ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Modeling System Requirements Using Use Cases
and Petri Nets

Radek Ko€i and Vladimir JanouSek

Brno University of Technology, Faculty of Information Tewiogy,
IT4Innovations Centre of Excellence
Czech Republic
email: {koci,janousek@fit.vutbr.cz

Abstract—The fundamental problem associated with software executable form, which can then be tested and debugged. All
development is a correct identification, specification and - changes that result from validation process are hard tsfiean
sequent implementation of the system requirements. To spl¢ back into the models. It is a problem because the models

requirement, designers often create use case diagrams from hecome useless over the development time.
Unified Modeling Language (UML). These models are then

developed by further UML models. To validate requirements, Similar work based on ideas of model-driven develop-
its executable form has to be obtained or the prototype has tbe ment deals with gaps between different development stages
developed. It can conclude in wrong requirement implementdons and focuses on the usage of conceptual models during the
and incorrect validation process. The approaqh present.eghl this simulation model development process—these techniques ar
work focuses on formal requirement modeling combining the cajled model continuity [8]. While it works with simulation
classic models for requirements specification (use case diams) models during design stages, the approach proposed in this

with models having a formal basis (Petri Nets). Created mods f b dels that b din the depl d
can be used in all development stages including requiremest ~PPEr TOCUSES ONvVE MOCEIS that can be used in the depioye

specification, verification, and implementation. All desig and ~ SYystem.

Va."‘tjali'on StEpsdage Car(rj'els. O“I the Sta'g?e models, which aveid The paper is organized as follows. Section Il summarizes

mistakes caused by modet Implementation. concepts of modeling requirements using use cases from UML
KeywordsObiject Oriented Petri Nets; Use Cases; requirement and describes our extension to one special relationshtidBe

specification; requirement implementation. IIl deals with use case specification using OOPN. Modeling
use case relationships is discussed in Section IV and the way
. INTRODUCTION of actor modeling is described in Section V. The summary and

)) o) future work is described in Section VI.
This paper is part of th8ystemin Smulation Devel opment

(SiS) work [1] based on the formalism of Object Oriented Petr Il. USE CASE DIAGRAMS
Nets (OOPN) [2]. One of the fundamental problems associated o _
with software development is an identification, specifmati Use case diagrams (UCDs) are used in the process of

and subsequent implementation of the system requirem@jnts [software system design for modeling functional requiretsien
The use case diagram from UML is often used for requirementghe system is considered as a black-box, where only external
specification, which is then developed by further UML modelsfeatures are taken into account. The objective of UCDs is
[4]. The disadvantage is the inability to validate a speatfan identify system users, user requirements, and how the user
modeled by that method and it is usually necessary to developteracts with the system. The model consistsadfors and

a prototype, which is no longer used after fulfilling its pogp. UsSe cases.

Utilization of OOPN enables the simulation (i.e., execute,
the model), as well as direct integration into a real surdsun "~
ings, which solves mentioned disadvantage. All changesan t Actor is an external entity working with the software
validation process are entered directly into the model, iand system, so that actor is not part of the system, but it is a
is therefore not necessary to implement or transform modelgenerator of input stimulus and data for the system. Actor
The approach presented in this paper is based on the use casasdels a group of real users, whereas all members of the
that are specified by the OOPN formalism. This approach cagroup work with the system by the same way. Therefore, actor
therefore be mapped to commonly used modeling techniqueszpresentsa role of the user in the system. A real user can
play multiple roles. Let us consider the example of confeeen
system with actorsuthor and reviewer. These actors model

. . ; two roles, each of them defines a set of functions (use cases)
An example is the Model Driven Architecture (MDA) method- the user can initiate or can participate on. The real user can

ology [5], language Executable UML (xUML) [6], or Founda- _; : : :
tional Subset for XUML [7]. These methods are faced with aglct)?herrcﬁgsauthor or reviewer, or can work with the system in
problem of model transformations. It is complicated to date '

proposed requirements through models in real conditionsy T Now, let us consider the example of a system of garage
either have to implement a prototype or transform modets int gate handling. The system consists of actuators (garagg, gat

