
Which API Lifecycle Model is the Best for API Removal Management?

Dung-Feng Yu, Cheng-Ying Chang

Institute of Computer and
Communication Engineering,

National Cheng Kung University,
Tainan, Taiwan

Email:{dfyu, zhengying}@nature.ee.ncku.edu.tw

Hewijin Christine Jiau, Kuo-Feng Ssu

Department of Electrical
Engineering,

National Cheng Kung University,
Tainan, Taiwan

Email:{jiauhjc, ssu}@mail.ncku.edu.tw

Abstract—Frameworks and libraries are reused through applica-
tion programming interfaces (APIs). Normally, APIs are assumed
to be stable and serve as contracts between frameworks/libraries
and client applications. However, in reality, APIs change over
time. When these changes happen, API users must spend addi-
tional effort in migrating client applications. If the effo rt is too
much to afford, the frameworks/libraries that API developers
have built will lose market share. In order to reduce migration
effort, API developers should manage API changes through API
lifecycle. Before construction of API lifecycle, investigation of the
following question is required: Which API lifecycle model is the
best for API removal management? To answer this question, we
first construct three API lifecycle models based on the observation
of current practices, and then devise a set of metrics to assess
those models using case studies. Assessment results conclude the
best model is deprecation involved model which benefits API
developers and users most with the least costs. Such model
becomes the base for API developers to build API lifecycle which
enables API developers to manage API changes, and reduces
migration effort.

Keywords–API lifecycle; API lifecycle model; API change; API
removal management; software migration.

I. I NTRODUCTION

Software reuse offers many benefits, such as acceleration
of software development and reduction of the overall devel-
opment cost [1]. Reusable software provides common func-
tionalities through application programming interfaces (APIs).
Normally, APIs are assumed to be stable and serve as contracts
between reusable software and client software. But, in fact,
as reusable software evolves to meet changing requirements
and solve emerging bugs over time, APIs will inevitably and
frequently change [2]. These changes will cause client software
to fail and increase maintenance cost [3]. Therefore, API
changes must be managed.

API developers manage API changes to web service using
tools, such asAPI Manager[4], Lifecycle Manager[5], and
Oracle API Management[6]. Each tool contains API lifecycle,
which is represented as a set of specific stages and the
transitions between them. Different tools contain different API
lifecycles. As a result, API developers need to choose the
tool that contains the most suitable API lifecycle. After API
lifecycle is chosen, API of the web service must follow the
lifecycle from its birth (i.e., API addition) to its death (i.e.,
API removal). Throughout API lifecycle, API developers can
control API addition, removal, and other changes.

Unlike API changes to web service, API changes to
frameworks and libraries are not well managed [3][7][8].

From previous study, API changes happen frequently across
different versions of a frameworks/libraries and commonly
across different frameworks/libraries [9]. These API changes
often cause a large amount of effort in migrating client
application [10]-[12]. As a result, API users will complain
through communication channels, such as online forums or
mailing lists. If API developers do not handle those specific
complaints, the framework or library that they have built
will lose market share because API users will choose other
frameworks or libraries instead.

To reduce migration effort, we first investigate the origin
of API changes and then propose an effective way to manage
them. According to previous research [3][9][10], most API
changes occur when API developersdirectly make themin the
design improvement tasks, without considering the affected
client applications. As a result, the most effective way to
manage API changes of frameworks and libraries is toplan
them based on API lifecycle. API lifecycle can enable API
developers to make API changes according to predefined stage
and transitions. It also guarantees that API developers consider
the affected client applications when making API changes.
However, there is no one-size-fits-all API lifecycle for allAPI
developers. Hence, we investigate the best API lifecycle model,
instead of the best API lifecycle.

In this work, API lifecycle model is an abstraction of API
lifecycles, and is represented as a set of general stages and
transitions between them. To choose the best API lifecycle
model, we first construct three API lifecycle models according
to the observation on current practices, and then analyze those
models from the perspective of API removal management.
This perspective is chosen because API removal management
enables API developers to prevent unintentional API removals
and therefore avoid causing client applications to fail. We
assess the impact of API lifecycle models on API developers
and API users through three case studies. The best model is
determined by the assessment results.

