
Architectural Programming with MontiArcAutomaton

Arvid Butting, Oliver Kautz, Bernhard Rumpe, Andreas Wortmann

Software Engineering
RWTH Aachen University

Aachen, Germany
Email: {lastname}@se-rwth.de

Abstract—Modeling software architectures usually requires pro-
gramming the behavior of components interfacing general pro-
gramming language (GPL) libraries. This raises a gap be-
tween modeling activities and programming activities that entails
switching between both activities, which requires considerable
effort. Current research on architecture description languages
(ADLs) focuses on employing state-based component behavior
modeling techniques or integrating handcrafted GPL artifacts
into skeletons generated from architecture models. The former
is rarely feasible to interface with GPL libraries, the latter
opens the aforementioned gap. We integrate GPLs, reified as
modeling languages, into the MontiArcAutomaton ADL to enable
defining component behavior on model level without considering
the idiosyncrasies of generated artifacts. To this effect, we
apply results from software language engineering to enable a
configurable embedding of GPLs as behavior languages into
ADLs. This ultimately enables architecture modelers to focus on
modeling activities only and, hence, reduces the effort of switching
between modeling and programming activities.

Keywords–Model-Driven Engineering, Architecture Description
Languages, Architectural Programming.

I. INTRODUCTION

Component-based software engineering pursues the vision
of constructing software from reusable, off-the-shelf building
blocks that hide their implementation details behind stable
interfaces to facilitate their composition. The behavior of such
software components requires implementation with general-
purpose programming languages (GPLs), which creates a con-
ceptual gap between the problem domains and the solution do-
mains of discourse and ultimately gives raise to the accidental
complexities of programming [1]. Model-driven engineering
aims at reducing this gap. To this end, it lifts models to
primary development artifacts. These models are better suited
to analysis, communication, documentation, and transforma-
tion. Consequently, the notion of software components has
been lifted to component models that conform to architecture
description languages (ADLs) of which research and industry
have produced over 120 [2]. However, most of these languages
focus on structural architecture aspects only. Where component
behavior is considered, it is either in form of state-based mod-
eling techniques or requires integration of handcrafted GPL
artifacts. The former usually is insufficient to describe the be-
havior of components interfacing GPL libraries or frameworks.
The latter requires architecture modelers to switch between
modeling and programming activities, which require different
mindsets and different tooling. Both approaches ultimately
complicate development, especially considering the fact that

developers switch between various activities 47 times per hour
on average already [3].

We present a notion of architectural programming that lifts
programming to modeling by reifying GPL (parts) as behavior
languages and embedding these into ADL components. This
enables reusing libraries and frameworks from within compo-
nent models. Ultimately, this prevents architecture modelers
from facing the idiosyncrasies of generated GPL artifacts and
from the elaborate patterns [4] to integrate handcrafted code.
Achieving this requires:

R1 The GPL of choice is integrated into the ADL such that
a single model contains ADL parts and GPL parts.

R2 The relevant modeling elements of the ADL are accessible
from the GPL.

R3 The integration of GPL elements is configurable to pre-
vent introducing unnecessary accidental complexities into
the ADL.

R4 The integrated artifacts consisting of ADL and GPL parts
are translatable into various target languages.

In the following, Section II presents preliminaries, before
Section III motivates our approach by example. Section IV
presents the language embedding mechanism and its appli-
cation. Afterwards, Section V presents a case study with
the MontiArcAutomaton ADL. Section VI debates related
work and Section VII discusses our approach. Section VIII
concludes.

II. PRELIMINARIES

To prevent architecture modelers from switching between
modeling and programming, we apply the language composi-
tion mechanisms of the MontiCore [5] language workbench to
the MontiArcAutomaton ADL [6] and embed the Java/P [7]
modeling language into its components. This section intro-
duces all three.

