
Evaluating an Application Ontology for Recommending

Technically Qualified Distributed Development Teams

Larissa Barbosa, Gledson Elias

Informatics Center

Federal University of Paraíba

João Pessoa, Brazil

e-mail: larissa@compose.ufpb.br, gledson@ci.ufpb.br

Abstract—As a reflection of globalization, Distributed Software
Development (DSD) has become a mainstream approach, in
which the cooperation among globally distributed software
development teams has the potential to reduce cost and
development time. However, in order to make such promises a
reality, it is important to find teams with specific technical
background, required for implementing software modules that
constitute the software product under development. Thus, it is
a key aspect to contrast technical background of development
teams against specified technical requirements for
implementing the software project, making possible to select
the most skilled teams to develop each software module. In
such a context, this paper presents the evaluation of an
application ontology that supports selection processes of
distributed development teams, which are technically skilled to
implement software modules in distributed software projects.
Experimental results show that the evaluated ontology
represents and formalizes an extremely complex problem in a
systematic and structured way, allowing its direct or
customized adoption in selection processes of globally
distributed development teams.

Keywords-ontology; distributed software development;

selection process.

I. INTRODUCTION

In software engineering, a great body of knowledge has
been accumulated over the last decades regarding methods,
techniques, processes and tools, improving productivity and
software quality. As such, several software development
approaches have been proposed by academia and industry.
Nowadays, as a mainstream approach, Distributed Software
Development (DSD) promotes the cooperation among
globally distributed teams for implementing different
software product modules, reducing the development cost
and time, favored by the hiring of cheaper staff in different
locations, the fast formation of development teams and the
adoption of the follow-the-sun development strategy [1][2].
Besides, DSD also enables to find qualified workforces and
domain experts in worldwide outsourced teams or even
teams in global coverage companies [3][4][5].

In order to make DSD promises a reality, it is a key task
to identify development teams with specific skills and
technical knowledge required to develop software modules
that compose the software product under development. In
such a context, it is important to compare the skills and
technical knowledge of the candidate development teams

against the technical requirements specified to implement
each software module, making possible to identify those that
are more qualified to implement each one.

However, in DSD projects, geographic dispersion may
cause difficulties for the project manager to assess the skills
and technical knowledge of the candidate teams. In most
cases, the project manager does not develop face-to-face
activities with remote teams, having neither direct personal
contact nor drinking fountain talks [6]. Hence, it is therefore
hard to get precise and up-to-date information about
members of such remote teams, given that the formal
communication mechanisms based on documents or data
repositories do not react as quickly as informal ones.
Besides, even when the project manager has a bit of
information about candidate teams, in large software
projects, the task of selecting teams may still be quite
complex and prone to evaluation errors, since different teams
may adopt ambiguous vocabulary and incompatible methods
to identify and evaluate their skills and technical knowledge.

As a consequence, we have proposed a layered
recommendation framework [7] as a mean to help project
managers in the selection and allocation of development
teams in DSD projects. The framework is composed of three
recommendation phases: recommending software modules –
intends to cluster components into software modules,
reducing dependencies among modules and hence,
minimizing communication requirements; recommending
qualified teams – aims to identify technically qualified teams
to implement each software module; and recommending
teams allocation – intends to suggest possible allocations of
software modules to qualified development teams,
concerning their non-technical attributes as a mean to reduce
inter-team communication requirements.

In the context of the framework, this paper presents the
experimental evaluation of an application ontology, called
OntoDSD [8], whose main goal is to support the selection of
distributed development teams that are technically skilled to
implement software modules in DSD projects. Note that
OntoDSD is part of the second phase of the recommendation
framework which, as mentioned, is called recommending
qualified teams. As the main contribution, experimental
results show that OntoDSD represents and formalizes an
extremely complex problem in a systematic and structured
way, allowing its direct or customized adoption in selection
processes of globally distributed development teams.

225Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

The rest of this paper is organized as follows. Section II
introduces the main concepts and components related to an
ontology. Section III presents an overview of the OntoDSD
ontology, explaining its main concepts and relationships
associated to the selection of technically qualified distributed
teams. In order to observe the usability and applicability of
the proposed ontology, Section IV presents the experimental
evaluation. Next, Section V presents final remarks, identifies
limitations and indicates future work.