Main contributions of this work are as follows: 1) We are
the first to provide API developers with a solution to manage
API changes. 2) The best model is the base for API developers
to build a suitable API lifecycle. Such API lifecycle enables
API developers to manage API changes and therefore avoid
causing client applications to fail. As a result, migrationeffort
will be reduced. 3) We devise a metric set that enables API
developers to assess the impact of their API lifecycle on both
API developers and API users.

A preliminary analysis is performed in Section II to
introduce API lifecycle models and assess the impact on

219Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

both API developers and API users. Case studies of models
are conducted in Section III, and then results are presented
in Section IV. The best model is determined according to
the results. Related work is discussed in Section V. Finally,
conclusion and future work are provided in Section VI.

II. PRELIMINARY ANALYSIS

The goal of this preliminary analysis is to approximately
assess the impact of API lifecycle models on API developers
and API users from the perspective of API removal man-
agement. Therefore, three generic API lifecycle models are
introduced, which are shown in Figure 1. The support for
API removal management is discussed, and the positive and
negative impacts are further analyzed in detail. Finally, the
analysis result is summarized to provide an overview of API
lifecycle models.

creation deprecation removal

(a) D Model: Deprecation Involved Model.

d.1 d.2

creation removal

(b) ND Model: Non-Deprecation Involved Model.

n.1
creation deprecation removal

(c) H Model: Hybrid Model.

d.1 d.2

n.1

Figure 1. Three API Lifecycle Models.

A. D Model: Deprecation Involved Model
As shown in Figure 1(a),Deprecation Involved Model

(D Model) contains three stages, including creation stage,
deprecation stage, and removal stage. In D Model, API (e.g.,
AD) enters creation stage when it is designed to provide
functionality and exposed to API users. Through extensive
usage,AD might be found buggy or insufficient. Hence, API
developers decide thatAD should be scheduled for removal
because it is no longer recommended to use. To notify API
users of the decision, API developers often labelAD ‘dep-
recated’ and provide the corresponding migration information
(e.g., using other API instead) in API documents. After the
notification,AD enters deprecation stage from creation stage,
and becomes a deprecated API. Meanwhile, API developers
plan the future removal of the deprecated API. OnceAD is
removed, it enters removal stage and ends its lifecycle.

D Model provides API developers full support for API
removal management through the following ways. First, all
API removals are planned before they occur. Therefore, API
developers are able to control the timing of API removals.
Second, migration problems caused by API removals (e.g.,
compilation errors occur when API users compile client appli-
cations and new version of frameworks/libraries) are mitigated
through the provision of migration information. As a result,
API developers have control over the impact of API removals
on API users.

Although D Model provides full support for API removal
management, it still has one negative impact on API devel-
opers. When maintaining deprecated APIs, API developers
have to keep implementation of deprecated APIs in each
new version of frameworks/libraries, and thus encounter the

problem of code bloat. On the other hand, D Model has three
positive impacts on API users. First, migration information
enables API users to adapt client applications to API removals.
Second, API users are informed of API removal schedules in
advance through API documents, and thus they have sufficient
time to adapt client applications. Third, the probability that
API users have to adapt client applications is low because
API developers often remove APIs only when necessary. This
reduces the effort in migrating client applications.

B. ND Model: Non-Deprecation Involved Model
Figure 1(b) showsNon-Deprecation Involved Model(ND

Model). ND Model contains creation and removal stages, but
deprecation stage is excluded. As a result, the API following
ND Model is always a non-deprecated API, and will never
become a deprecated API. In ND Model, API (e.g.,AND)
enters creation stage when it is designed and exposed to
API users. AfterAND is used, it might be found buggy or
insufficient. Hence, the non-deprecated API,AND, will be
directly removed in the new version of frameworks/libraries
without planning. Such API is calledNR API in this work,
whereNRstands forNon-deprecatedandRemoved. AfterAND

is removed, it enters removal stage from creation stage. Such
stage transition is denoted by the dotted arc in Figure 1(b).

ND model does not provide API developers with any
support for API removal management. The reasons are listed
as follows. First, all API removals occur without any planning.
As a result, API developers are not able to control the timingof
API removals. Second, migration problems will occur because
of lacking of migration information in API document. API
users need to find the alternative APIs by themselves to replace
the removed APIs. Therefore, API developers do not have
control over the impact of API removals on API users.