Actor

There are methods working with modified UML models
that can be executed and, therefore, validated by simalatio

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5 160

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

sensors (driving sensor, card scanner), and control saftita C. Relationships Between Use Cases
is closed autonomous system with which two groups of real . ,
Y group Among the different use cases you can use two defined

users can work-driver andreception clerk. The driver comes)) . :
to the garage gate, applies a card to the scanner, and tmyst_relat|onsh|ps,| nclude and extend. The aim of these relations

opens the gate. If the user does not have a card, he can %%to mdaxllrglze exte?5|b|l|ty alnd rzusabmté/ of uf?e ;:a?es_n‘
reception clerk, who opens the gate. From system point o € model becomes oo complex. A seconadary efiect of using

view, actuators, sensors, and control software are intperts of these relationships is to emphasize the dependence of the

of the system. From the software engineering point of view,'r?]d'v'o:ual usle Cal‘se scenarios, s;t]r_u%tlgrlhr;g too Ilongt] sdman
actuators and sensors @éernal items the system can handle. ore lower level use cases, or highlighting selected dieis/|

So, if actuators and sensors are not internal parts, could 1) Relationship extend: Relationshipextend reflects al-

we model them using actor concept? Actors represent humdfiaiive scenarios for basic use case. In cases where the
users in many information systemisufnan actors), but they spemﬂcqtlon of a use case IS 100 c_omphcated and contains
can also be used to model other subsystems such as sensBfany different scenarios, it is possible to model a chosen

or devices §/stem actors). The system has to communicate to & l€rnative for new use case, which is calledension use

such subsystems, nevertheless they need not to be parts of = This use case t_hen extends_the _ba5|c use case that
modeled software system. defines a location (point of extension) in the sequence of

interactions and conditions under which the extension ase ¢
B. Use C is invoked. The relationshipxtend is illustrated in Fig. 1. The

- UseLase use casealibrate has to stop the running algorithm first, then

An important part of functional requirements analysis is toto calibrate the system and, finally, to start it. Use castars

identify sequences of interaction between actors and reddel andstop can thus expand the base case sceraiidbrate.
system. Each such a sequence covers different functional
requirement on the system. The sequence of interactions Esc
modeled bya use case. The use case describes a main
sequence of interactions and is invoked (its executiortsytar
by input stimulus from theactor. The main sequence can be
supplemented by alternative sequences describing less co
monly used interactions. Their invocation depends on §ipelci
conditions, e.g., wrong information input or abnormal eyst
conditions. Each sequence (the main or alternative one)
called scenario. Scenario is complete implementation of a
specific sequence of interactions within the use case.

2) Relationship include: Relationshipinclude reflects the
enarios that can be shared by more than one use case.
Common sequence can be extracted from the original use cases
and modeled by a new use case, which we will @adlusion
use case. Such use case can then be used in various basic use
'Wises that determine the location (point of insertion) i@ th
sequence of interactions for inclusion. The relationshipude
iis illustrated in Fig. 1. Now, we adjust the original sequent
Mteractions with the use castart, which will need to select
the algorithm to be executed first. Use catet thus includes
the use casehoose algorithm.