II. FUNDAMENTS

The literature contains many definitions of an ontology.
For the purposes of this paper, as defined in [9], an ontology
is a formal explicit description of concepts in a given domain
of discourse, properties of each concept describing its
features and attributes, and restrictions on such properties.

In general, the concepts in the modeled domain are
represented by elements called classes, which can adopt
inheritance abstraction to formulate a class hierarchy, in
which each class inherits properties from one or more
superclasses. Classes can have instances, which correspond
to individual objects in the modeled domain. A class has
several characteristics, attributes and restrictions that are
represented by elements called properties.

Each property has a domain and a range, which can
belong to a specific type and can have a set of allowed
values, ranging from simple types to instances of classes.
Properties can be divided into object properties and datatype
properties. Object properties associate instances of one or
two classes. Datatype properties create a relationship
between a class instance and values of a certain simple type,
such as strings and numbers. Each instance can have
concrete values for the properties of its respective class.

In relation to development methodologies, there are
several proposals in the literature to systematize the
construction and evolution of ontologies [10]. However,
despite the valuable contributions, none of them can be
considered the correct one. Indeed, none of them has enough
maturity, and therefore, there is no consensus on the best,
most complete or most appropriate methodology that can be
widely applicable in varied domains and application needs.

As a result, due to its simplicity of documentation, ease
of application, extensive tooling support and focus on the
construction of ontologies, we opted for the methodology
Ontology Development 101 [9], which defines a very simple
guide based on an iterative approach that assists ontology
designers, even non-experts, in the creation of ontologies
using a support tool, such as Protégé [11].

In the OntoDSD development, we decided to adopt a top-
down approach because it favors better control of the level of
details, avoiding excessive details present in a bottom-up
approach, which may lead to greater rework, effort and
inconsistencies, and moreover, may hinder the identification
of relationships and similarities among concepts [12].

It is important to highlight that the development of the
ontology was specified using the Protégé tool [11], which
provides support for the constructors of the Web Ontology
Language (OWL) [13], recommended by the World Wide
Web Consortium (W3C).

III. ONTODSD

OntoDSD is an application ontology, which has the main
goal of supporting the selection of distributed development
teams, technically skilled to implement software modules in
DSD projects. Thus, the modeled domain is DSD projects,
and, in a more specific way, the scope is the selection of
technically qualified teams to implement software modules.
Figure 1 presents the OntoDSD conceptual map.

RecByTechnology

RecByModule

Tecnology

Policy

inPolicy

hasRequirement

inTechnology

hasMember

hasProject & hasExperience

hasSkill

hasRule

string
reqTerm

string

Member

string

float [0, 1]

sklTerm

sklValue

Skill

Module

string

re
q

u
ir

ed
B

yM
o

d

kn
o

w
n

B
yT

ea
m

su
it

ab
ili

ty

string

string

Rule

Requirement

float [0, 1]

cptValue

CutPoint

Project

Team

Figure 1. OntoDSD conceptual map.

In OntoDSD, a DSD project (Project) is composed of a
set of software modules (Module) that can be developed by a
set of globally distributed development teams (Team). In
Figure 1, the object property composedOf represents the
relationship between a project and its constituting software
modules. The object property hasCandidate represents the
relationship between a project and distributed development
teams, which are candidates to implement software modules.

A software project (Project) adopts selection policies
(Policy) for recommending development teams to implement
software modules based on different criteria (Rule) and cut
points (CutPoint), which establish a minimum suitability
level for considering a team adequate to implement software
modules. In Figure 1, the object property adoptsPolicy
represents the relationship among a project and possible
selection policies, according to specific project needs. The
object property hasCutPoint represents the relationship
between a project and defined cut points, each on related to
each possible policy using the object property inPolicy.

OntoDSD provides two types of recommendations. The
first, called RecByTechnology, represents the suitability level
of candidate teams in relation to each technology required by
software modules. The second, called RecByModule,
represents the suitability level of candidate teams for
implementing each software module. In Figure 1, the object
properties hasRecByTech and hasRecByMod represent the
relationships between a project and their recommendations.

A. Representing Software Modules

Considering a given software module (Module), it is
important to characterize the knowledge requirements
(Requirement) imposed in relation to technologies
(Technology) adopted to implement the module. In
OntoDSD, the knowledge requirement indicates the
knowledge level required in each technology.