A. MontiCore
MontiCore [5] is a workbench for compositional modeling

languages. It supports the integrated definition of concrete
syntax (words) and abstract syntax (structure) via extended
context-free grammars. From these, it generates Java parsers
and abstract syntax classes for each production as depicted
in Figure 1. Each generated class yields members to capture
the production’s right-hand sides. Underspecified interface
productions are translated to Java interfaces. MontiCore uses
the generated parsers and abstract syntax classes to translate

213Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

01
02
03
04
05
06
07

grammar MontiArcAutomaton {
Component = "cmp" Name "{"

Port* (Subcomponent* Connector* | Behavior?)
"}";
interface Behavior;
// … other productions …

}

MCG

String name

Component
≪interface≫

Behavior

Port Subcomponent Connector

* * *

0..1

CD

concrete
syntax only

iteration disjunction optionality

Figure 1. MontiArcAutomaton grammar describing hierarchical components
with ports and connectors and the resulting abstract syntax classes.

textual models into abstract syntax trees (ASTs) on which
model analyses and transformations are performed. Its visitor
framework enables registering Java rules that process the ASTs
to ensure the models’ static semantics (well-formedness).
Template-based code generators realize the languages’ dy-
namic semantics (behavior) by translating ASTs into target
language artifacts. MontiCore supports language inheritance,
language embedding, and language aggregation to integrate
modeling languages [8]. Inheriting languages can arbitrarily
reuse productions of their parent languages (e.g., to create spe-
cialized language variants). Embedding languages integrates
parts of embedded languages into their underspecified interface
productions (e.g., Java embedding SQL to realize database
queries). Language aggregations loosely couple languages via
references (e.g., state machines referencing members of the
class diagram types they operate in). The language integra-
tion mechanisms rest on grammar combination (inheritance,
embedding) and symbolic integration (all). For the symbolic
integration of behavior languages with MontiArcAutomaton,
e.g., to check the validity of assignments to ports, the AST
types of relevant language elements are adapted to their
MontiArcAutomaton counterparts (e.g., variables to ports).

B. MontiArcAutomaton
MontiArcAutomaton [6] is an architecture modeling infras-

tructure that comprises an extensible component & connector
(C&C) ADL, various model transformations, and a modular,
template-based code generation framework. Its ADL is realized
with MontiCore and the infrastructure employs MontiCore’s
language integration mechanism to enable plug-and-play em-
bedding of modeling languages to describe component behav-
ior, including concrete syntax, abstract syntax, static semantics,
and dynamic semantics. Core concepts of its ADL are sketched
in Figure 1. It has been configured with various state-based
behavior modeling languages and successfully deployed to
service robotics applications [9].

C. Java/P
Java/P [7] is a MontiCore language resembling Java 1.7. It

is used as action language in the UML/P [7] language family
and supports the complete concrete and abstract syntax of Java
1.7 as well as its well-formedness rules. Figure 2 displays

01
02
03
04
05
06

grammar JavaP {
JavaClass = "class" Name "{" (Method | …)* "}";
Method = ReturnType Name "{" MethodBody* "}";
MethodBody = (Assignment | ReturnStatement | …)*;
// … other productions …

}

MCG

further alternatives

Figure 2. Simplified excerpt of the Java/P grammar.

ExplorerBot

Obstacles
Controller

Odometry

Motor

left(A)

Motor

right(B)

MotorCmd

data obstacles

ws ws

left cmd

MotorCmd

right cmd

MAA

LIDAR

components interfacing
motor drivers

Drive

Turn

Idle

Back

MapStore

component with state-
based behavior model

typed, directed,
1-to-n connector

Pose

map map

component interfacing
sensor drivers

component interfacing
map serialization library

name of
incoming port

name of
outgoing port

obstacles data

PoseCalc Pose

pose pose

WheelStates

Obstacles

ws

data

Figure 3. Software architecture for a mobile exploration robot.

an excerpt of its grammar. Its models are translated into
Java artifacts using MontiCore’s code generation framework.
Reifying a GPL as a modeling language enables to easily
extend it with new constructs (e.g., notions of components as
in ArchJava [10]), well-formedness rules (such as preventing
assignment of null values), and shortcuts (for instance,
automatically generating getters and setters for members).
Reifying Java with MontiCore furthermore yields a parser
capable of processing Java 1.7 classes, which allows to model
Java programs interacting with libraries and frameworks.

