ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Which API Lifecycle Model is the Best for APl Removal Managenent?

Dung-Feng Yu, Cheng-Ying Chang Hewijin Christine Jiau, Kuo-Feng Ssu
Institute of Computer and Department of Electrical
Communication Engineering, Engineering,
National Cheng Kung University, National Cheng Kung University,
Tainan, Taiwan Tainan, Taiwan
Email:{dfyu, zhengying@nature.ee.ncku.edu.tw Email:{jiauhjc, ssg@mail.ncku.edu.tw

Abstract—Frameworks and libraries are reused through applica- From previous study, APl changes happen frequently across
tion programming interfaces (APIs). Normally, APIs are assimed different versions of a frameworks/libraries and commonly
to be stable and serve as contracts between frameworks/liaries across different frameworks/libraries [9]. These AP ajes

qnd client applications. However, in reality, APIs change wer _ often cause a large amount of effort in migrating client
t!me.lwf?en these ch_angels_ happer|1_, API ”S?frshm”s%tf spend addi- g jication [10]-[12]. As a result, APl users will complain
tional effort In migrating client applications. If the efio 1t s too through communication channels, such as online forums or

much to afford, the frameworks/libraries that API developers iling lists. If AP| devel d t handle th i
have built will lose market share. In order to reduce migration ~ Maling lists. evelopers do not handle those speciic

effort, API developers should manage API changes through AP~ complaints, the framework or library that they have built
lifecycle. Before construction of AP lifecycle, investigtion of the ~ Will lose market share because API users will choose other
following question is required: Which API lifecycle model is the ~ frameworks or libraries instead.
best for API removal management? To answer this question, we To reduce migration effort, we first investigate the origin
first construct three API lifecycle models based on the obsegation of API changes and then propose an effective way to manage
of current practices, and then devise a set of metrics to asse them. According to previous research [3][9][10], most API
those modelg using case stqdies. Assessment rfesults co@elthe changes occur when API developeligectly make thenn the
EESIImOdel |sddeprecat|on {nvqlt\éetztlhmc;del tWh'Clg besnefgs AF;' design improvement tasks, without considering the aftécte
evelopers ana users most wi € least costs. ucn moae . : : :
becomzs the base for API developers to build API lifecycle wibh client applications. As a result, the most_eﬁeptlvg way to
enables API developers to manage API changes, and reduces manage API Change_s of frameworl_<s and libraries iplem
migration effort. them based on API lifecycle. API Ilfecyple can enable API
developers to make APl changes according to predefined stage
and transitions. It also guarantees that AP| developersiden
the affected client applications when making API changes.
| INTRODUGTION However, there is no or_le-size—fits—all API Iifecyc_le for AlPI
: developers. Hence, we investigate the best API lifecycldetho

Software reuse offers many benefits, such as acceleratianstead of the best API lifecycle.
of software development and reduction of the overall devel- |n this work, API lifecycle model is an abstraction of API
opment cost [1]. Reusable software provides common fundifecycles, and is represented as a set of general stages and
tionalities through application programming interfacA®(s). transitions between them. To choose the best API lifecycle
Normally, APIs are assumed to be stable and serve as cantrachodel, we first construct three API lifecycle models acoogdi
between reusable software and client software. But, in, facto the observation on current practices, and then analyzseth
as reusable software evolves to meet changing requiremenisodels from the perspective of API removal management.
and solve emerging bugs over time, APIs will inevitably andThis perspective is chosen because API removal management
frequently change [2]. These changes will cause clientso@ enables API developers to prevent unintentional API rersova
to fail and increase maintenance cost [3]. Therefore, APland therefore avoid causing client applications to fail. We
changes must be managed. assess the impact of API lifecycle models on API developers

API developers manage APl changes to web service usingnd API users through three case studies. The best model is
tools, such asAPl Manager[4], Lifecycle Managelf5], and determined by the assessment results.
Oracle APl Managemen6]. Each tool contains API lifecycle, Main contributions of this work are as follows: 1) We are
which is represented as a set of specific stages and ththe first to provide API developers with a solution to manage
transitions between them. Different tools contain differ@Pl APl changes. 2) The best model is the base for API developers
lifecycles. As a result, API developers need to choose théo build a suitable API lifecycle. Such API lifecycle enable
tool that contains the most suitable API lifecycle. After IAP API developers to manage API changes and therefore avoid
lifecycle is chosen, API of the web service must follow the causing client applications to fail. As a result, migratiffort
lifecycle from its birth (i.e., API addition) to its death.¢i, will be reduced. 3) We devise a metric set that enables API
API removal). Throughout API lifecycle, API developers candevelopers to assess the impact of their API lifecycle o bot
control API addition, removal, and other changes. API developers and API users.