As illustrated in Figure 1, the object property
hasRequirement associates a specific software module with a

226Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

knowledge requirement, and through its datatype property
reqTerm, flags the required knowledge level, whose initially
proposed levels are low, medium and high. It is important to
note that the number and the value of the terms used to label
the knowledge level may be redefined by the project
manager. Now, regarding a given knowledge requirement,
the object property inTechnology associates the knowledge
requirement with a specific technology. Hence, together,
these classes and properties represent the fact that a given
module has a certain knowledge requirement in relation to a
particular technology, demanding a given specified
knowledge level.

B. Representing Development Teams

In OntoDSD, a development team (Team) is composed of
a set of members (Member). In Figure 1, the object property
hasMember represents the relationship between a team and
its constituting members. Regarding a given development
team, it is vital to gather information about each member in
relation to technologies (Technology) required by software
modules. To do that, for each required technology, three
pieces of data must be gathered: years of experience, number
of developed projects and number of degrees. As can be seen
in [14][15][16], in general, such information can indicate
whether an individual is an expert in a specific technology.

In OntoDSD, via the datatype property hasDgr and the
object properties hasExperience and hasProject, each
member (Member) is associated to a specific technology
(Technology). Note in Figure 2 that properties hasExperience
and hasProject have sub-properties for representing
respectively, the years of experience a given member has in a
specific technology, as well as the number of projects
developed by the member in such a technology. Hence,
together, such classes and properties represent that a given
team has members with degrees, projects and experiences in
many technologies.

1-3_years

3-5_years

none

7-9_years

+9_years

hasExperience

5-7_years

1-5_proj

5-10_proj 10-15_proj

none

15-20_proj

+20_proj

hasProject

Figure 2. Sub-properties for years of experience and number of projects.

Now, such gathered information about members of a
given team (Team) allows to infer the skill and technical
knowledge (Skill) possessed by the whole team in relation to
each technology (Technology). In Figure 1, the object
property hasSkill associates a given team to one or more
skills, which in turn are associated to their respective
technologies using the object property inTechnology. For
each skill, the datatype properties sklValue and sklTerm
signalize the real numeric value within the interval [0, 1] and
the correspondent textual term, such as none, low, medium
and high, representing the skill level of the team. Hence,
together, such classes, object and datatype properties
represent that a given team has a specified technical skill
level in a certain technology. Again, the number and the
value of the terms used to label the skill level may be
redefined by the project manager.

C. Representing Selection Policies

In order to evaluate the technical suitability of candidate
teams, it is necessary to define a selection policy. According
to the needs of the software project, different policies may be
adopted, changing the way the teams can be selected. A
selection policy is a table of rules (Table I), stated by if-then
expressions, which correlate terms in rows and columns,
defining rules that generate desired results, represented by
cells in their intersections. We can realize the rule rationale
with an example: IF Skill Level is “none” AND Knowledge
Level is “medium” THEN Suitability Level is “low”.

TABLE I. SELECTION POLICY

 Technical Requirements

 Knowledge Level

 low medium high

T
ea

m
s

S
k

il
l

L
ev

el

none medium low none
low high medium low

medium medium high medium
high low medium high

OntoDSD represents policies as individuals of the classes

Policy and Rule, which are related by the object property
hasRule, as shown in Figure 1. Observe that a certain policy
must be associated with a set of rules, modeling each cell of
the selection policy table. In turn, rules are modeled using
the datatype properties requiredByMod, knownByTeam and
suitability, representing, respectively: the knowledge level
required in a given technology, the technical skill possessed
by a certain team in that technology and accordingly, the
suitability level owned by that team in that technology.

D. Representing Technically Skilled Teams

Now, it is time to apply the selection policy in order to
discover the technical suitability owned by each team to
implement each software module. OntoDSD represents the
technical suitability possessed by teams as recommendations.
As discussed before, there can be two kinds of
recommendations, RecByTechnology and RecByModule,
which are characterized in the conceptual map in Figure 3.

Project Policy
recPolicy

Team

Module

recTeam

Technology
recRule

recTecnology

Rule
recModule

RecByTechnology

recPolicy

recTeam

recModule

booleanst
b

lV
a

lu
e

st
b

lT
e

rm

su
it

a
b

le

string
float [0, 1]

RecByModule

hasRecByTech hasRecByModule

Project

Figure 3. Recommendations in OntoDSD.