III. EXAMPLE

Consider modeling the software architecture of a mobile
service robot that should explore and map uncharted territories.
Such a robot must be able to perceive its environment, calculate
actions based on these perceptions, and perform these actions
to manipulate the environment. Perception and manipulation
require interfacing sensors and actuators, respectively. Usu-
ally, these are accessed using GPL libraries providing high-
level functionalities based on their mechatronic realization
and software drivers. To interface these libraries, model-driven
approaches must either lift GPL-like imperative programming
mechanisms to model level or postpone integration to the level
of generated code. For the latter, various patterns have been
developed [4], all of which require by nature comprehending
the idiosyncrasies of the GPL code generated from the models.
The C&C software architecture for such a system is depicted
in Figure 3. It perceives the environment via components
interfacing a LIDAR scanner and the robot’s odometry, decides
on the next action via its fully modeled controller, and passes
the results to its two motors and the map storage. The sensors
and motors interface GPL code ultimately controlling the re-
spective drivers. The components PoseCalc and MapStore
interface GPL libraries for mathematical operations and seri-
alization respectively.

Without lifting sufficient expressive GPL-like programming
to model level, the architecture modeler must describe the

214Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

grammar MAAJava extends MontiArcAutomaton,JavaP {

JavaPBehavior implements Behavior = MethodBody;

}

MCG

grammar inheritance

from MontiArcAutomaton
grammar

embedded from
Java/P grammar

String name

ASTComponent
≪interface≫

ASTBehavior

ASTSub

component

AST

Connector

* * *

0..1
CD

ASTPort
ASTJavaP

Behavior

ASTMethod

Body

1
abstract syntax
classes derived

from Java/P

AST

Assignment

ASTReturn

Statement

**

“AST” prefix of
generated classes

Figure 4. Grammar integrating Java/P into MontiArcAutomaton.

behavior of each of these components in the same GPL
than code generated from the architecture elements. This
might entail coping with various accidental complexities not
directly related to computing behavior based on incoming port
values, such as networking, exception handling, type casting,
etc. Most of this can be abstracted away on model level.
Additionally, the pattern selected for integrating handcrafted
component behavior with generated code might give rise to
further accidental complexities also not arising on model
level. Selecting, for instance, the popular generation gap [4]
pattern exposes the architecture modeler to all implementation
details of the technical component concerns via subclassing.
This exposure is another source of errors. Delegation, partial
classes, protected regions, etc., all yield similar complexities
due to operating on GPL level. Reifying and integrating (parts
of) GPLs, such as Java/P can reduce these. Finally, generation
to multiple target GPLs requires re-implementing the behavior
of each component type for each GPL, whereas using behavior
models requires a corresponding code generator only.

IV. EMBEDDING JAVA/P INTO MONTIARCAUTOMATON

Embedding a modeling language into another requires
combining their concrete syntaxes, abstract syntaxes, static
semantics, and dynamic semantics [11]. Embedding Java/P
into MontiArcAutomaton consequently rests on combining
the related MontiCore artifacts accordingly. For concrete syn-
tax and abstract syntax, this entails binding the production
MethodBody of the Java/P grammar (Figure 2) to the in-
terface production Behavior of the MontiArcAutomaton
grammar (Figure 1). With MontiCore, this is achieved by
leveraging its language inheritance mechanism as depicted in
Figure 4. Through language inheritance, integrating the related
concrete syntax and abstract syntax into MontiArcAutomaton
requires to provide a corresponding implementation of its
Behavior interface only. This enables parsing integrated
artifacts into combined ASTs (R1).