Unlike APl changes to web service, APl changes to A preliminary analysis is performed in Section Il to
frameworks and libraries are not well managed [3][7][8].introduce API lifecycle models and assess the impact on

Keywords-API lifecycle; API lifecycle model; API change; API
removal management; software migration.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6 219

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

both API developers and API users. Case studies of modefgroblem of code bloat. On the other hand, D Model has three
are conducted in Section Ill, and then results are presentgubsitive impacts on APl users. First, migration informatio
in Section IV. The best model is determined according toenables API users to adapt client applications to API refsova
the results. Related work is discussed in Section V. FinallySecond, API users are informed of API removal schedules in

conclusion and future work are provided in Section VI. advance through API documents, and thus they have sufficient
time to adapt client applications. Third, the probabilibat
Il. PRELIMINARY ANALYSIS API users have to adapt client applications is low because

The goal of this preliminary analysis is to approximately API developers often remove APIs only when necessary. This
assess the impact of API lifecycle models on API developerseduces the effort in migrating client applications.
and API users from the perspective of APl removal man- i
agement. Therefore, three generic API lifecycle models ar&- ND Model: Non-Deprecation Involved Model
introduced, which are shown in Figure 1. The support for Figure 1(b) showsNon-Deprecation Involved Mod¢ND
API removal management is discussed, and the positive andode). ND Model contains creation and removal stages, but
negative impacts are further analyzed in detail. Finalhg t deprecation stage is excluded. As a result, the API follgwin
analysis result is summarized to provide an overview of APIND Model is always a non-deprecated API, and will never

lifecycle models. become a deprecated API. In ND Model, API (e.d.xp)
enters creation stage when it is designed and exposed to
@ @ API users. AfterAyp is used, it might be found buggy or
insufficient. Hence, the non-deprecated ARlyp, will be
[t } [deprecanon} [ml] @ directly removed in the new version of frameworks/librarie

without planning. Such API is calletiR API in this work,

(a) D Model: Deprecation Involved Model. @ @ whereNRstands folNon-deprecatedndRemovedAfter Ay p
@ ST T is removed, it enters removal stage from creation stageh Suc
[creation J [dep“’ca‘m“} [removal] stage transition is denoted by the dotted arc in Figure 1(b).
(¢) H Model: Hybrid Model. ND model does not provide APl developers with any
support for APl removal management. The reasons are listed
(b) ND Model: Non-Deprecation Involved Model. as follows. First, all APl removals occur without any plamgi
Figure 1. Three API Lifecycle Models. As a result, API developers are not able to control the tinohg

API removals. Second, migration problems will occur beeaus
of lacking of migration information in APl document. API
] users need to find the alternative APIs by themselves togepla
A. D Model: Deprecation Involved Model the removed APIs. Therefore, API developers do not have

As shown in Figure 1(a)Deprecation Involved Model control over the impact of API removals on API users.

(D Mode) contains three stages, including creation stage, ND Model not only lacks the support for APl removal
deprecation stage, and removal stage. In D Model, API (e.gmanagement, but also has three negative impacts on APL users
Ap) enters creation stage when it is designed to providérirst, API users have difficulties in adapting client apations
functionality and exposed to API users. Through extensiveo APl removals because no migration information is proglide
usage,Ap might be found buggy or insufficient. Hence, APl in APl documents. Second, API users do not have sufficient
developers decide thad, should be scheduled for removal time to adapt client applications because they are aware of
because it is no longer recommended to use. To notify APAPI removals only after those APl removals occur. Third, the
users of the decision, API developers often lalde} ‘dep- probability that APl users have to adapt client applicatitm
recated’ and provide the corresponding migration infoiamat API removals is high because such API removals occur without
(e.g., using other API instead) in APl documents. After theplanning. Despite those negative impacts, ND Model has one
notification, Ap enters deprecation stage from creation stagepositive impact on API developers: there is no deprecateld AP
and becomes a deprecated APl. Meanwhile, API developeia ND Model, and thus API developers will not encounter the
plan the future removal of the deprecated API. Outg is problem of code bloat.

removed, it enters removal stage and ends its lifecycle. .

