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Abstract—Software versioning is intrinsic to software evolution. It
keeps history of previous software states (versions) and traces all
the changes that updates a software to its latest stable version.
A lot of work has been dedicated to software versioning and
many version control mechanisms are proposed to store and track
software versions for different software artifacts (code, objects,
models, etc.). This paper addresses in particular component-based
software architecture versioning, considering three abstraction
levels: specification, implementation and deployment. In previous
work, we proposed an approach that generates evolution plans
for such software architecture models. The generated plans deal
with changes initiated on one of the three abstraction levels and
propagate them to the other levels in order to keep architecture
descriptions consistent and coherent. As an extension to these
mechanisms, a versioning model is proposed in this paper to
keep history of architecture definition versions. This versioning
model soundly handles the co-evolution of the three abstraction
levels by tracking both versions of each abstraction levels and
versions of global architecture definitions.

Keywords—architecture evolution; abstraction levels; versioning;
component reuse.

I. INTRODUCTION

Versioning is central to software evolution management [[1]].
In order to ensure the continuity of a software product, it is
necessary to keep track of its changes and previous versions
after each evolution. Versioning is both essential for users
and developers. For users, versioning helps to maintain their
installed software up-to-date or at least warn them if their
current software version becomes obsolete. For developers,
versioning helps select/use the adequate versions of reusable
software components, packages or libraries (considering, for
instance, compatibility issues) and contributes to collaborative
work by developing several versions in parallel or merging
them [2]].

Many version control mechanisms are currently proposed
to store and track software versions for different software
forms (code, models, objects, etc.) [3l].

While software architectures have become central to soft-
ware development [4], little work was dedicated to archi-
tectural versioning. Existing work on architectural versioning
[S]i6][7] proposes basic versioning mechanisms that do not
take into account the whole software lifecycle. Evolving a
software architecture should not only focus on tracking the
different versions of software system as a whole. Indeed, the
different steps of the software development process generates
many artifacts (e.g., documentation, implementation model,
deployment models, etc.). It is valuable to keep separate
version histories for each artifact and to build a global version
history for the whole software from them. It fosters the
reuse of artifacts in forward engineering processes (e.g., the
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implementation of a given specification on different technical
platforms or the deployment of a given implementation in
different execution contexts). It also enables to trace every
design decisions and their impacts (required co-evolution). For
instance, when evolving a software architecture, the architect
needs mechanisms to know the latest version of its specifi-
cation and also all the related implementations that will be
affected by this evolution.

In this work, we address such versioning issues by propos-
ing a version model that considers the three main steps
of component-based software lifecycle: specification, imple-
mentation and deployment. The remainder of this paper is
outlined as follows: Section [[I] presents the background of
this work namely the Dedal three-level architectural model and
its evolution management process [8]]. Section [[II] presents the
contribution of this paper consisting in a three-level versioning
model for software architectures and its different versioning
strategies to support co-evolution on these three levels. Sec-
tion [TV]discusses related work and finally Section [V]concludes
the paper and presents future work directions.

II. BACKGROUND AND MOTIVATION

This work addresses the versioning of component-based
software architectures at three abstraction levels. First, we
introduce the three-level architectural model Dedal and then
we briefly explain how architecture evolution is managed in
Dedal.

A. Dedal: the three-level architectural model

Reuse is central to Component-Based Software Develop-
ment (CBSD) [9]. In CBSD, software is constructed by as-
sembling pre-existing (developed) entities called components.
Dedal [8] proposes a novel approach to foster the reuse of
software components in CBSD and cover all the three main
steps of software development: specification, implementation
and deployment. The idea is to build a concrete software
architecture (called configuration) from suitable software com-
ponents stored in indexed repositories. Candidate components
are selected according to an intended architecture (called
architecture specification) that represents an abstract and ideal
view of the software. The implemented architecture can then be
instantiated (the instantiation is called architecture assembly)
and deployed in multiple execution contexts.

A Dedal architecture model is then constituted of three
descriptions that correspond to the three abstraction levels:

The architecture specification corresponds to the highest
abstraction level. It is composed of component roles and their
connections. Component roles define the required functionali-
ties of the future software.
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The architecture configuration corresponds to the sec-
ond abstraction level. It is composed of concrete component
classes, selected from repositories, that realize the identified
component roles in the architecture specification.