1) Recommendation of Teams to Required Technologies

A recommendation RecByTechnology represents the
suitability level possessed by a certain team (Team) in
relation to a particular technology (Technology) required by
a specific module (Module) according an adopted policy
(Policy). Indeed, the suitability level is signalized by an
instance of the rule (Rule) trigged by the adopted selection
policy, in which the datatype property suitability (Figure 1)
indicates the textual term representing the suitability level.

As can be seen in Figure 3, the relationship between such
concepts is represented using a set of object properties:

227Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

recPolicy, recTeam, recModule, recTechnology and recRule.
It should be noted that such object properties can be derived
through inference from information already stored in the
ontology. In order to infer such properties, OntoDSD has a
set of specified axioms, which are not discussed herein for
simplicity, but interested readers can found details in [8].

2) Recommendation of Teams to Software Modules

Based on the suitability level possessed by a given team
for each required technology, it is possible to estimate the
suitability level owned by that team in each software module,
which in OntoDSD is represented by the recommendation
RecByModule. To do that, the project manager ought to
adopt an empirical or mathematical method, like the one
proposed in [14].

A recommendation RecByModule represents the
suitability level possessed by a given team (Team) in relation
to a particular module (Module) according an adopted policy
(Policy). Indeed, the suitability level is signalized by the
datatype properties stblValue and stblTerm associated to the
respective recommendation (Figure 3), which indicate its
numerical value and textual term, respectively.

As shown in Figure 3, the relationship between such
concepts is represented via the object properties recPolicy,
recTeam and recModule. Note that such object properties
can also be derived by inference from information already
present in the ontology. However, for simplicity, the set of
related axioms are not discussed herein, but detailed in [8].

3) Application of the Cut Point

With the goal of filtering out the teams that might have a
low suitability level, a cut point defined by the project
manager must be used. This step consists simply in
eliminating those teams that do not reach the cut point. As
depicted in Figure 1, the object property hasCutPoint
associates a project (Project) to a specific cut point
(CutPoint), which through its datatype property cptValue
stores a real numeric value in the interval [0, 1], stipulated by
the project manager to determine the suitability possessed by
a given team in relation to a certain software module.

To do that, we must update the instances of the
recommendation RecByModule, setting the value of its
datatype property suitable, illustrated in Figure 3. It is
important to point out that the update of the property suitable
is also inferred automatically through an ontology axiom.

IV. CASE STUDY

In order to evaluate the usability and applicability of the
OntoDSD ontology, we developed three use cases based on
the project of two different software product lines. The two
first cases were developed using a hypothetical software
product line in the e-commerce area, documented in [17].
These two first use cases were organized in two development
iterations, contemplating the phases of domain engineering
and application engineering of the product line. Next,
another use case was developed based on a real project of a
middleware product line for mobile devices called
Multi-MOM [18], whose instantiation will be illustrated next
in this section.

When conducting the use cases, first the OntoDSD
ontology was completely specified and validated in the
Protégé tool [11], which supports the OWL specification
language [13]. Using Protégé, it was possible to create and
model classes, object and datatype properties, restrictions
and axioms. Next, each use case was also instantiated and
validated in Protégé, including individuals of the several
OntoDSD ontological elements. Besides, Protégé allows for
queries and visualization of the results that are automatically
generated by several OntoDSD axioms.

A. Representing Software Modules

Multi-MOM [18] is a middleware product line for mobile
computing. As shown in Figure 4, its component-based
architecture has five software modules, indicated in the small
rectangles labeled from M0 to M4, according to the first
phase of the proposed framework [7], explained in Section I.

<<kernel>>
Service Manager

M1 <<kernel>>
Service Locator

M1

<<kernel>>
Message Dispatcher

M0

<<kernel>>
Message Manager Control

M0<<kernel>>
Persistence Manager

M4

<<kernel>>
TTL Monitor

M2

<<kernel>>
Message Exchanger

M3

<<variant>>
Communication Paradigms

M0

IServiceLocator

IMessageDispatcher

ICommunicationParadigm

ITTLMonitor
IPersistenceManager

IMessageManagerControl

IMessageExchanger

Figure 4. Multi-MOM architecture.