D. Generalization use cases
<<human>> ,~, . . .
A - <<system>> The activities related to interactions between the soﬁ_fvv_qr
™~ system and a robot were not highlighted yet. One possibility
! is to defineinclusion use case describing these interactions,
v - , i.e., the algorithm. However, this method supposes only one

include

—_— \
User \
N
N

extends |
J

\

Robot algorithm, which contradicts the specified option to choose
algorithm. Second possibility is to defimgtension use cases,
everyone for various algorithms. The disadvantage of this
solution is its ambiguity; there is no obvious the problend an

e ; ;
choose the appropriate solution.
algorithm

Figure 1. First Use Case Diagram for the robotic system. | 3 start)J<-===-=--]

<<human>>

] affect_ ___
We will demonstrate basic principles and problems of use i \

case modeling on the simplified example of robotic system.
The example works with a robot, which is controlled by the
algorithm. Users can handle algorithms for controlling the
robot (he/she can start or stop an algorithm or choose one - o
of them for handling). The first use case diagram is shown inFigure 2. Specialization of the use casecute and the relationship affect.
Fig. 1. Model contains two actors, &fser (human actor) and

a Robot (system actor). We can also see the software system

boundary and basic use cases arising from specificatiart, Use case diagram offers the possibility to generalize cases
stop, calibrate the basic settings, anchoose algorithm for This feature is similar to the generalization (inheritgricean
execution.Robot is viewed as another system with which object-oriented environment. In the context of the use cise
modeled system works. agrams, generalization primarily reflects the interchabgity

<<system>>

User

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5 161

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

of the base-case for derived cases. Although there are aethoB. Common Net and Common Places
that consider generalization as abstruse [9] and recommend
replacing it with relationextend, generalization has a unique
importance in interpreting the use case diagram. Relatio
extend allows to invoke more extension use cases, where
generalization clearly expresses the idea that s@se works
with one of casesxecute (the model is shown in Fig. 2). The
model can also be easily extended without having to modif
already existing cases.

For modeling the workflow that includes multiple separate
ﬁynchronized nets may need to share a single network to other
etworks. For this purpose, the synchronous ports are used.
evertheless, it can be difficult to read the basic model of
the flow of events, because of the need for explicit model-
ing synchronous ports for data manipulation. Therefore, we
introduce the concept afommon net and common place. It is
not a new concept, only the syntactic coating certain padter
using synchronous ports. For each model, we introduce one
common net represented by the claSsmmonNet that for
each running model has exactly one instance identified by the
The present example shows one situation that is not cagr@@me common. The object net ofCommonNet may contain
tured in the diagram and use case diagrams do not providg@mmon places, i.e., place whose content is available through
resources for its proper modeling. This is the cstep, which ~ standard mechanisms (e.g., synchronous ports). Differémc
affects the use casexecute (or possibly derived cases), but the ordinary usage lies in the fact that access mechanisens ar
does not form its basis (the casgecute is neither part of hidden and access to the common places from other nets is
it nor its extension). Nevertheless, its execution affabes modeled bymapping—the place marked as common in the
sequence of interactions, which is modeled by use essmite Other netis mapped onto common place defined in the common
(it stops its activity). In the classical chart this sitoatiwvould net.
only be described in the specification of individual cases,
however, we introduce a simple extensiaffect, as shown in C. Modeling of Interaction Sequences
Fig. 2. Relationaffect represents a situation, where the base . .)
use case execution has a direct impact on other, dependent ys | ¢ Statesesting, walking, andturnRight are represented
case. This relation is useful to model synchronization eetw y places. StateurnRight is only temporal and the activity
cases in such a system, which suppose autonomous activiti@9es through these ones to the one of stable states (e.g.,
modeled by use cases. walking).

E. Use Case Diagram Extension

) .- 2{Robot} t10
testing .-
[1l. UseCASE SPECIFICATION USING PETRI NETS {_r_,| risClearRoad.
rgo.
Use case specification format is not prescribed and can]
have a variety of expressive and modeling means, e.g., plain
text, structured text, or any of the models. UML offers an r walking <>
activity diagram, a state diagram, etc. These charts allow
precise description based on modeling elements with clear 1 ' A 11 '
semantics, but their validation can be problematic because r isCloseToObstacle. | r /\g ; isClearRoad.
of impossibility to check models either by formal means or r stop. r go.
by simulation. Of course, there are tools and methods [$][10 r turnRight. j/
that allow to simulate modified UML diagrams. Nevertheless,
there is still a strict border betweelesign andimplementation Figure 3. Petri net modeling the use caslgorithml (algl).