The architecture assembly corresponds to the third and
lowest abstraction level. It is composed of component instances
that instantiate the component classes of the architecture
configuration. An architecture assembly description represents
a deployment model of the software (customized component
instances fitting given execution contexts).

Fig. [1] illustrates the three architecture levels of Dedal
and represents the running example of this paper. It consists
of a Home Automation Software that controls the building’s
light during specific hours. Its architecture specification is
composed of an orchestrator (Orchestrator component role)
linked to device control functionalities — turning on/off the
light (Light component role), controlling its intensity (Lumi-
nosity component role) and getting information about the time
(Time component role). These component roles are respectively
implemented by the AndroidOrchestrator, AdjustableLamp and
Clock component classes. This architecture implementation
can then be instantiated to describe specific architecture de-
ployments. For instance, the architecture assembly in Fig. [I]
is composed of two AdjustableLamp component instances that
control the lighting of a Sitting room (SittingLamp) and a Desk
(DeskLamp).
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Figure 1. Running example

B. Evolution management in Dedal

Software architectures are subject to change at any abstrac-
tion level to meet new requirements, improve software quality,
or cope with component failure. In previous work [LO][L1],
we proposed an evolution management process that deals
with architectural change based on Dedal and the B formal
language [12]]. Using a customized B solver, the evolution
manager captures change at any abstraction level, controls
its impact on the affected architecture and propagates it to
the other abstraction levels to keep architecture descriptions
coherent, both locally (each architecture description level
separately) and globally (the whole architecture definition).
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This results in generating sequences of change operations that
evolve the affected architecture to a new consistent state. The
generated sequences (called evolution plans) represent the delta
between two software architecture versions in an operation-
based manner.

C. Motivation

Versioning component-based software architectures at mul-
tiple abstraction levels is an important issue. Indeed, evolving
an architecture description at one abstraction level may impact
its other descriptions at the other abstraction levels. For in-
stance, evolving a software specification may require evolving
all its implementations. The same way, evolving an imple-
mentation may entail evolving not only all its instantiations
but also its corresponding specification (to prevent inter-level
definition mismatches known as drift and erosion [13]). In the
remainder, we set up a version model for three-level software
architectures inspired by Conradi’s taxonomy [3] and propose
three strategies to manage multi-level versioning. The interest
of this version model is twofold: (1) To capture information
about evolution history by storing the change operation lists
that transform architecture definitions into new versions and
more importantly (2) to capture information about the co-
evolution history by maintaining links between corresponding
versions on the different abstraction levels to define versions
of the whole architecture definition.

III. VERSIONING COMPONENT-BASED SOFTWARE
ARCHITECTURES

The design of our version model is inspired from Conradi’s
taxonomy [3] that distinguishes between two graphs represent-
ing two dimensions of software: the product space, where each
node is a part of the product and edges represent composition
relationships, and the version space, where nodes represent
versions and edges derivations between them. Depending on
the versioning model, the version space can be a linear,
arborescent or direct acyclic graph. A version is called a
revision when it is intended to replace its predecessors and
is called a variant when it can coexist with other versions.
In our model, we distinguish the architectural space, which
represents software architecture descriptions at the three ab-
straction levels we consider (i.e., specification, configuration
and assembly), from the version space, which represents the
versions of an architecture at a given abstraction level. In the
remainder, we detail the representation of each space.

A. The architectural space

The architectural space consists in a set of trees that provide
software architecture definitions at three abstraction levels
(cf: Fig. 2). Nodes represent architecture definitions while
edges denote realization relations between nodes at different
abstraction levels. The root node of each tree corresponds thus
to the specification of an architecture (e.g., Home Automation
Software architecture specification). The second level nodes
represent all the variant implementations of that specification
(e.g., Android OS, Windows system architecture configura-
tions). Finally, the third level nodes represent the variant in-
stantiations that are used to deploy architectures configurations
in different execution contexts (e.g., HAS Office architecture
assembly, Sitting room architecture assembly, etc.).
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Figure 2. The three-level graph

The architectural space graph supports multiple granularity
levels. Indeed, each node points to another graph representing
the architecture structure in terms of components and their
connections (c¢f Fig. [T). Composite components embed an
inner architecture as well.