D Model provides API developers full support for API C. H Model: Hybrid Model
removal management through the following ways. First, all As illustrated in Figure 1(c)Hybrid Model (H Mode) is
API removals are planned before they occur. Therefore, AP& hybrid of D Model and ND Model. In H Model, API in
developers are able to control the timing of API removals.creation stage has two possible paths to removal stage. Path
Second, migration problems caused by APl removals (e.gl includes two solid arcs in Figure 1(c), which is the same
compilation errors occur when API users compile client appl as D Model. Path 2 includes one dotted arc in Figure 1(c),
cations and new version of frameworks/libraries) are rategl which is the same as ND Model. The API which follows Path
through the provision of migration information. As a result 1 becomes a deprecated API, and its removal is planned. The
API developers have control over the impact of API removalsAPI which follows Path 2 becomes an NR API, and its removal
on API users. is unplanned.

Although D Model provides full support for APl removal H Model provides partial support for API removal man-
management, it still has one negative impact on API develagement. In H Model, both deprecated APIs and NR APIs
opers. When maintaining deprecated APIs, API developersxist. For deprecated APIs, API developers have controf ove
have to keep implementation of deprecated APIs in eaclthe timing and impact of their removal. But, for NR APIs,
new version of frameworks/libraries, and thus encounter th APl developers do not have any control. H Model has both

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6 220

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE |I. SUMMARY OF THE PRELIMINARY ANALYSIS RESULT.

Model API removal Negative impacts Positive impacts
management
D Model Full support 1. Deprecated APIs cause API develoiegproblem of code bloat. 1. Migration information of deprecated APIs enables APIrss®
(cBloal adapt client applications to planned API removatsir(fo)

2. Prior notification of planned API removals enables APIrss®e
have sufficient time to adapt client applicatioraTime
3. The probability that API users have to adapt client appibns to
planned API removals is lowaPro)
ND Model No support 1. No migration information of NR APIs Hers API users from 1. NR APIs do not cause API developers the problem of codet.blpa
adapting client applications to unplanned API removatsinfo) (cBloaf)
2. API users do not have sufficient time to adapt client apgbos due
to the lack of prior notification of unplanned API removalaTitne
3. The probability that API users have to adapt client applins to
NR APIs is high. &Pro)
H Model Partial support 1. No migration information of NR APhinders APl users from 1. Migration information of deprecated APIs enables APIrss®
adapting client applications to API removalslffo) adapt client applications to planned API removaislr(fo)
2. For unplanned API removals, the lack of their prior nasifion 2. For planned API removals, their prior notification enaldé| users
causes API users the problem of not having sufficient timed@pa to have sufficient time to adapt client applicatioresTitne
client applications. Time
3. For unplanned API removals, the probability that APl sseave 3. For planned API removals, the probability that APl usessehto

to adapt client applications is highaRro) adapt client applications is lowaPro)
4. Deprecated APIs cause API developers the problem of clodé.b 4. NR APIs do not cause API developers the problem of codet.blpa
(cBloaf (cBloaf)

Note 1: The words in the parentheses are the abbreviatioimspzcts.

Note 2: The negative and positive impacts of H Model which iaterited from D Model are highlighted with the gray backgnd, while those which are inherited from
ND Model are shown with the white background.

Note 3: Planned API removals are the removals of deprecakdd, Avhile unplanned API removals are the removals of NR APIs

positive and negative impacts. Some of them are inherited fr 2) RQ2: Regarding the impact category of migration
D Model, and the others are inherited from ND Model. The information, which model performs the best?
whole list of those impacts is provided in Table I, which is 3) RQ3: Regarding the impact category of adaptation
introduced in the next section. time, which model performs the best?

4) RQ4: Regarding the impact category of adaptation
D. Summary probability, which model performs the best?