ND Model not only lacks the support for API removal
management, but also has three negative impacts on API users.
First, API users have difficulties in adapting client applications
to API removals because no migration information is provided
in API documents. Second, API users do not have sufficient
time to adapt client applications because they are aware of
API removals only after those API removals occur. Third, the
probability that API users have to adapt client applications to
API removals is high because such API removals occur without
planning. Despite those negative impacts, ND Model has one
positive impact on API developers: there is no deprecated API
in ND Model, and thus API developers will not encounter the
problem of code bloat.

C. H Model: Hybrid Model
As illustrated in Figure 1(c),Hybrid Model (H Model) is

a hybrid of D Model and ND Model. In H Model, API in
creation stage has two possible paths to removal stage. Path
1 includes two solid arcs in Figure 1(c), which is the same
as D Model. Path 2 includes one dotted arc in Figure 1(c),
which is the same as ND Model. The API which follows Path
1 becomes a deprecated API, and its removal is planned. The
API which follows Path 2 becomes an NR API, and its removal
is unplanned.

H Model provides partial support for API removal man-
agement. In H Model, both deprecated APIs and NR APIs
exist. For deprecated APIs, API developers have control over
the timing and impact of their removal. But, for NR APIs,
API developers do not have any control. H Model has both

220Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE I. SUMMARY OF THE PRELIMINARY ANALYSIS RESULT.

Model API removal
management

Negative impacts Positive impacts

D Model Full support 1. Deprecated APIs cause API developersthe problem of code bloat.
(cBloat)

1. Migration information of deprecated APIs enables API users to
adapt client applications to planned API removals. (mInfo)
2. Prior notification of planned API removals enables API users to
have sufficient time to adapt client applications. (aTime)
3. The probability that API users have to adapt client applications to
planned API removals is low. (aPro)

ND Model No support 1. No migration information of NR APIs hinders API users from
adapting client applications to unplanned API removals. (mInfo)

1. NR APIs do not cause API developers the problem of code bloat.
(cBloat)

2. API users do not have sufficient time to adapt client applications due
to the lack of prior notification of unplanned API removals. (aTime)
3. The probability that API users have to adapt client applications to
NR APIs is high. (aPro)

H Model Partial support 1. No migration information of NR APIs hinders API users from
adapting client applications to API removals. (mInfo)

1. Migration information of deprecated APIs enables API users to
adapt client applications to planned API removals. (mInfo)

2. For unplanned API removals, the lack of their prior notification
causes API users the problem of not having sufficient time to adapt
client applications. (aTime)

2. For planned API removals, their prior notification enables API users
to have sufficient time to adapt client applications. (aTime)

3. For unplanned API removals, the probability that API users have
to adapt client applications is high. (aPro)

3. For planned API removals, the probability that API users have to
adapt client applications is low. (aPro)

4. Deprecated APIs cause API developers the problem of code bloat.
(cBloat)

4. NR APIs do not cause API developers the problem of code bloat.
(cBloat)

Note 1: The words in the parentheses are the abbreviations ofimpacts.
Note 2: The negative and positive impacts of H Model which areinherited from D Model are highlighted with the gray background, while those which are inherited from
ND Model are shown with the white background.
Note 3: Planned API removals are the removals of deprecated APIs, while unplanned API removals are the removals of NR APIs.

positive and negative impacts. Some of them are inherited from
D Model, and the others are inherited from ND Model. The
whole list of those impacts is provided in Table I, which is
introduced in the next section.

D. Summary
To have an overview of those API models, we summarize

the analysis result in Table I. The analysis result reveals the
following three types of information on the models: 1) degree
of support for API removal management, 2) negative impacts,
and 3) positive impacts. Furthermore, the impact categories,
which are shown as index words in Table I, are described as
follows:

1) Code bloat (cBloat). It includes the impacts related
to the problem of code bloat.

2) Migration information (mInfo). It includes the im-
pacts related to the provision of migration informa-
tion.

3) Adaptation time (aTime). It includes the impacts
related to the time which API users have for software
adaptation.

4) Adaptation probability (aPro). It includes the impacts
related to the probability that API users have to
adapt client applications to planned or unplanned API
removals.