phases. Another way is to use some of the formal models. In
this section, we introduce Object Oriented Petri Nets (ODPN
for specifyinguse case, i.e., interactions between the system Control flow is modeled by the sequence of transitions,
and the actors. Let's walk through the previous example ef uswhere each transition execution is conditioned by evenis re
casealgl shown in Fig. 3. resenting the state of the robot. Let us take one examplélfor a
the statdesting and linked transitionsl0 andtl. The transition
. _ tl is fireable, if the condition (modeled by the synchronous
A. States and Transitions Declaration port) isCloseToObstacle is met. When firing this transition,
: . tions to stop the robo$top) and to turn right {urnRight) are

forr-rl;glei}s rSn)/stSeyrgt :rﬁ?ties |;sn rnggfgg:ﬁ; ?t/agai?e:nlg ;Bfoggtpqﬁgrfo_rmed and the system moves to the stateiofRight. The

_ : : . .~ transitiont10 is fireable, if the condition (synchronous port)
place contains aoken. Actlons_t_aken In-a partlcul_ar State IS jsyearRoad is met. When firing this transition, the action to
U‘Ode'ed as part of the transition whose execution is P.O”d!go straight go) is performed and the system ’moves into the
tioned by a presence of tokens in that state. The transition i :
statewalking.
modeled as an element that moves the tokens between places.
Except the input places, the transition firing is conditity Both testing condition and messaging represent the interac
a guard. The guard contains conditions or synchronous portstion of the system with the robot. The robot moves the control
The transition can be fired only if the guard is evaluated adlow astoken, which allows interaction at the appropriate point
true. If the transition fires, it executes the guard, which ca of control flow and at the same time defines the state of its
have a side effect, e.g., the executed synchronous port cadocation in one of the places. To achieve correct behavior, i
change a state of the other case. is useful to define type constraints on tokens (segRobot } ;

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5 162

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

<common>
robot

it means the token should be of a typebot). Even as, it
clearly showswhich actor (and derived actors) interacts in
those scenarios.

incl_point ' include

D. Alternative Scenarios Modeling O%E

Alternative scenarios, i.e., scenarios that supplemeat th (r, incl) nel
basic scenario, is modeled by synchronous ports (perhaps ev select: incl .0t fehooserigh
methods) to handle a response to an external event. We show a [——
variant of the suspension of the algorithm, i.e., removahef (incl. inclusion
token from the current state and restoring algorithm, iegurn () (incl, 1
the token back to the correct place. We introduce a new state
(place)_paused representing suspended algorlth_m. Because.the wseected 4 il
formalism of OOPN does not have a mechanism for working incl selected: & [_indl canceled
with composite states, we should declare auxiliary traovsst na := a new forRole: .
or ports for each state we want to manipulate with. na

Q <common> running_alg

Figure 5. Petri net specification of the use caset.

point is modeled by internal event (transitiamglude with a
link to a placeincl_point. Invoking the use case corresponds
to instantiate the appropriate net (see the calleg in the
Figure 4. Composite state manipulation in OOPN. transitioninclude). The following external event (synchronous
port) select: initiates the interaction of the actarser with
integrated activity. The event binds the inclusion caseh® t
This way of modeling is clear, however, confusing for free variableincl, and simultaneously stores it to an auxiliary
readability. Furthermore, to work with a larger set of sdate place. Conditional branching is modeled by internal atiigi
is almost unusable. Nevertheless, there is the same pé&ttern (transitions)tSelected and tFail. Their execution is subject
each state, so that the concept of collective work with theest to a state of inclusion case, which is tested by synchronous
is introduced. It wraps the syntax of the original net. Thisports in guards. In case of success (transiti&#ected), the
will improve the readability of the model, while preserving synchronous porselected: binds the selected algorithm to the
the exactness of modeling by Petri nets including testingree variablea and stores it to the common plaognning_alg.
models. The example is shown in Fig. 4. The synchronous