The characterization of the technologies required by
those modules was performed by the software architecture
that created and designed Multi-MOM. As an example,
Figure 5 illustrates the OntoDSD instantiation to characterize
the technologies required to implement module MD0. As
illustrated in Figure 5, module M0 requires technologies
Communication Paradigms, Reflexive Programming,
Android and Java with “high” knowledge level. Besides, it
requires “medium” knowledge level on SQL.

Module Technology
hasRequirement inTechnology

string
reqTerm

”high”

Requirement

M0 Req1

Reflexive
Programming

Android

Java

Communication
Paradigms

SQL

”medium”

Req2

Figure 5. Characterization of module M0.

B. Representing Development Teams

Considering the difficulty of finding real development
teams for use cases, the development team definition was
performed based on the local market and computer science
students, resulting in a set of 179 participant developers,
which answered online forms covering all technologies
required by modules of the use cases. The adopted forms and
the respective answers can be found in [14].

Next, based on the answered forms, the skills and
technical knowledge of the 179 developers were
characterized in each technology required by modules.

228Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Figure 6 shows an example instantiation for characterizing
the skills and technical knowledge in Android possessed by
member MB1 that belongs to team T20. As can be seen, MB1
has between three and five years of experience in Android
and has participated in up to five projects that adopt Android.

Team Technology
hasMember

hasProject
string

hasDgr

Android

Member

T20 MB1

hasExperiency

3-5_years

1-5_proj

Figure 6. Characterization of member MB1 in Android Technology.

Regarding 179 developers, we created 22 teams with
different sizes, varying from 2 to 18, dividing the members
randomly until complete all teams. The final composition of
the teams was: 1 team with 2 members, 3 teams with 3
members, 5 teams with 5 members, 4 teams with 8 members,
2 teams with 9 members, 3 teams with 10 members, 3 teams
with 15 members, and 1 team with 18 members.

Next, based on the skills and technical knowledge of
each developer, it is possible to characterize the skills and
technical knowledge of the respective teams for each
technology required by modules. Figure 7 shows the
instantiation for characterizing team T20 in Android
technology. As can be seen, considering the skills and
technical knowledge of its developers, team T20 has a
technical skill level with value 0,88 in Android technology,
which, according to the ranges of levels adopted,
characterizes a “high” skill.

Team Technology
hasSkill

float [0, 1]
sklValue

Android

0,88

Skill

T20

inTechnology

”high”

string
sklTerm

S1

Figure 7. Characterization of team T20 in Android technology.

It is important to stress that each candidate team can
consist of colocalized members only. Thus, if one needs to
consider a candidate team consisting of members from
different locations, it is suggested to model different teams
for each location. Besides, OntoDSD does not represent non-
technical aspects related to DSD projects in geographical,
temporal, cultural and economic dimensions. Such a design
decision is a consequence of the layered architecture of the
proposed framework [7], introduced in Section I, which
deals with such non-technical aspects in its third phase called
recommending teams allocation.

C. Characterization of Selection Policies

In the OntoDSD instantiation, we initially specified four
different selection policies, created based on the observations
and analysis presented in other related proposals in the
literature [19][20][21][22]. The four proposed policies are:

a) Equivalent qualification: selects teams with technical
skills close to knowledge level required by modules.

b) Most skilled teams: selects teams that have the
highest technical skills, independently of the
knowledge level required by modules.

c) Minimum qualification: selects teams that possess
minimum technical skills required by modules.

d) Training provision: selects teams that have technical
skills bellow the required by modules.

For instance, considering equivalent qualification policy,
defined in Table I, the rule instantiation represented by the
intersection of the fourth row with the third column, here
called R12, is presented in Figure 8. The instantiated rule is
interpreted as follows: IF Skill Level is “high” AND
Knowledge Level is “high” THEN Suitability Level is
“high”. It is important to point out that the 12 rules in
Table I were numbered from R1 to R12, going from the left
to the right and the top to the bottom.

Policy
hasRule

Rule

Equivalent Qualification

string

R12

string

string

requiredByMod

knownByTeam

suitability

”high”

”high”

”high”

Figure 8. Characterization of rule R12 in selection policy.