III. C ASE STUDIES

The goal of the case studies is to assess the positive and
negative impacts of the models in four impact categories.
Through the assessment, the best model will be concluded if
it outperforms the others in the most impact categories.

A. Research Questions
To conclude the best model, we have to answer the follow-

ing research questions:
1) RQ1: Regarding the impact category of code bloat,

which model performs the best?

2) RQ2: Regarding the impact category of migration
information, which model performs the best?

3) RQ3: Regarding the impact category of adaptation
time, which model performs the best?

4) RQ4: Regarding the impact category of adaptation
probability, which model performs the best?

To answer these research questions, we assess impacts of
the models in four impact categories through a set of metrics.
As shown in Table II, those metrics are organized according to
targeted impact categories, and definitions are also provided.
With these metrics, we can assess the impacts and answer the
research questions.

B. Data Collection
Three subjects are chosen for data collection, and each

one is the representative of a specific API lifecycle model.
Those subjects are all medium-scaled open source projects
with hundreds of Java classes. The duration of data collection
for each subject is approximately three years. The subjectsand
the collected data are introduced as follows.

Subject for D Model: JFace with versions from 3.6 to
4.3. JFace is a popular user interface framework on Eclipse
platform. The duration of the data collection is from June 2010
to June 2013. The collected data includes API documents and
source code. From API documents, the deprecated APIs are
extracted to measure the values ofPCd/all andTd. Besides,
migration information for the deprecated APIs is investigated
to enable the measurement ofPCdMI/d. The value ofPBp is
measured through extracting APIs from API documents, de-
tecting planned API removals, and confirming the occurrence
of those planned API removals in the source code.

Subject for ND Model: JFreeChart with versions from
0.9.4 to 1.0.0. JFreeChart is a mature and widely used chart
library. According to download statistics, it has been down-
loaded for more than three million times since its registration
in SourceForge. The duration of the data collection is from
October 2002 to December 2005. During data collection,

221Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE II. D EFINITION OF METRICS.

Targeted impact category Metric Definition
Code bloat PCd/all In all APIs, the percentage of deprecated APIs.

PCnr/all In all APIs, the percentage of NR APIs.
Migration information PCdMI/d In all deprecated APIs, the percentage of deprecated APIs with migration information.

PCnrMI/nr In all NR APIs, the percentage of NR APIs with migration information.
Adaptation time Td The average time, measured in months, of a deprecated API from being announced to-be-removed to being removed.

(i.e., the average time of a deprecated API staying in the deprecation stage)
Tnr The average time, measured in months, of an NR API from being announced to-be-removed to being removed.

Adaptation probability PBp The probability of the occurrence of planned API removals.
PBu The probability of the occurrence of unplanned API removals.

TABLE III. A SSESSMENTRESULTS FOR THECODE BLOAT CATEGORY.

Model PCd/all, the metric for PCnr/all, the metric for
assessing negative impacts assessing positive impacts

package class method field package class method field
D 0.00% 4.01% 1.43% 2.69% – – – –

ND – – – – 6.81% 12.28% 13.19% 14.57%
H 0.00% 2.60% 1.81% 1.84% 0.00% 0.00% 0.02% 0.00%

Note 1: The label “–” means that the value of the metric is not available because
the negative or positive impact of the corresponding model does not exist.
Note 2: The model which performs the best is highlighted withthe gray background.

API documents are not provided. As a result, the collected
data includes the source code, online forum, and jfreechart-
commit mailing list, but no API documents. From the source
code, packages, classes, methods, and fields with public or
protected access modifiers are extracted as APIs. NR APIs
and their removals are then detected to measure the values of
PCnr/all andPBu. In the online forum, migration information
is identified to measure the value ofPCnrMI/nr. In jfreechart-
commit mailing list, notification of the removals of NR APIs
is also identified to measure the value ofTnr.