port is divided into two parts—theommon part (C-part) init
and thevariable-join part (V-part). The C-part represents all @
synchronous ports, that should be called from the composite . . init: >{execute}
port. TheV-part represents a way how to work with th@ _
part—it is fireable, if at least one item of th@-part is fireable. ISt It — T =k2 st algorithms
L]
IV. RELATIONSHIPSMODELING
i . . waiting(L] a
We turn now to a method of modeling the relationships
between use cases. As we have already defined, we distinguish ®
relationsinclude, extend, affect, andgeneralization. [Lcancel —— [selecta
n
A. Modeling of the relation include * :

canceled a
We will continue our example and create models of use ;I‘_Q

casesstart and choose algorithm, which isinclusion case to canceled - selected_alg

the casestart.. Casestgrt IS aCt'Vateq by aCt(_)user* ConneCteq Figure 6. Petri net specification of the use caseose algorithm.
by a mutual interaction. Actouser is the primary actor, so it
generates stimulus to that the case has to respond. It srglie
method of modeling events in the sequence of interactions.

Responses to actor's requirements have to be modeled 23 TQeTl;]seeb(;e;is:r;(éosueeﬁlggr(lttgrgbstgiencgllc%trli(:rr: rTl]sligthg.\rI]V(rilﬂ;I& e
an external event, i.e., using a synchronous port. Another 9: °: 4 9

significant issue is a place of inclusion into the basic saqee Gne of them) is supplemented with an alternative sequehee (t

. ! . . - : user does not select any algorithm) and a condition (emgity li
of interactions and invocation activities of the integthtase. corresponds to the situation when a user selects no algdrith

The model of use cassart is shown in Fig. 5. The inclu- Inclusion case is viewed from stimuli generation point @wi
sion use case is stored in a pldcelusion and the insertion as secondary element; its activities are synchronized bicba

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5 163

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

case or actor, which works to the base case. Synchronization This model is purely declarative. We declare three possible
points are therefore modeled as external events, i.e.gusinvariants that may arise, and simultaneously declare tanget
synchronous ports. The case does not work with any secondawdual options to be done. Only one variant can be performed
actor, so that to define the status of the net is sufficient-typeat a time. We can define other activities related to these
free token (modeled as dot). The first external event is tainobt variants. We can see that it does not invoke the use case
a list of algorithms (synchronous padlit:); the variablelst execute, i.e., there is no instantiating a net, but this activity is
binds the entire content of the plaeégorithms. This place affected. It is therefore not appropriate to model thisaitin

is initialized by a set of cases (nets) derived from the casevith the relationgnclude or extend. After all, it is appropriate
(net) execute. Now, the case waits for actor decision, which to model that relationship.

may be two. A user selects either no algorithm (externaleven

cancel), or select a specific algorithm from the list, which hasD. Modeling of the relation generalization

to match the algorithm from the placggorithms (external , i , L ,
eventselect:). Token location into one of the placeanceled T_h|s relatlonsh|p demonstrates, that it is possmlg to use
or sdlected_alg represents possible states after a sequence GfY inherited case instead of the base case. If there is & poin

interactions. These conditions can be tested by syncheono@€fining the relationshipnclude or extend to a base case we
portsunselected and selected:. can work with any case inherited from the base aade our

example, this situation is shown on the use case mdueise
algorithm (Fig. 6). The placealgorithm contains all possible
B. Modeling of the relation extend algorithms that can be provided, i.e., nets inherited frasaeb

. i use casexxecute. Wherever the casexecuted is used in the
Relation extend exists between casesart and execute, mode|, itis possib|e to use any inherited case.

