegers and J. Beatty, Software Requirements. Microsoft Press,
2014.

[7] N. Daoust, Requirements Modeling for Bussiness Analysts. Technics
Publications, LLC, 2012.

[8] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in International Conference on Software
Engineering, ICSE, 2010.

[9] S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “A framework for
testing uml activities based on fuml,” in Proc. of 10th Int. Workshop
on Model Driven Engineering, Verification, and Validation, vol. 1069,
2013.

[10] D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuity in
discrete event simulation: A framework for model-driven development
of simulation models,” ACM Transactions on Modeling and Computer
Simulation, vol. 25, no. 3, 2015.

[11] R. Kočı́ and V. Janoušek, “Formal Models in Software Development
and Deployment: A Case Study,” International Journal on Advances in
Software, vol. 7, no. 1, 2014, pp. 266–276.

237Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