Table II shows that different cut points were used for
each selection policy. Based on the use cases, it was
perceived that the suitability values for the teams varied in
relation to adopted selection policies, reinforcing that
different policies assign different suitability to teams.
Nevertheless, in an experiment analysis where each use case
was evaluated according to each selection policy, we saw a
trend of the training provision policy to present suitability
values higher than all other ones. On the other hand, the
minimum qualification policy tends to present higher values
than the equivalent qualification and more skilled team
policies. Finally, we also realized that the equivalent
qualification policy tends to generate higher values than the
more skilled team policy. Given this empirical evidence, we
decided to use different cut points for each selection policy.

TABLE II. ADOPTED CUT POINTS

Selection Policiy Cut Point

Equivalent Qualification 0,60
Most skilled teams 0,55
Minimum Qualification 0,70
Training Provision 0,75

Figure 9 exemplifies the instantiation of the cut points in

OntoDSD, showing the representation of the cut point of
value 0,60 adopted in the selection policy Equivalent
Qualification used in the Multi-MOM project.

Project Policy
hasCutPoint

float [0, 1]
cptValue

0,60

CutPoint

Multi-MOM

inPolicy

P1 Equivalent Qualification

Figure 9. Cut point for policy Equivalent Qualification.

D. Evaluation of Team Suitability

At this point, considering technologies required by
modules, the team technical skills in each technology and the
selection policy adopted in the project, we can infer the

229Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

technical suitability for each team in each technology
required by each module, according to the selection policy.
Figure 10 shows the technical suitability inference for team
T20 in Android, which is required by module M0, according
to the selection policy Equivalent Qualification.

As we can see in Figure 10, the referred suitability is
defined by the application of rule R12, whose instantiation in
OntoDSD was shown in Figure 8.

Policy
recPolicy

Team

Module

recTeam

Technology

recRule

recTechnology

Rule

recModule

RecByTechnology

Project

Multi-MON

R12

Equivalent Qualification

T20

M0

Android

RBT1

Figure 10. Technical suitability of team T20 to Android in module M0.

It is relevant to point out that the adopted rule R12 is
inferred by an OntoDSD axiom, illustrated in Figure 11, as
specified in Protégé. As already indicated, OntoDSD has six
axioms for inferring six ontological elements: selection rules,
suitability terms and technically suitable teams. Herein,
figures show ontological elements inferred by axioms in
orange color. However, for simplicity, the other axioms are
not presented, but interested readers can found them in [8].

RecByTechnology(?re), hasRecByTech(?pr, ?re),
recPolicy(?re, ?po), recTeam(?re, ?e), recModule(?re, ?m), recTechnology(?re, ?t),
knownByTeam(?r, ?vh), requiredByModule(?r, ?vreq) -> recRule(?re, ?r)

Figure 11. Axiom for recommending a selection rule.

At this point, it is possible to measure empirically or
mathematically the suitability of the teams to the software
modules. For that, in these use cases, we adopted the
mathematical approach proposed by Santos [14] to derive
suitability level possessed by teams in software modules,
based on suitability possessed by those teams in each
technology required by software modules. In this
mathematical approach, based on forms filled by each
developer about years of experience, number of degrees and
projects in each technology, the answers are weighted in a
set of equations that derive the knowledge level owned by
each developer in each technology. Next, based on the skill
level owned by each member of each team in a specific
technology, we can derive mathematically the knowledge
level of the whole team in that technology.

Figure 12 shows an example of the final recommendation
of team T20 to module M0, whose numeric suitability value
is 0,71. Note that, applying OntoDSD axioms, it is possible
to infer the textual terms that represent the suitability. In
Figure 12, the suitability textual term is “medium”.

Finally, based on OntoDSD axioms, we can infer the
technically suitable teams for each software module from the
evaluation of the cut point defined in the software project to
the selection policy at hand, defining hence the possible

candidate teams for the implementation of software modules.
Please note that in the datatype property suitable, Figure 12
already includes the result of the suitability inference of team
T20 to module M0 in policy Equivalent Qualification.

Policy

string

Team

Module

recTeam
float [0, 1]

boolean

stblValue

Project

RecByModule

hasRecByModule

Multi-MOM
Equivalent Qualification

T20

M0

”medium”

0,71

true

RBM1

Figure 12. Recommendation of team T20 to module M0.