Subject for H Model: JFreeChart with versions from
1.0.2 to 1.0.13.The duration of the data collection is from
August 2006 to April 2009. API documents are provided dur-
ing data collection. Therefore, the collected data includes API
documents, source code, online forum, and jfreechart-commit
mailing list. In API documents, the deprecated APIs and their
migration information are investigated to measure the values of
PCd/all, Td, andPCdMI/d. From API documents and source
code, NR APIs, planned API removals, and unplanned API
removals are detected to measure the values ofPCnr/all, PBp,
andPBu. In the online forum, migration information of NR
APIs is identified to measure the value ofPCnrMI/nr. In
jfreechart-commit mailing list, notification of the removals of
NR APIs is identified to measure the value ofTnr.

IV. RESULTS OFCASE STUDIES

In Section IV-A, results of case studies are presented to
answer the four research questions. In Section IV-B, answers
to those research questions are summarized to conclude the
best model. Then, the cost-effectiveness of the best model is
also discussed.

A. Answers to Research Questions

RQ1: Assessment of Impacts in the Code Bloat Cat-
egory. The assessment results are summarized in Table III.
The values ofPCd/all show that little of APIs are deprecated
APIs. Thus, the problem of code bloat caused by deprecated
APIs in D Model is insignificant. On the other hand, NR
APIs in ND Model not only avoid the problem of code bloat

TABLE IV. A SSESSMENTRESULTS FOR THEM IGRATION INFORMATION
CATEGORY.

Model PCnrMI/nr, the metric for PCdMI/d, the metric for
assessing negative impacts assessing positive impacts

package class method field package class method field
D – – – – ∗ 87.10% 86.39% 58.97%

ND 0.00% 0.52% 0.04% 0.00% – – – –
H ∗ ∗ 0.00% ∗ ∗ 88.48% 92.87% 71.56%

Note 1: The label “–” means that the value of the metric is not available because
the negative or positive impact of the corresponding model does not exist.
Note 2: The label “∗” means that the value of the metric is not available because
of division by zero.
Note 3: The model which performs the best is highlighted withthe gray background.

for API developers, but also reduce API developers’ effort in
maintaining API implementation by 6.81% to 14.57%. Regard
to H Model, the values ofPCd/all are between two models, but
the values ofPCnr/all are very low. So, the negative impact
is medium but the positive is insignificant. In summary, ND
Model is the best model because of the following two reasons.
First, it only has the positive impact in the code bloat category.
Second, it has the largestPCnr/all values, which means its
positive impact is the most significant. As a result, ND Model
performs the best regarding the code bloat category.

RQ2: Assessment of Impacts in the Migration Informa-
tion Category. Table IV summarizes the assessment results.
Both D Model and H Model have significant positive impacts
with largePCdMI/d values. But, D Model is better than H
Model because D Model has only positive impact. Unlike
D Model, H Model has not only positive impact but also
negative impact. Regarding the positive one, H Model has
slightly larger positive impact than D Model. Regarding the
negative one, thePCnrMI/all value of H Model reveals that
none of NR APIs in the method level are provided with migra-
tion information. Unfortunately, lack of migration information
hinders API users from migrating client applications. Two
discussion topics in the online forum of JFreeChart have been
found as the evidence. The first one is “Arrrgh! Lots of API
changes again”, in which API users state that “..., these API
changes really are not funny! It takes a lot of time, researching,
looking in the new JFreeChart source code because there is no
migration description.” [13]. The second one is “API changes:
undocumented (again)”, in which API users state that “Could
documentation be improved and more information be provided
to ease migration?” [14]. With this evidence, it is concluded
that the negative impact of H Model is significant enough to
offset the positive impact of H Model. In summary, answer to
RQ2 is that D Model performs the best regarding the migration
information category.

RQ3: Assessment of Impacts in the Adaptation Time

222Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE V. A SSESSMENTRESULTS FOR THEADAPTATION T IME

CATEGORY.

Model Tnr , the metric for Td, the metric for
assessing negative impacts assessing positive impacts

D – 24.01
ND 0.40 –
H 1.75 14.19

Note 1: The label “–” means that the value of the metric is not available because
the negative or positive impact of the corresponding model does not exist.
Note 2: The model which performs the best is highlighted withthe gray background.

TABLE VI. A SSESSMENTRESULTS FOR THEADAPTATION PROBABILITY

CATEGORY.