To ensure the integrated models are well-formed with
respect to both MontiArcAutomaton and Java/P, we provide
an extensible well-formedness checking visitor that applies
the MontiArcAutomaton well-formedness rules by default and

can be extended with additional rules. As the well-formedness
rules of MontiCore languages are Java classes responsible for
processing a specific abstract syntax class, they can be reused
without modification through registration with the MontiArc-
Automaton visitor.

The integration of behavior languages into components
aims at describing their input-output behavior. Hence, models
of these languages must be related to the inputs and outputs
of components (i.e., their ports). To this effect, the names
used in embedded Java/P assignments must be interpreted
as symbolic references to the surrounding component’s ports.
For Java/P, these names usually reference to variables, hence,
with MontiCore, this requires registering a corresponding
adapter acting as a variable of Java/P that delegates to a port
of MontiArcAutomaton [8]. In contrast to Java/P variables,
ports of MontiArcAutomaton cannot be used bidirectionally:
incoming ports are read-only and outgoing ports are write-only.
As the Java/P well-formedness rules must be unaware of such
a restriction, embedding Java/P requires integrating new well-
formedness rules ensuring this. Figure 5 (top) illustrates the
adaptation between MontiArcAutomaton’s Port and Java/P’s
Variable, which takes place between the symbols created
for each named relevant AST element. These symbols act as in-
termediate layer for language integration and support resolving
and caching named entities from the same and other models.
This adaptation enables reusing all Java/P well-formedness
rules in the context of ports (R2). Details on symbols, their
creation, and processing are available [8]. Figure 5 (bottom)
also shows a new well-formedness rule to ensure incoming
ports cannot be assigned values. To this effect, its check()
method (ll. 4-12) is called by MontiArcAutomaton’s visitor
framework for each assignment found in an integrated model.
It resolves the symbol of the assignment’s target (l. 5) and,
in case this actually adapts to MontiArcAutomaton’s port
(l. 6), checks that the ports have the correct direction (l. 8)
or reports an error (l. 9). Ultimately, symbolic adaptation fa-
cilitates integration of static semantics and enables integration
of new well-formedness rules easily. Eliminating and adding
new well-formedness rules can also be used to tailor the
language to application-specific requirements. To this effect,
MontiArcAutomaton features a well-formedness rule to check
for prohibited AST classes. The rule can be parametrized with
a set of abstract syntax classes and iterates over all embedded
abstract syntax instances to ensure none of the passed classes is
used. This restriction mechanism enables excluding language
elements from integration (such as ASTReturnStatement,
which does not make sense in our integration context) as
well as tailoring the embedded language to application-specific
requirements (R3).

As MontiCore languages typically realize their dynamic
semantics via code generation, integrating the dynamics of
Java/P into MontiArcAutomaton requires composing their code
generators. To this end, the code generator integrated for Java/P
must agree on the same run-time system (RTS) as the Monti-
ArcAutomaton code generator. A RTS is a collection of inter-
faces and classes enabling execution of generated models and
entails, for instance, the interfaces implemented by generated
component behavior realizations [6]. The interface for behavior
implementation artifacts imposed by the MontiArcAutomaton
RTS entails input-output semantics, i.e., generated behavior
realizations must provide a specific method receiving and

215Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

01

02

03

04

05

06

07

08

09

10

11

12

class AssignOutgoingPortsOnly extends

ContextCondition<ASTVariable> {

public void check(ASTAssignment a) {

Variable v = a.getSymbol().getTarget();

if (v instanceof Port2VariableAdapter) {

Port p = ((Port2VariableAdapter)v).getPort();

if (!p.isOutgoing)

reportError(“Writing to incoming port: ” + p);

}

}

}

Java

Port2Variable

Adapter

getName()

getType()

getPort()

Variable

name

type

value

Port

name

type

isOutgoing

value

abstract syntax
element of Java/P

symbol resolving

symbol of Java/P symbol of MontiArcAutomaton

adapts

Figure 5. Symbolic integration between ports and variables and a
well-formedness rule using it.

returning a set of named values. The artifacts generated from
components delegate behavior computation to this method by
passing the current values on incoming ports and assigning
the returned name-value pairs to outgoing ports accordingly.
Details on this generator composition mechanism are avail-
able [6]. The integration of Java/P into MontiArcAutomaton
consequently requires a code generator agreeing on the same
RTS that produces classes receiving input values, performing
computations according to the method body’s statements, and
returning the results. Creating a generator wrapping the code
generated for instances of ASTMethodBody (cf. Figure 2)
requires little effort.