In the Multi-MOM use case, after applying the cut point,
among the 22 candidate teams, OntoDSD recommended 5,
11, 12, 21 and 19 teams to implement modules M0, M1, M2,
M3 and M4, respectively. For instance, analyzing the
recommendation for module M0, in sequence, teams T20,
T11, T16, T18 and T19 are recommended as suitable
considering the Equivalent Qualification policy.

Considering the high to medium knowledge levels
required by module M0 in all related technologies (Figure 5),
an inspection by hand, in relation to skill levels possessed by
all teams in such technologies, reveals that the recommended
teams are better suited because their technical skills are
closer to knowledge levels required by module M0 in such
technologies. Following such a rationale, it is possible to
conclude that recommended teams are the most appropriate
with respect to all adopted policies, but due space limitation,
it is not possible to present and discuss in detail such manual
inspection and assessment rationale.

In summary, regarding four selection policies defined
and three use cases developed to evaluate the usability and
applicability of the OntoDSD ontology, each use case
resulted in four recommendations of suitability of the teams
to the modules, generating one recommendation for each
selection policy. Hence, considering all use cases, we
generated 12 different set of recommendations.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the evaluation of an
application ontology, called OntoDSD, which supports the
selection of technically qualified distributed teams for the
implementation of software modules in DSD projects. As the
main contribution, adopting the strategy divide and conquer,
OntoDSD represents and formalizes an extremely complex
problem in a systematic and structured way, allowing its
direct or customized adoption in selection processes of
globally distributed development teams.

The general structure of OntoDSD is shown in the
conceptual map in Figure 1, where the whole problem is
modeled using only 12 classes, related by 23 object
properties and 11 datatype properties, which, when
instantiated, can systematize the decision-making process of
the project manager, especially when observed through the
viewpoint of the high complexity of the problem, which is

230Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

clear when this problem is handled in ad-hoc ways. Besides,
OntoDSD facilitates the communication between the project
manager and team members, establishing a common
vocabulary between all stakeholders in the selection process.

The OntoDSD instantiation may require a considerable
effort for creating instances and their object and datatype
properties, and consequently is prone to error and may cause
a waste of time. For instance, considering Multi-MOM,
which includes 5 software modules, 7 technologies, 22
teams, and 4 selection policies, the number of class instances
(3.267), object properties (19.150) and datatype properties
(1.982) is staggering, requiring a remarkable effort to
manipulate them in Protégé. In such a case, it was required
around 500 man-hours to represent gathered information as
instances and properties in Protégé.

Nevertheless, OntoDSD offers as an additional facility a
set of axioms, allowing the automatic inference of object and
datatype properties. In Multi-MOM, such axioms infer 2.376
object properties and 880 datatype properties, representing a
coverage around 12.5% and 44.4%, in relation to object and
datatype properties, respectively.

OntoDSD has potential to be reused in many different
scenarios. For instance, once a given software project is
instantiated, with its software modules, required
technologies, candidate teams and adopted selection policy,
the evaluation of another selection policy may easily reuse
all instances and object/datatype properties related to
software modules, required technologies and candidate
teams. In a most significant way, if we devise a data base of
previous software projects, including most technologies
usually required to implement software modules, a large
number of candidate teams and the main adopted selection
policies, the evaluation of a new software project may also
reuse all instances and object/datatype properties related to
technologies, teams and selection policies.

Even considering the reuse potential of the OntoDSD
ontology, it is still required a considerable effort during the
manual instantiation to identify and manipulate the instances
and their object and datatype properties that may be reused
and those that need to be created. In order to decrease this
effort, as a future work, its instantiation could be performed
programmatically, exploring the Protégé API, avoiding
errors and saving time. Just as an illustration to the extremely
positive impact of the programmatic approach, consider an
application where the user signalizes in a specific set of
tables: software modules, required technologies, candidate
teams and their members. In such an application, it could
almost all be created in an automatic and transparent way,
including all instances and object/datatype properties.

REFERENCES

[1] R. Martignoni, “Global Sourcing of Software Development:
A Review of Tools and Services”, 4th IEEE International
Conference on Global Software Engineering (ICGSE 2009),
IEEE, 2009, pp. 303-308.