The architectural space provides thus a comprehensive set
of architecture definitions, including all their existing variants.
It can be used to structure and then browse architecture model
repositories, as part of a Model-Based Software Engineering
environment. Its point of view is intentionally static (the
historic derivation relations between architecture definition
elements are omitted), in order to separate evolution concerns
in the version space.

B. The version space

The architecture version space is composed of a set of ver-
sion graphs. Each version graph (Fig. [3) is a representation of
the version set, called V/, related to a given architecture. Each
node defines a unique version of the architecture (identified by
a unique version identifier) while edges represent derivation
relations between versions (the source version is obtained
by an evolution of the target version). Our version model
covers all the three architecture definition levels. Versioned
entities may thus be architecture specifications, architecture
configurations or architecture assemblies.

o ®

@___@;___/-/'/

Figure 3. The version graph

The version model is change-based since the delta between
two versions is expressed in terms of change operations rather
than states. A derivation is the change sequence enabling to
construct a version vy, from its predecessor v;. Formally, a
derivation is a function of type d : V. — V where V is
the version space and d = op; o op2 o ... o op,, where op;
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is an elementary change operation. If v; is a version of the
software architecture, then successors of v; are the set of
all the versions resulting from the derivations applied on v;:
suce(vy) = {vjv = d(v1)}.

The architecture version identifier contains information
corresponding to the abstraction level and the operation list
that lead to the current version. At specification level, recorded
information consists of a version ID and the change operation
list. At configuration level, these information are a version ID,
the ID of the implemented specification and the change oper-
ation list. Finally, at assembly level, the recorded information
are accordingly a version identifier, the instantiated configu-
ration identifier and the change operations list. The change
operation list may be empty when the architecture description
is created from scratch (for instance the specification of a new
architecture or an implementation variant for a new platform).

C. Relations between the architectural and the version spaces

As aforementioned, the version space is intended to record
all the versions of all the architecture definitions that are
created by development and evolution processes. It provides a
comprehensive and historic vision of architecture definitions,
that is suitable to design architectures by the reuse and the
evolution of exiting ones. However, as it does not distinguish
revisions from variants, the version space does not provides
a synthetic vision of the actual architectures definitions, i.e.,
the up-to-date architecture definitions (based on the latest
revisions), with its possible variants. This is the purpose of the
architectural space, which can be extracted from the version
space to provide architects with a clear view of the usable
architecture definitions.

Every node in the architectural space corresponds thus to
a node in the version space. Given a three-level graph G and a
new derivation d of an architecture definition ¢ in G, we aim
to find the resulting three-level graph G’ related to o’ = d(a).
To do so, we need to evaluate the impact of d on the whole
graph G. Indeed, d may trigger a change propagation to the
other nodes linked to @, what may in turn recursively imply
to derive other nodes.

In most cases, this task requires human assistance to
decide which derivations are really necessary (e.g., correcting
bugs, security enforcement, etc.) and which are optional (e.g.,
functional extensions, improvements, etc.). To automate this
process, we propose versioning strategies that can be selected
and activated as required by architects to manage architecture
model repositories.

D. Versioning strategies
We propose three versioning strategies:

a) Minimum derivation strategy: The minimum deriva-
tion strategy aims to minimize the number of derivations to
be applied on the architectural space graph. The principle
of this strategy is to version only the active impacted nodes
without considering the propagation to all the other nodes.
Active nodes consist in a tuple of three nodes (s, ¢, a) where
s, c and a respectively denote an architecture specification, an
architecture configuration and an architecture assembly.

For instance, let us consider the three-level graph shown in
Fig. a. d(cy) triggers a change on the specification s; and a
change on a;2. The active nodes are then (s.vy, ¢1.01, a12.v1).
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a- The original three-level graph

b- The derivated three-level graph

Figure 4. Example of minimum derivation

The minimum derivation strategy creates a new three-level
graph with the new versions (s.v2, ¢1.v2, a12.v2) (cf. Fig.[4}b).