For MontiArcAutomaton and Java/P, code generation is
template-based using the FreeMarker [12] template engine.
With this, generator integration requires the single template de-
picted in Figure 6. This constructs a method called compute
(l. 1) with a signature expecting all incoming ports of the
component type it is generated for (ll. 2-4). Afterwards, the
method creates local variables from each outgoing port (ll. 6-
8) and calls the Java/P generator template responsible for
translating method bodies (l. 9). Code generated from the latter
operates on method parameters and local variables created
for the ports and, hence, is correct by construction. This is
ensured by restricting references in embedded method bodies
to ports or local Java/P variables. Finally, the resulting values
are collected and returned (ll. 10-14). The code generated for
structural component aspects receives the resulting map and
assigns the values to corresponding ports. Through enforcing
type-compatibility on model level already, this assignment is
straightforward.

All of this is configured by a specific internal domain-
specific language (DSL) for language embedding into Monti-
ArcAutomaton. Its models can be configured with the behavior
language’s grammar production to be embedded, its well-
formedness rules to be reused, and its code generator to
be integrated [13]. Figure 7 presents a model of this DSL
responsible for embedding Java/P. Internal DSLs usually are
realized via fluent GPL APIs [14] in which the methods
yield names corresponding to language keywords. This enables
interacting with libraries of the host GPL easily, but restricts

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

public Map<String,Object> compute(

<list incomingPorts as p>

${p.getType()} ${p.getName()}<if_has_next>,</if>

</list>

) {

<list outgoingPorts as p>

${p.getType()} ${p.getName()};

</list>

${op.call(MethodBodyTemplate)}

Map<String,Object> results = new HashMap<>();

<list outgoingPorts as p>

results.put(${p.getName()},${p.getValue()});

</list>

return results;

}

FM

FreeMarker
built-in iteration

FreeMarker
built-in conditional

accessing ASTPort members

calling template from
original Java/P generator

static text

Figure 6. FreeMarker template wrapping code generator parts of Java/P for
usage with MontiArcAutomaton.

01

02

03

04

05

name "javap"

behavior "javap.JavaP.MethodBody"

cocos javap.cocos.CoCoCreator().create()

generator new javap.generators.JavaPTimeSync()

coco new montiarcjava.cocos.AssignOutgoingPortsOnly()

BCL

qualified name of the grammar
production to be embedded

well-formedness
rules to reuse

code generator
to integrate

integration-specific well-formedness rule

Figure 7. Model integrating Java/P into MontiArcAutomaton.

language extension. Various modern GPLs enable omitting
syntactic elements if their context is unambiguous, such as
the parentheses of method calls with single arguments. This
further enables designing fluent APIs to resemble DSLs. The
behavior configuration language model depicted in Figure 7
is realized on top of a Groovy fluent API. It consists of
five concatenated method calls that configure the integration
of Java/P into MontiArcAutomaton: The first line defines
the unique name of the embedded behavior language. After-
wards, it references the grammar production to be embedded
(l. 2) from which the integration framework synthesizes a
grammar similar to MontiArcJava depicted in Figure 2.
Subsequently, it collects the well-formedness rules of the
embedded language (l. 3) and the code generator to be in-
tegrated (l. 4). Finally, it also adds the new well-formedness
rule AssignOutgoingPortsOnly (cf. Figure 5) to the
resulting language composition (l. 5).