Model PBu, the metric for PBp, the metric for
assessing negative impacts assessing positive impacts

package class method field package class method field
D – – – – 0.00 0.00 0.00 0.00

ND 0.39 0.94 1.00 0.83 – – – –
H 0.00 0.00 0.64 0.00 0.00 0.00 0.00 0.00

Note 1: The label “–” means that the value of the metric is not available because the
negative or positive impact of the corresponding model doesnot exist.
Note 2: The model which performs the best is highlighted withthe gray background.

Category. The positive and negative impact are assessed by
Td andTnr. However, the subjects for D Model and H model
do not contain the deprecated APIs which are removed. To
measure the values, we assume that deprecated APIs in the
subjects are finally removed in the last version. Because of
the assumption, actualTd values must larger than the measured
Td values. The assessment results are summarized in Table V.
Compared withTd values, values ofTnr are very small. It
means that API users have only a short time to adapt client
applications to unplanned API removals. Hence, the negative
impact of ND Model and H Model is significant in those cases.
Based on the assessment results, D Model is the best model
because it has the most significant positive impact with the
largestTd value. Besides, D Model does not have negative
impact. As a result, the answer to RQ3 is that D Model
performs the best regarding the adaptation time category.

RQ4: Assessment of Impacts in the Adaptation Proba-
bility Category. Table VI summarizes the assessment results.
Because deprecated APIs are not removed in our subjects,
values ofPBp are all zero. It means the positive impact on
API users is significant for D Model and H Model. On the
other hand, the high values ofPBu for ND Model indicate
that API users must adapt client applications to unplanned API
removals. So, the negative impact of ND Model is significant.
As a result, D Model is the best model because it has only pos-
itive impact and such positive impact is significant. Although
H Model has positive impact with the same significance, it has
some of negative impact assessed byPBu. Hence, D Model
is still better than H Model. In summary, the answer to RQ4
is that D Model performs the best regarding the adaptation
probability category.

B. The Best Model

The answer to RQ1 is ND Model, while the answers to
RQ2, RQ3, and RQ4 are D Model. As a result, ND Model
outperforms the others only in the code bloat category, while
D Model performs the best in the migration information,
adaptation time, and adaptation probability categories. Accord-

ing to the summary, D Model is the best model because it
outperforms the others in the most of categories.

The advantages of D Model are presented in Section II-A.
According to four impact categories, the following discussion
is to demonstrate that the cost of getting the advantage is low.

Code bloat category.The cost of maintaining deprecated
APIs is low. As discussed the answer of RQ1 in Section IV-A,
very few APIs in D Model are deprecated APIs. Hence, the
cost of maintaining deprecated APIs is low.

Migration information category. The cost of providing
migration information is low. Migration information is nat-
urally derived because deprecated APIs are often planned
to be replaced with new APIs. Besides, adding migration
information to API documents requires little cost. As a result,
the cost of providing migration information is low.

Adaptation time category. The cost of prior notification
is low. The notification of API removals is often performed
through 1) labelling an API ‘deprecated’ in API documents and
2) publishing updated API documents to API users. Because
both of such costs are low, the cost of prior notification is low.

Adaptation probability category. The cost of planning
API changes is low. Planning API removals requires designing
new APIs and scheduling API removals. The former is the in-
tegral part of API design, which does not cause any additional
cost. The latter needs little cost because API developers have
to consider API removals for software release. Hence, the total
cost of planning API changes is low.

V. RELATED WORK

Support for API removal adaptation. Chow and Not-
kin [15] proposed an approach for semi-automatic adapta-
tion to API removals in libraries. Their approach required
library developers to annotate API changes with a specific
language, and the annotation was used by API users for API
removal adaptation. The drawback of this approach was that
library developers had to learn a new language. Perkins [16]
developed a technique to replace calls to deprecated API
methods with their method bodies. The assumption of the
technique was that the method bodies contained appropriate
replacement code. Many approaches [17][18] were developed
to support API removal adaptation by recording and replaying
refactorings with refactoring engines. In those approaches,
API developers and API users were required to utilize the
same refactoring engines so that recorded refactorings could be
replayed by API users. An alternative solution to API removal
adaptation was to develop matching techniques [2][19]-[21]
for discovering replacement APIs, by which deprecated or
removed APIs were replaced. Some of the techniques directly
performed replacement without API users involvement, and
thus the appropriateness of discovered replacement APIs was
not guaranteed. On the contrary, the others provided a set
of replacement API candidates from which API users could
choose. But, API users had to spend additional effort in
guaranteeing the appropriateness.