To have an overview of those APl models, we summarize

the analysis result in Table I. The analysis result.revdms ' the models in four impact categories through a set of metrics
following three types of information on the models: 1) degre As shown in Table I, those metrics are organized accoraing t
of support for API removal management, 2) negative Impamsl'argeted impact catégories and definitions are also pedvid

anq 3) positive impapts. Furtherm_ore, the impact cate_gprie With these metrics, we can assess the impacts and answer the
which are shown as index words in Table I, are described a%search questions,

follows:
1) Code bloat (cBloat)lt includes the impacts related B. Data Collection

to the problem of code bloat. , Three subjects are chosen for data collection, and each
2) Migration information (minfo) It includes the im- 4ne s the representative of a specific API lifecycle model.
pacts related to the provision of migration informa- Those subjects are all medium-scaled open source projects
tion. . , ,) with hundreds of Java classes. The duration of data cadiecti
3) Adaptation time (aTime)lt includes the impacts for each subject is approximately three years. The subjexds
related to the time which API users have for softwareihe collected data are introduced as follows.
adaptation. . . _ Subject for D Model: JFace with versions from 3.6 to
4) Adaptation probability (aPra)lt includes the impacts 4 3 jrace is a popular user interface framework on Eclipse
related to the probability that API users have 10 5aitorm, The duration of the data collection is from Junaé@0
adapt client applications to planned or unplanned APkq 3,06 2013. The collected data includes API documents and
removals. source code. From API documents, the deprecated APIs are
. CASE STUDIES extracted to measure the values®€';,,;; andT,. Besides,
' migration information for the deprecated APls is invesiigh
The goal of the case studies is to assess the positive ang enable the measurementBC,, ;4. The value ofPB, is
negative impacts of the models in four impact categoriesmeasured through extracting APIs from APl documents, de-
Through the assessment, the best model will be concluded iécting planned API removals, and confirming the occurrence

To answer these research questions, we assess impacts of

it outperforms the others in the most impact categories. of those planned API removals in the source code.
A. Research Questions Subject for ND Model: JFreeChart with versions from
' 0.9.4 to 1.0.0 JFreeChart is a mature and widely used chart
~ To conclude the best model, we have to answer the followtiprary. According to download statistics, it has been dewn
ing research questions: loaded for more than three million times since its regigtrat
1) RQ1: Regarding the impact category of code bloatjn SourceForge. The duration of the data collection is from
which model performs the best? October 2002 to December 2005. During data collection,

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6 221

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE II. DEFINITION OF METRICS.

Targeted impact category Metric Definition
Code bloat PCgq/au In all APIs, the percentage of deprecated APIs.
PChr/aul In all APIs, the percentage of NR APIs.
Migration information PCqnrya In all deprecated APIs, the percentage of deprecated ARIsmigration information.
PCrnM1/nr In all NR APIs, the percentage of NR APIs with migration infation.
Adaptation time Tq The average time, measured in months, of a deprecated ARIfeing announced to-be-removed to being removed.
(i.e., the average time of a deprecated API staying in theedegion stage)
Thr The average time, measured in months, of an NR API from beimganced to-be-removed to being removed.
Adaptation probability PB, The probability of the occurrence of planned APl removals.
PB, The probability of the occurrence of unplanned API remavals
TABLE IIl. A SSESSMENTRESULTS FOR THECODE BLOAT CATEGORY. TABLE IV. A SSESSMENTRESULTS FOR THEMIGRATION INFORMATION
CATEGORY.
Model PCg/qu1, the metric for PChpyyatr, the metric for
assessing negative impacts assessing positive impacts _ _
packagd class | method| field | packagd class | method| field Model | PChyar1/ny, the metric for PCani1ya, the metric for
D 0.00% | 4.01%]| 1.43% | 2.69% — — — _ assessing negatlve |mpacts assessing posmve |mpacts
ND — - - - 6.81% | 12.28%| 13.19%| 14.57% packagg class | method| field | package class | method| field
H 0.00% | 2.60%]| 1.81% | 1.84%| 0.00% | 0.00% | 0.02% | 0.00% D - - - - * 87.10%]| 86.39%| 58.97%
Note 1: The label "— means that the value of the metric is natlable because ND | 0.00% | 0.52%| 0.04% | 0.00%| - - - -
the negative or positive impact of the corresponding modelsdchot exist. H * * 0.00% * * 88.48%| 92.87%| 71.56%
Note 2: The model which performs the best is highlighted wiité gray background. Note 1: The label “-" means that the value of the metric is natilable because
the negative or positive impact of the corresponding modeischot exist.
Note 2: The label #” means that the value of the metric is not available because
of division by zero.
APl documents are not provided. As a result, the collectegNote 3: The model which performs the best is highlighted wiith gray backgroung.