V. CASE STUDY

Reconsider the exploration robot’s software architecture
(Figure 3). Without lifting reifying and integrating a GPL into
the ADL, implementing the behavior of its Motor compo-
nent requires switching between modeling and programming
activities, comprehending patterns for integrating handcrafted
with generated implementations, and exposes the architecture
modeler to the accidental complexities of the generated code.

Figure 8 describes the integrated model for component
Motor: after declaring its type and parameters (l. 1), it yields
an incoming port cmd of data type MotorCommand (l. 2)
and contains an embedded behavior description (ll. 4-12).
Everything between the opening bracket (l. 4) and the closing
bracket (l. 12) is an embedded Java/P model. The embedded
MethodBody (cf. Figure 2, l. 4) instance declares a local
integer variable speed (l. 5), checks the value of port cmd and

216Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

01

02

03

04

05

06

07

08

09

10

11

12

13

component Motor(lejos.nxt.Motor m) {

port in MotorCommand cmd;

behavior {

int speed = 0.1;

if (cmd == MotorCommand.FORWARD)

speed = 720;

else if (cmd == MotorCommand.BACKWARD)

speed = -720;

m.setSpeed(speed)

return speed;

}

}

MAA

� � � � � � � � � � � � � � � 	 � �
 � � � � � � � � � �

� � � � � � � � � � �
 � � � � � � � � � �
 � � �

error raised by reused
Java/P well-formedness rule

error raised by integration-specific
well-formedness rule

em
b
ed

d
ed

 J
av

a/
P

Figure 8. Textual Motor component with embedded Java/P behavior
(ll. 5-10).

sets the value of speed accordingly (ll. 6-9), sets the speed of
the leJOS API [15] motor instance m passed to the component
(cf. l. 1), and returns the value of speed. Assigning a float
value to an integer variable is prohibited by one of the reused
Java/P well-formedness rules and consequently an error is
raised (l. 5). Additionally, a prohibited instance of Java/P’s
return statement is found and reported also (l. 11). Overall,
this syntactic and semantic integration of Java/P prevents the
architecture modeler from facing generated code, supports
developing with artifacts integration component structure and
behavior as depicted in Figure 8. It also reduces the effort of
continuously evolving and aligning two separate artifacts.

VI. RELATED WORK

Most ADLs focus on structural concerns. Where describing
component behavior is considered, many languages support
state-based behavior modeling only. More complex behavior
usually requires linking component models to GPL artifacts.

DiaSpec [16] is an ADL for pervasive computing systems
that supports integrating behavior via the generation gap
pattern [4]. Koala [17] is an ADL for the development of
embedded software. Its code generator produces C interfaces
(header files) from components and developers provide com-
ponent behavior via handcrafted interface implementations.
ArchFace [18] uses program points and their implementa-
tions to separate structure and behavior. Program points in
component interfaces are coordinated with implementations in
different GPLs. Component behavior in DAOP-ADL [19] is
divided into an interface definition in form of a pointcut and
its implementation potentially defined in a different artifact and
language. Specifying component behavior in C2SADEL [20]
requires integrating handcrafted code also.

Other ADLs feature embedded state-based behavior de-
scriptions. In AADL [21], state-based behavior can be modeled
following its behavior annex. Palladio [22] enables model-
ing behavior via service effect specifications, a variant of
activity diagrams that describe the quality-of-service proper-
ties of components, that describe component behavior. The
xADL [23] supports mapping components, connectors, and
types to Java classes [23]. An extension on modeling com-
ponent behavior with state machines [24] enables integrated
development of structural and behavioral aspects.

Only few ADLs support other behavior descriptions. For
example, in Æmilia [25], behavior is structured in blocks
containing EMPAgr terms [26], which are then translated into
state machines. ArchJava [10] embeds ADL concepts into

Java, hence it can use Java to describe component behavior.
However, it does not support tailoring the language to spe-
cific requirements and is bound to Java. The π-ADL [27]
also supports producing GPL code: Its behavior description
mechanism supports dynamically composing, decomposing,
and replicating (parts of) architectures, conditional statements,
and directives for sending or receiving values via compo-
nent interfaces. PiLar [28] is a reflective ADL for evolving
software system structures. It provides various constructs for
integrated behavior and structural modeling, such as directives
for dynamically modifying architectures, conditionals, loops,
and commands for exchanging message. Neither π-ADL, nor
PiLar support tailoring the behavior description mechanism.