Although many approaches and techniques are developed
to help API users with API removal adaptation, they all
have limitations. Recently, API deprecation is a promising
solution for adapting API changes. An empirical study of
Hora et al. [10] indicate that the deprecation mechanism
should be adopted. The study shows that API deprecation
reaction is faster and larger compared with NR API reaction.
Besides, the study of McDonnel et al. [22] indicate that client

223Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

applications need a longer adaptation time when APIs are
evolving fast. Such adaptation time can be preserved through
deprecation because it signals API users that which API ought
to be avoided [23]. In addition, Brito et al. [24] argue that
replacement messages with deprecated APIs facilitate API
users to adapt APIs. This argument complies with the study
of Ko et al. [25], which empirically indicates that migration
information promotes the reaction to API evolution. However,
all these previous studies focus on why API developers should
adopt deprecation. How to apply deprecation has not been
investigated. Therefore, we discover the best model embedded
with deprecation to present how deprecation can be applied to
API removal management. In the best model, API removals are
planned in advance and early announced to API users. More-
over, API developers provide migration information, which
contains replacement APIs. As a result, the appropriateness
of replacement APIs is guaranteed because of the credible
information source. In summary, the best model ensures the
support for API removal adaptation.

VI. CONCLUSION AND FUTURE WORK

The best model for API removal management is presented
in this work. The characteristics of the best model include
1) planning of API removals, which prevents unintentional
API removals and makes APIs stable, 2) provision of mi-
gration information, which reduces migration effort, and 3)
prior notification of planned API removals, which preserves
sufficient time to adapt client applications. The goal behind
the best model is to benefit both API developers and API
users, who are the major stakeholders in the ecosystem formed
by frameworks/libraries and client applications. As a result,
following the best model will make API developers design
more stable APIs with planning, and API users will spend
less effort in constructing and maintaining client applications.

While we conclude D Model is the best in two popular,
mature, and open source systems of Eclipse, the selected
subjects might not be representative in other domains, suchas
web framework. Web framework is widely adopted in different
ways to build kinds of web apps, and is changing at an
extremely rapid pace right now. For the purpose of preserving
market share, web framework developers are forced to evolve
the framework in time to catch up with the trend. API removals
will happen more frequently compared with those observed
subjects in this study. Therefore, to investigate the best API
lifecycle model further within such context will be our future
work.

REFERENCES

[1] I. Sommerville, Software Engineering. Pearson Education Limited,
2010, vol. Ninth Edition ed.

[2] Z. Xing and E. Stroulia, “API-Evolution Support with Diff-CatchUp,”
Journal of IEEE Transactions on Software Engineering, vol. 33, no. 12,
Dec. 2007, pp. 818–836.

[3] D. Dig and R. Johnson, “The Role of Refactorings in API Evolution,”
in Proceedings of the 21st IEEE International Conference on Software
Maintenance (ICSM), 26–29 Sept. 2005, Budapest, Hungary, 2005.

[4] “About API Manager,” 2017, URL: https://docs.wso2.com/display
/AM110/About+API+Manager [accessed: 2017-08-22].

[5] “Lifecycle Manager for APIs,” 2015, URL: https://www.roguewave.com
/products-services/akana/lifecycle-manager [accessed: 2017-08-22].

[6] “Oracle API Management,” 2015, URL: http://www.oracle.com/us/
products/middleware/soa/api-management/overview/index.html
[accessed: 2017-08-22].

[7] D. Dig and R. Johnson, “How do APIs Evolve? A Story of Refactoring,”
Journal of Software Maintenance and Evolution: Research and Practice,
vol. 18, no. 2, Mar. 2006, pp. 83–107.

[8] Z. Xing and E. Stroulia, “Differencing Logical UML Models,” Journal
of Automated Software Engineering, vol. 14, June 2007, pp. 215–259.

[9] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and
Impact Analysis of API Breaking Changes: A Large-scale Study,” in
Proceedings of the IEEE 24th International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 20–24 Feb. 2017,
Klagenfurt, Austria, 2017, pp. 138–147.