data includes the source code, online forum, and jfreechart
commit mailing list, but no API documents. From the source
code, packages, classes, methods, and fields with public e@r API developers, but also reduce API developers’ effort i
protected access modifiers are extracted as APIs. NR APlgaintaining APl implementation by 6.81% to 14.57%. Regard
and their removals are then detected to measure the values 1ofH Model, the values aPC,,y are between two models, but
PCyy/qn @andPB,. In the online forum, migration information - the values ofPC,,,./,;; are very low. So, the negative impact
is identified to measure the value B,y /.- In jfreechart- is medium but the positive is insignificant. In summary, ND
commit mailing list, notification of the removals of NR APIs Model is the best model because of the following two reasons.
is also identified to measure the value’lf,. First, it only has the positive impact in the code bloat catgg
Subject for H Model: JFreeChart with versions from Second, it has the largestC,,, ,; values, which means its
1.0.2 to 1.0.13.The duration of the data collection is from positive impact is the most significant. As a result, ND Model
August 2006 to April 2009. API documents are provided dur-performs the best regarding the code bloat category.
ing data collection. Therefore, the collected data inciudel RQ2: Assessment of Impacts in the Migration Informa-
documents, source code, online forum, and jfreechart-ddmmtion Category. Table IV summarizes the assessment results.
mailing list. In API documents, the deprecated APIs andrtheiBoth D Model and H Model have significant positive impacts
migration information are investigated to measure theegbf with large PCynr1/q values. But, D Model is better than H
PCqjan, Ta, and PCqprr/4- From API documents and source Model because D Model has only positive impact. Unlike
code, NR APIs, planned API removals, and unplanned APHb Model, H Model has not only positive impact but also
removals are detected to measure the valud¥@f, ,.;, PB,, negative impact. Regarding the positive one, H Model has
and PB,. In the online forum, migration information of NR slightly larger positive impact than D Model. Regarding the
APIs is identified to measure the value &1C,,,r1/y,- N negative one, thé>C,,,.ar7/q Value of H Model reveals that
jfreechart-commit mailing list, notification of the remds@f none of NR APIs in the method level are provided with migra-

NR APIs is identified to measure the valuetf,. tion information. Unfortunately, lack of migration infoation
V. R c S hinders API users from migrating client applications. Two
- RESULTS OFCASE STUDIES discussion topics in the online forum of JFreeChart havebee

In Section IV-A, results of case studies are presented téound as the evidence. The first one is “Arrrgh! Lots of API
answer the four research questions. In Section 1V-B, arswerchanges again”, in which API users state that, ‘these API
to those research questions are summarized to conclude tbRanges really are not funny! It takes a lot of time, resemgh
best model. Then, the cost-effectiveness of the best medel looking in the new JFreeChart source code because there is no

also discussed. migration descriptiorf.[13]. The second one is “API changes:
, undocumented (again)”, in which API users state tf@buld
A. Answers to Research Questions documentation be improved and more information be provided

RQ1: Assessment of Impacts in the Code Bloat Cat- to ease migration?[14]. With this evidence, it is concluded
egory. The assessment results are summarized in Table llthat the negative impact of H Model is significant enough to
The values ofPCy,,;; show that little of APIs are deprecated offset the positive impact of H Model. In summary, answer to
APIs. Thus, the problem of code bloat caused by deprecatddQ?2 is that D Model performs the best regarding the migration
APIs in D Model is insignificant. On the other hand, NR information category.

APIs in ND Model not only avoid the problem of code bloat RQ3: Assessment of Impacts in the Adaptation Time

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6 222

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE V. ASSESSMENTRESULTS FOR THEADAPTATION TIME Ing to the Summary’ DMOdeI IS the beSt mOdeI because It
CATEGORY. outperforms the others in the most of categories.
The advantages of D Model are presented in Section II-A.
Model | Ty, the metric for T, the metric for According to four impact categories, the following disdoas
5 assessing negative impac assessiﬂgzaogifve impacts is to demonstrate that the cost of getting the advantagenis lo
ND 0.40 - Code bloat category.The cost of maintaining deprecated
H 1.75 14.19 APIs is low. As discussed the answer of RQ1 in Section IV-A,
Note 1: The label =" means that the value of the metric is nalilable because very few APIs in D Model are deprecated APIs. Hence. the
the negative or positive impact of the corresponding modelsdhot exist. f . . d d APIs is | !
Note 2: The model which performs the best is highlighted wiith gray background. cost of maintaining deprecate S IS low.