VII. DISCUSSION

Our approach to architectural programming requires reify-
ing the GPL of choice as a modeling language. While being
of similar complexity than developing and integrating state-
based behavior languages (cf. [29]), the lower effort in code
generator development (essentially pretty printing the GPL
model parts) for contexts where only a single target GPL is
relevant compensates for this. Where multiple target languages
are required, transforming the concepts of embedded GPL
parts into another GPL is feasible as long as these concepts
are generally supported or can be worked around. However,
the inclusion of libraries is feasible only, if they are available
for both target GPLs. Moreover, including libraries might
require considering complexities that may be excluded from
the embedded GPL parts (e.g., exception handling is used
in a library, but not included in the embedded part of the
GPL). Another challenge arises from the integration of code
generators through wrapping and reuse, which requires that
relevant parts of the embedded GPL’s code generator are
accessible for wrapping. Where this is not fulfilled, generator
reuse might not be possible.

VIII. CONCLUSION

We presented a method for pervasive architecture modeling
by reifying programming languages as action languages and
embedding these into the C&C ADL MontiArcAutomaton.
Embedding relies on grammar interfaces, symbol adaptation,
and code generator composition, all of which focus on mini-
mizing the integration effort. The integration method supports
tailoring the embedded action languages in the process by
embedding what is required only and prohibiting undesired
action language concepts. Modeling component behavior with
integrated action languages reduces the need for switching
between modeling and programming activities and, hence,
ultimately reduces the effort in modeling architectures.

REFERENCES

[1] R. France and B. Rumpe, “Model-driven Development of Complex
Software: A Research Roadmap,” Future of Software Engineering
(FOSE ’07), 2007.

[2] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
Industry Needs from Architectural Languages: A Survey,” Software
Engineering, IEEE Transactions on, 2013.

[3] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers’ perceptions of productivity,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014.

217Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

[4] T. Greifenberg, K. Hoelldobler, C. Kolassa, M. Look, P. Mir Seyed
Nazari, K. Mueller, A. Navarro Perez, D. Plotnikov, D. Reiss, A. Roth,
B. Rumpe, M. Schindler, and A. Wortmann, “A Comparison of Mech-
anisms for Integrating Handwritten and Generated Code for Object-
Oriented Programming Languages,” in Proceedings of the 3rd In-
ternational Conference on Model-Driven Engineering and Software
Development, 2015.

[5] H. Krahn, B. Rumpe, and S. Völkel, “MontiCore: a Framework for
Compositional Development of Domain Specific Languages,” Interna-
tional Journal on Software Tools for Technology Transfer (STTT), 2010.

[6] J. O. Ringert, A. Roth, B. Rumpe, and A. Wortmann, “Language
and Code Generator Composition for Model-Driven Engineering of
Robotics Component & Connector Systems,” Journal of Software
Engineering for Robotics, 2015.

[7] B. Rumpe, Modeling with UML: Language, Concepts, Methods.
Springer International, 2016.

[8] A. Haber, M. Look, and P. e. a. Mir Seyed Nazari, “Integration of
Heterogeneous Modeling Languages via Extensible and Composable
Language Components,” in Proceedings of the 3rd International Confer-
ence on Model-Driven Engineering and Software Development, 2015.

[9] R. Heim, P. M. S. Nazari, J. O. Ringert, B. Rumpe, and A. Wortmann,
“Modeling Robot and World Interfaces for Reusable Tasks,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015.

[10] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava: connecting soft-
ware architecture to implementation.” in International Conference on
Software Engineering (ICSE) 2002, 2002.

[11] T. Clark, M. v. d. Brand, B. Combemale, and B. Rumpe, “Conceptual
Model of the Globalization for Domain-Specific Languages,” in Glob-
alizing Domain-Specific Languages, 2015.