The minimum derivation strategy is suitable when the
change purpose is not to correct some version of an archi-
tecture definition, resulting in the derivation of a revision, but
to create a variant that can coexist with previous versions.
Fig. @ illustrates a special case where the derived architecture
definition shares finally no element with its source architecture
definition. These architectures definitions could be identified as
variants belonging to a software product line [14]. This is a
perspective of this work.

b) Full derivation strategy.: In contrast to the minimum
derivation strategy, the full derivation strategy aims to version
(directly and recursively) all the impacted architecture descrip-
tions. It should be applied when the rationale of evolution
(for instance a security fault detected in a component used
by all architecture implementations) implies the creation of
revisions that are intended to replace previous versions. Firstly,
derivation is applied to the active node and then change is
propagated recursively to the other nodes (cf Fig. [5). For
instance, the revision of node cl.vl (configuration level) is
propagated to the other nodes as follows:

e  derivation of a new specification revision s.v2 from
s.wl,

e merging of c2.vl and ¢3.v1 nodes into the new c3.v2
node (both evolution of c2.v1 and c3.vl leads to
c3.v2) and,

e revisions of all nodes at assembly levels, notably
a21.v2 derived from a21.v1 becomes associated to
c3.v2 configuration revision.

c) Custom derivation strategy.: This strategy is guided
by the architect that has to specify which architecture defini-
tions are kept and which ones are replaced by new versions.
Custom derivation strategy is used after a default application
of the minimum derivation strategy so that minimum necessary
versions, that ensure coherent global architecture definitions,
are always created.
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IV. RELATED WORK

Software versioning has been studied for many years with
the the objective to provide a Software Configuration Man-
agement (SCM) systems [3]], handling various kinds of entities
and different granularities (source code lines, objects, libraries,
etc.). Early work targeted mainly source code versioning.
Several collaborative source code versioning systems were
more recently proposed and have become industrial standards
such as SVN [15], CVS [16] and Git [17].

To overcome the limitation of version management based
on source code, [18] propose to generate from meta-models
version control systems that are aware the corresponding
modeling language concepts, in order to trace the evolution
of significant logical units.

With the emergence of component-based software devel-
opment, more recent work addressed component versioning
rather than source code [2]. Examples include JAVA [19], and
COM .Net. More recent approaches treated as well the issue
of component substitutability like the work of Brada et al.
(SOFA) [20] and the issue of compatibility like the work of
Stuckenholz et al. [21].

Regarding architectural versioning, only little work was
dedicated. The SOFA 2.0 ADL [5] enables to version com-
posite components and therefore entire architectures (which
are used to define composite component implementations).
Other existing ADLs like MAE [6] and xADL 2.0 [7] also
enable architecture versioning. However, all these architectural
versioning models neither handle detailed information about
evolution (rationale, change operations list that result in new
architecture versions) nor maintain the trace of architecture
evolutions throughout the whole software lifecycle (what re-
quires to handle the co-evolution of multiple definitions for
every architecture).

Another closely related work addressed architectural ver-
sioning at multiple abstraction levels [22]. The proposed
approach is based on the SAEV model [23|] that defines
three abstraction levels of software architectures: the meta
level, the architecture level and the application level. However,
this taxonomy is different from Dedal since the meta level
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a- The original three-level graph

b- The derivatedthree-level graph

Figure 5. Example of full derivation

encompasses the definition of architectural concepts to be used
at the lower level.

V. CONCLUSION AND FUTURE WORK

This work proposes a version model for our software
architecture description language Dedal. It considers version
management at three abstraction levels in order to support the
co-evolution of architecture definitions throughout the whole
software lifecycle. It captures information about evolution
(change operation list) and enables to distinguish its rationale
(revisions and variants). Moreover, versioning strategies are
proposed to automate the version derivation propagation that
may or must result from the co-evolution of the different
definition levels of architectures.

Future work consists in studying component versioning and
its impact on architectural versioning considering compatibility
issues, to detect automatically revisions and variants. Another
perspective is to extend our version model in order to support
product line engineering. From a practical perspective, ongo-
ing work is to automate further versioning mechanisms and
integrate them into DedalStudio, our eclipse-based tool that
automatically manages the architecture evolution process [11]].
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