Migration information category. The cost of providing
migration information is low. Migration information is nat

TABLE VI. A SSESSMENTRESULTS FOR THEADAPTATION PROBABILITY ura"y derived because deprecated APIs are often pIanned

CATEGORY. to be replaced with new APIs. Besides, adding migration
information to APl documents requires little cost. As a tgsu
Model P B, the metric for PB,, the metric Tor the cost of providing migration information is low.
assessing negative impacts assessing positive impacts Adaptation time category. The cost of prior notification
- packagd dacs method fleld | package class method, Ted is low. The notification of API removals is often performed
ND | 039 |094| 1.00 |083 - — — — through 1) labelling an API ‘deprecated’ in APl documentd an
H | '?-Olob l?-QO 0-64h 0-30 |0-00f h0-00 _0.00 - S-OO . 2) publishing updated APl documents to API users. Because
Nonative o pasitve immact of he cormeaponding model et - ou>¢ ¥ both of such costs are low, the cost of prior notification is.lo
Note 2: The model which performs the best is highlighted wit gray background. Adaptation probability category. The cost of planning

API changes is low. Planning API removals requires designin
new APIs and scheduling APl removals. The former is the in-
. L tegral part of API design, which does not cause any additiona
Category. The positive and negative impact are assessed bé(ost. The latter needs little cost because API developers ha

Ty andT;,. However, the subjects for D Model and H model ;' cider API removals for software release. Hence, tta to
do not contain the deprecated APIs which are removed. TE : .

. ost of planning API changes is low.
measure the values, we assume that deprecated APIs in the
subjects are finally removed in the last version. Because of V. RELATED WORK

the assumption, actudl; values must larger than the measured

T, values. Th.e assessment results are summarized in Table W, [15] proposed an approach for semi-automatic adapta-
Compared withT;; values, values off;, are very small. It o0 "o AP| removals in libraries. Their approach required
means that API users have only a short time to adapt clienf, oy jevelopers to annotate API changes with a specific
apphcatlons to unplanned API re.mO_/aIs_.. Hence, the neEgat"’language, and the annotation was used by API users for API
impact of ND Model and H Model is S|gn|f|cant_ in those cases..o moval adaptation. The drawback of this approach was that
Based on the assessment results, D Model is the best moqgary developers had to learn a new language. Perkins [16]
because it has the most significant positive impact with theye\ejoped a technique to replace calls to deprecated API
largestT; value. Besides, D Model does not have negativenaods with their method bodies. The assumption of the
impact. As a result, the answer to RQ3 is that D Modelg hnique was that the method bodies contained appropriate
performs the best regarding the a.daptanon tlmg category. replacement code. Many approaches [17][18] were developed
~ RQ4: Assessment of Impacts in the Adaptation Proba- to support API removal adaptation by recording and replgyin
bility Category. Table VI summarizes the assessment reS!“tSrefactorings with refactoring engines. In those approsche
Because deprecated APIs are not removed in our subjectsp| developers and API users were required to utilize the
values of PB,, are all zero. It means the positive impact on same refactoring engines so that recorded refactorindd beu
APl users is significant for D Model and H Model. On the replayed by API users. An alternative solution to API remova
other hand, the high values @B, for ND Model indicate adaptation was to develop matching techniques [2][19]-[21
that APl users must adapt client applications to unplanretl A for discovering replacement APIs, by which deprecated or
removals. So, the negative impact of ND Model is significant.removed APIs were replaced. Some of the techniques directly
As aresult, D Model is the best model because it has only pogyerformed replacement without API users involvement, and
itive impact and such positive impact is significant. Altgbu thus the appropriateness of discovered replacement ARds wa
H Model has positive impact with the same significance, it hasiot guaranteed. On the contrary, the others provided a set
some of negative impact assessed/bg,. Hence, D Model of replacement API candidates from which API users could
is still better than H Model. In summary, the answer to RQ4choose. But, APl users had to spend additional effort in
is that D Model performs the best regarding the adaptatioguaranteeing the appropriateness.
probability category. Although many approaches and techniques are developed
to help APl users with APl removal adaptation, they all
B. The Best Model have limitations. Recently, API deprecation is a promising
The answer to RQ1 is ND Model, while the answers tosolution for adapting APl changes. An empirical study of
RQ2, RQ3, and RQ4 are D Model. As a result, ND ModelHora et al. [10] indicate that the deprecation mechanism
outperforms the others only in the code bloat category,avhil should be adopted. The study shows that APl deprecation
D Model performs the best in the migration information, reaction is faster and larger compared with NR API reaction.
adaptation time, and adaptation probability categoriesofd- Besides, the study of McDonnel et al. [22] indicate thatrdlie