[12] L. A. Tedd, J. Radjenovic, B. Milosavljevic, and D. Surla, “Modelling
and implementation of catalogue cards using FreeMarker,” Program,
vol. 43, no. 1, 2009, pp. 62–76.

[13] A. Butting, , B. Rumpe, and A. Wortmann, “Modeling Embedding
of Component Behavior DSLs into the MontiArcAutomaton ADL,” in
Proceedings of the 4th Workshop on the Globalization of Modeling
Languages (GEMOC), 2016.

[14] M. Fowler, Domain-Specific Languages. Addison-Wesley Professional,
2010.

[15] “leJOS API Website,” (accessed: 2017-02-21). [Online]. Available:
http://www.lejos.org/

[16] D. Cassou, J. Bruneau, C. Consel, and E. Balland, “Toward a Tool-
Based Development Methodology for Pervasive Computing Applica-
tions,” IEEE Transactions on Software Engineering, 2012.

[17] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee,

“The Koala Component Model for Consumer Electronics Software,”
Computer, 2000.

[18] N. Ubayashi, J. Nomura, and T. Tamai, “Archface: a contract place
where architectural design and code meet together,” in Proceed-
ings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, 2010.

[19] M. Pinto, L. Fuentes, and J. M. Troya, “A dynamic component and
aspect-oriented platform,” The Computer Journal, 2005.

[20] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A language and en-
vironment for architecture-based software development and evolution,”
in Software Engineering, 1999. Proceedings of the 1999 International
Conference on, 1999.

[21] R. B. Franca, J.-P. Bodeveix, M. Filali, J.-F. Rolland, D. Chemouil, and
D. Thomas, “The AADL behaviour annex–experiments and roadmap,”
in Proceedings of the 12th IEEE International Conference on Engi-
neering Complex Computer Systems. Washington, DC: IEEE Computer
Society, 2007.

[22] R. Reussner, S. Becker, and E. e. a. Burger, The Palladio Component
Model. Karlsruhe, 2011.

[23] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “An Infrastructure
for the Rapid Development of XML-based Architecture Description
Languages,” in Proceedings of the 24th International Conference on
Software Engineering, 2002.

[24] L. Naslavsky, L. Xu, M. Dias, H. Ziv, and D. J. Richardson, “Extending
xADL with Statechart Behavioral Specification,” in In Third Workshop
on Architecting Dependable Systems (WADS’04), Edinburgh, Scotland,
2004.

[25] S. Balsamo, M. Bernardo, and M. Simeoni, “Combining stochastic pro-
cess algebras and queueing networks for software architecture analysis,”
in Proceedings of the 3rd International Workshop on Software and
Performance, 2002.

[26] M. Bravetti and M. Bernardo, “Compositional asymmetric cooperations
for process algebras with probabilities, priorities, and time,” Electronic
Notes in Theoretical Computer Science, 2000.

[27] F. Oquendo, “π-ADL: An Architecture Description Language Based on
the Higher-order Typed π-calculus for Specifying Dynamic and Mo-
bile Software Architectures,” SIGSOFT Softwware Engineering Notes,
2004.

[28] C. E. Cuesta, P. de la Fuente, M. Barrio-Solórzano, and M. E. G. Beato,
“An “abstract process” approach to algebraic dynamic architecture
description,” The Journal of Logic and Algebraic Programming, 2005.

[29] L. Naslavsky, H. Z. Dias, H. Ziv, and D. Richardson, “Extending
xADL with Statechart Behavioral Specification,” in Third Workshop on
Architecting Dependable Systems (WADS), Edinburgh, Scotland, 2004.

218Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

http://www.lejos.org/

	Introduction
	Preliminaries
	MontiCore
	MontiArcAutomaton
	Java/P

	Example
	Embedding Java/P into MontiArcAutomaton
	Case Study
	Related Work
	Discussion
	Conclusion
	References