[2] E. Carmel, Y. Dubinsky, and A. Espinosa, “Follow the Sun
Software Development: New Perspectives, Conceptual
Foundation, and Exploratory Field Study”, 42nd Hawaii
International Conference on System Sciences (HICSS´09),
IEEE, 2009, pp. 1-9.

[3] J. Herbsleb and D. Moitra, “Global Software Development”,
IEEE Software, issue 2, pp. 16-20, 2001.

[4] P. Ovaska, M. Rossi, and P. Marttiin, “Architecture as a
Coordination Tool in Multi-site Software Development”,
Software Process: Improvement and Practice, vol. 8, issue 4,
pp. 233-247, 2003.

[5] R. Prikladnicki, J. L. N. Audy, and R. Evaristo, “Global
Software Development in Practice: Lessons Learned”,
Software Process: Improvement and Practice, vol. 8, issue 4,
pp. 267-281, 2003.

[6] A. Mockus and J. Herbsleb, “Challenges of Global Software
Development”, 7th International Symposium on Software
Metrics (METRICS 2001), IEEE, 2001, pp. 182-184.

[7] T. A. B. Pereira, V. S. Santos, B. L. Ribeiro, and G. Elias, “A
Recommendation Framework for Allocating Global Software
Teams in Software Product Line Projects”, 2nd International
Workshop on Recommendation Systems for Software
Engineering (RSSE´10), ACM, 2010, pp. 36-40.

[8] L. Barbosa, “An Ontological Approach for Recommending
Technically Qualified Teams in Distributed Software
Projects”, Master Dissertation, UFPB, Brazil, 2013.

[9] N. F. Noy and D. L. McGuinness, “Ontology Development
101: A Guide to Creating Your First Ontology”, Stanford
Knowledge Systems Laboratory Technical Report
KSL-01-05, 2001.

[10] M. Cristani and R. Cuel, “A Survey on Ontology Creation
Methodologies”, International Journal on Semantic Web and
Information Systems, vol. 1, no. 2, pp. 48-68, 2005.

[11] Protégé. Available in: http://protege.stanford.edu 2017.08.16.

[12] M. Uschold and M. Gruninger, “Ontologies: Principles,
Methods and Applications”, The Knowledge Engineering
Review, vol. 11, issue 2, pp. 93-136, 1996.

[13] OWL Web Ontology Language Guide. Available in:
http://www.w3.org/TR/owl-guide 2017.08.16.

[14] V. S. Santos, “An Approach for Selecting Technically
Qualified Teams in Software Projects”, Master Dissertation,
UFPB, Brazil, 2014.

[15] J. Shanteau, D. J. Weiss, R. P. Thomas, and J. C. Pounds,
“Performance-Based Assessment of Expertise: How to Decide
if Someone is an Expert or not”, European Journal of
Operational Research, vol. 136, issue 2, pp. 253-263, 2002.

[16] D. J. Weiss, J. Shanteau, and P. Harries, “People Who Judge
People”, Journal of Behavioral Decision Making, vol. 19,
issue 5, pp. 441-454, 2006.

[17] H. Gomaa, “Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures”,
Addison-Wesley, 2004.

[18] Y. M. Bezerra, “Multi-MOM: A Multi-Paradigm, Extensible
and Message-Oriented Mobile Middleware”, Master
Dissertation, UFPB, Brazil, 2010.

[19] A. S. Barreto, “Staffing a Software Project: A Constraint
Satisfaction Based Approach”, Master Dissertation, Federal
University of Rio de Janeiro, Brazil, 2005.

[20] M. A. Silva, “WebAPSEE-Planner: Supporting People
Instantiation in Software Projects through Policies, Master
Dissertation, Federal University of Pará, Brazil, 2007.

[21] D. A. Callegari, L. Foliatti, and R. M. Bastos, “MRES: A
Tool for Resource Selection in Software Projects through a
Fuzzy, Multi-Criteria Approach, Brazilian Symposium on
Software Engineering (SBES 2009), Tools Session, 2009,
pp. 61-66.

[22] J. Collofello, D. Houston, I. Rus, A. Chauhan, D. M.
Sycamore, and D. S. Daniels, “A System Dynamics Software
Process Simulator for Staffing Policies Decision Support”,
31st Annual Hawaii International Conference on System
Sciences (HICSS´98), IEEE, 1998, vol. 6, pp. 103-111.

231Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