Support for APl removal adaptation. Chow and Not-

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6 223

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

applications need a longer adaptation time when APIls are[7]
evolving fast. Such adaptation time can be preserved ttroug
deprecation because it signhals API users that which API bugh
to be avoided [23]. In addition, Brito et al. [24] argue that [8]
replacement messages with deprecated APIs facilitate API[
users to adapt APIs. This argument complies with the study]
of Ko et al. [25], which empirically indicates that migratio
information promotes the reaction to API evolution. Howeve

all these previous studies focus on why API developers shoul
adopt deprecation. How to apply deprecation has not beeno]
investigated. Therefore, we discover the best model erdzbdd
with deprecation to present how deprecation can be applied t
API removal management. In the best model, API removals arg 1]
planned in advance and early announced to API users. More-
over, API developers provide migration information, which
contains replacement APIs. As a result, the appropriageneg 2
of replacement APIs is guaranteed because of the credible
information source. In summary, the best model ensures the
support for API removal adaptation. [13]

VI. CONCLUSION AND FUTURE WORK [14]

The best model for API removal management is presenteﬂf)]
in this work. The characteristics of the best model include
1) planning of API removals, which prevents unintentional
API removals and makes APIs stable, 2) provision of mi-
gration information, which reduces migration effort, and 3 [16]
prior notification of planned APl removals, which preserves
sufficient time to adapt client applications. The goal behin
the best model is to benefit both API developers and APLN]
users, who are the major stakeholders in the ecosystem dorm
by frameworks/libraries and client applications. As a tgsu
following the best model will make API developers design
more stable APIs with planning, and APl users will spend[18]
less effort in constructing and maintaining client appimas.

While we conclude D Model is the best in two popular,
mature, and open source systems of Eclipse, the select?ldg]
subjects might not be representative in other domains, asch
web framework. Web framework is widely adopted in different
ways to build kinds of web apps, and is changing at an
extremely rapid pace right now. For the purpose of presgrvin[2o]
market share, web framework developers are forced to evolve
the framework in time to catch up with the trend. API removals
will happen more frequently compared with those observed
subjects in this study. Therefore, to investigate the beat A [21]
lifecycle model further within such context will be our fuéu
work.

[22]
REFERENCES
[1] I. Sommerville, Software Engineering Pearson Education Limited,
2010, vol. Ninth Edition ed. [23]

[2] Z. Xing and E. Stroulia, “API-Evolution Support with BiCatchUp,”
Journal of IEEE Transactions on Software Engineeringl. 33, no. 12,
Dec. 2007, pp. 818-836.

[3] D. Dig and R. Johnson, “The Role of Refactorings in API ENion,”
in Proceedings of the 21 IEEE International Conference on Software [24]
Maintenance (ICSM), 26—-29 Sept. 2005, Budapest, Hun@o95.

[4] “About APl Manager,” 2017, URL: https://docs.wso2.chtisplay
/AM110/About+API+Manager [accessed: 2017-08-22].

[5] “Lifecycle Manager for APIs,” 2015, URL: https://wwvoguewave.com
/products-services/akanal/lifecycle-manager [accesdet7-08-22].

[6] “Oracle API Management,” 2015, URL.: http://www.oragtem/us/
products/middleware/soa/api-management/overviewkridml
[accessed: 2017-08-22].

[25]

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

D. Dig and R. Johnson, “How do APIs Evolve? A Story of Réfaing,”
Journal of Software Maintenance and Evolution: ResearchRiractice
vol. 18, no. 2, Mar. 2006, pp. 83-107.

Z. Xing and E. Stroulia, “Differencing Logical UML Mods|" Journal
of Automated Software Engineeringpl. 14, June 2007, pp. 215-259.