[10] A. Hora et al., “How Do Developers React to API Evolution? A Large-
scale Empirical Study,”Journal of Software Quality Journal, 2016, pp.
1–31.

[11] W. Wu, F. Khomh, B. Adams, Y. G. Guhneuc, and G. Antoniol,
“An Exploratory Study of API Changes and Usages based on Apache
and Eclipse Ecosystems,”Journal of Empirical Software Engineering,
vol. 21, no. 6, Dec. 2016, pp. 2366–2412.

[12] G. Bavota et al., “The Impact of API Change and Fault-Proneness on
The User Ratings of Android Apps,”Journal of IEEE Transactions on
Software Engineering, vol. 41, no. 4, Apr. 2015, pp. 384–407.

[13] “Arrrgh! Lots of API changes again!” 2003, URL: http://www.jfree.org
/forum/viewtopic.php?f=3&t=5093 [accessed: 2017-08-22].

[14] “API changes: undocumented (again),” 2004, URL: http://www.jfree.org
/forum/viewtopic.php?f=3&t=9265 [accessed: 2017-08-22].

[15] K. Chow and D. Notkin, “Semi-automatic Update of Applications in
Response to Library Changes,” inProceedings of the IEEE International
Conference on Software Maintenance (ICSM), 4–8 Nov. 1996, Monterey,
CA, USA, 1996, pp. 359–368.

[16] J. H. Perkins, “Automatically Generating Refactorings to Support API
Evolution,” in Proceedings of the 6th ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for software tools and engineering(PASTE),
5–6 Sept. 2005, Lisbon, Portugal, 2005, pp. 111–114.

[17] J. Henkel and A. Diwan, “CatchUp! Capturing and Replaying Refactor-
ings to Support API Evolution,” inProceedings of 27th International
Conference on Software Engineering (ICSE), 15–21 May 2005,St.
Louis, MO, USA, 2005, pp. 274–283.

[18] D. Dig, S. Negara, V. Mohindra, and R. Johnson, “ReBA: Refactoring-
aware Binary Adaptation of Evolving Libraries,” inProceedings of 30th

International Conference on Software Engineering (ICSE),10–18 May
2008, Leipzig, Germany, 2008, pp. 441–450.

[19] M. Kim, D. Notkin, and D. Grossman, “Automatic Inference of Struc-
tural Changes for Matching across Program Versions,” inProceedings
of the 29th international conference on Software Engineering (ICSE),
20–26 May 2007, Minneapolis, MN, USA, 2007, pp. 333–343.

[20] W. Wu, Y.-G. Gueheneuc, G. Antoniol, and M. Kim, “AURA: AHybrid
Approach to Identify Framework Evolution,” inProceedings of 32nd

ACM/IEEE International Conference on Software Engineering (ICSE),
1–8 May 2010, Cape Town, South Africa, 2010, pp. 325–334.

[21] Z. Xing and E. Stroulia, “Identifying and Summarizing Systematic Code
Changes via Rule Inference,”Journal of IEEE Transactions on Software
Engineering, vol. 39, no. 1, Jan. 2013, pp. 45–62.

[22] T. McDonnell, B. Ray, and M. Kim, “An Empirical Study of API
Stability and Adoption in the Android Ecosystem,” inProceedings of
29th IEEE International Conference on Software Maintenance (ICSM),
22–28 Sept. 2013, Eindhoven, Netherlands, 2013, pp. 70–79.

[23] J. Zhou and R. J. Walker, “API Deprecation: a Retrospective Analysis
and Detection Method for Code Examples on the Web,” inProceedings
of 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 13–18 Nov., 2016, Seattle, WA, USA, 2016, pp.
266–277.

[24] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do Developers
Deprecate APIs with Replacement Messages? A Large-Scale Analysis
on Java Systems,” inProceedings of the IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
14–18 Mar. 2016, Suita, Japan, 2016, pp. 360–369.

[25] D. Ko et al., “API Document Quality for Resolving Deprecated APIs,”
in Proceedings of 21st IEEE Asia-Pacific Software Engineering Con-
ference (APSEC), 1–4 Dec., 2014, Jeju, South Korea, 2014, pp. 27–30.

224Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