L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Histora and
Impact Analysis of API Breaking Changes: A Large-scale $fudh
Proceedings of the IEEE # International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 20-24 Eéi7,
Klagenfurt, Austria 2017, pp. 138-147.

A. Hora et al., “How Do Developers React to API EvolutiA Large-
scale Empirical Study,Journal of Software Quality JournaR016, pp.
1-31.

W. Wu, F. Khomh, B. Adams, Y. G. Guhneuc, and G. Antoniol,
“An Exploratory Study of APl Changes and Usages based on lgac
and Eclipse EcosystemsJournal of Empirical Software Engineering
vol. 21, no. 6, Dec. 2016, pp. 2366-2412.

G. Bavota et al., “The Impact of APl Change and Faultriertess on
The User Ratings of Android AppsJournal of IEEE Transactions on
Software Engineeringvol. 41, no. 4, Apr. 2015, pp. 384-407.

“Arrrgh! Lots of API changes again!” 2003, URL: httpmivw.jfree.org
[forum/viewtopic.php?f=3&t=5093 [accessed: 2017-08-22

“API changes: undocumented (again),” 2004, URL: itipwvw.jfree.org
[forum/viewtopic.php?f=3&t=9265 [accessed: 2017-08-22

K. Chow and D. Notkin, “Semi-automatic Update of Applimns in
Response to Library Changes,”mioceedings of the IEEE International
Conference on Software Maintenance (ICSM), 4-8 Nov. 1996érey,
CA, USA 1996, pp. 359-368.

J. H. Perkins, “Automatically Generating Refactosntp Support API
Evolution,” in Proceedings of the8 ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for software tools and enginee(P&STE),
5-6 Sept. 2005, Lisbon, Portug&005, pp. 111-114.

J. Henkel and A. Diwan, “CatchUp! Capturing and ReptayRefactor-
ings to Support API Evolution,” irProceedings of M International

Conference on Software Engineering (ICSE), 15-21 May 2@5,
Louis, MO, USA 2005, pp. 274-283.

D. Dig, S. Negara, V. Mohindra, and R. Johnson, “ReBAfdR&ring-
aware Binary Adaptation of Evolving Libraries,” Proceedings of
International Conference on Software Engineering (ICSB);18 May
2008, Leipzig, Germany2008, pp. 441-450.

M. Kim, D. Notkin, and D. Grossman, “Automatic Inferenof Struc-
tural Changes for Matching across Program VersionsPiioceedings

of the 28" international conference on Software Engineering (ICSE),
20-26 May 2007, Minneapolis, MN, US2007, pp. 333-343.

W. Wu, Y.-G. Gueheneuc, G. Antoniol, and M. Kim, “AURA: Wybrid
Approach to Identify Framework Evolution,” ifroceedings of
ACM/IEEE International Conference on Software EnginegfCSE),
1-8 May 2010, Cape Town, South Afri@010, pp. 325-334.

Z. Xing and E. Stroulia, “Identifying and Summarizingssematic Code
Changes via Rule Inferencelournal of IEEE Transactions on Software
Engineering vol. 39, no. 1, Jan. 2013, pp. 45-62.

T. McDonnell, B. Ray, and M. Kim, “An Empirical Study of R
Stability and Adoption in the Android Ecosystem,” Rroceedings of
29N |EEE International Conference on Software MaintenanceS(J,
22-28 Sept. 2013, Eindhoven, Netherlgr2i313, pp. 70-79.

J. Zhou and R. J. Walker, “API Deprecation: a Retrosgecfnalysis
and Detection Method for Code Examples on the WebPiiaceedings
of 24" ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 13-18 Nov., 2016, Seattle, WA,, 2846, pp.
266-277.

G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do Dewgbrs
Deprecate APIs with Replacement Messages? A Large-Scaé/#is
on Java Systems,” iRroceedings of the IEEE 4 International Con-
ference on Software Analysis, Evolution, and Reengingel@ANER),
14-18 Mar. 2016, Suita, Japa2016, pp. 360—369.

D. Ko et al., “API Document Quality for Resolving Depeged APIs,”
in Proceedings of At [EEE Asia-Pacific Software Engineering Con-
ference (APSEC), 1-4 Dec., 2014, Jeju, South Ka2€d 4, pp. 27-30.

224