whereexecute is the extension use case. This relationship ex-
presses the possibility of execution of the algorithm, et
that some algorithm was chosen. Since this is an alternative
it is expressed by branches beginning transitt&alected, Until now we have neglected the essence of the token that
as we can see in Fig. 5. The transititBelected represents provides interaction with the actors and defines the system
the insertion point of the extension of the basic sequence ditate by its position. As mentioned, actor represeoks of
interactions. the user or device (i.e., a real actor), which can hold in the

system. One real actor may hold multiple roles, can thus be

modeled by various actors. Actor defines a subset of use cases
C. Modeling of the relation affect allowed for such a role. For instance, trabot is not allowed

. . . to choose algorithm to execute, so its model does not contain
Relationshipaffect exists between casetop and execute, any interaction to that use case.

wherestop influences the sequence of interactions of the casée
execute, respectively any inherited cases. Petri nets model for .

this use capse is s%ow?]/ in Fig. 7. The activity begins fron?™ Modeling Roles

the common placeunning_alg and branches in three variants An actor is modeled as a use case, i.e., by Petri nets.
(transitionstl, t2, andt3). Branchtl saysno algorithm is |nteractions between use cases and actors are synchronized
running; common placeunning_alg is empty. Because OOPN through synchronous ports that test conditions, convey the

do not have inhibitors, the negative predicatepty is used to necessary data and can initiate an alternative scenartwotbr

test conditions, which is feasible, if it is impossible tom#i sides. Use case can then send instructions through messages

V. ACTOR SPECIFICATION

any object to the variable. too.
<common> <gommon> <common>
running_alg distance request

tl v t2 t3 Y
self empty. || a pause. || a pauseFail. |

. . I isClearRoad 7 d d isCloseToObstacle
Figure 7. Petri net specification of the use caisp. d > 10. ~@ | d <=10. _I

distanceToObstacle

Branch t2 saysan algorithm is invocated and run; the Figure 8. Petri net specification of the acRebot.

common placerunning_alg contains an active algorithm.

Synchronous porpause (see Fig. 4) called on the running

algorithm is evaluated as true and when performed, it moves In our example, we will model the secondary adRambot,
the algorithm intostopped state. Branch3 saysan algorithm whose basic model is shown in Fig. 8. Scenarios ofeteeute
is invocated and not running; the common placeunning_alg use cases are synchronized using synchronous jstisse-
contains an active algorithm. Synchronous ppauseFail ToObstacle and isClearRoad whose definition is simple—to
called on the running algorithm is evaluated as true and whetest the distance to the nearest obstacle, which is storttkin
perform, it has no side effect. placedistanceToObstacle. Its content is periodically refreshed

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5 164

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

with a new value coming through the common plaicgance.
The net can define methods for controlling a real actor too.

VI. CONCLUSION

start

O

uc select: ucsel

(uc, ucsel)

) (uc, ucsel)

(uc, ucsel)

ucsel

return

select: a = cancel -
I_ucsel select: a I_ucsel cancel

Figure 9. Petri net specification of the use céalser.

Model of the next actolUser is shown in Fig. 9. The
primary actor defines stimuli (modeled as synchronous ports
and methods) that can perform a real actor. Their execusion i

The paper presented the concept of modeling software
system requirements, which combines commonly used use
case diagrams with not so commonly used Petri nets. The
relationship between actors, use cases, and Petri netebas b
introduced. Use case diagram is used for the initial specifi-
cation of functional requirements while Petri nets serve fo
use case scenario descriptions allowing to model and valida
requirement specifications in real surroundings. This aggin
does not need to transform models or implement requirements
in a programming language and prevents the validation gsoce
from mistakes caused by model transformations.

At present, we have developed the tool supporting pre-
sented approach. In the future, we will focus on the tool
completion, a possibility to interconnect model with other
formalisms and languages, and feasibility study for défer
kinds of usage.

ACKNOWLEDGMENT
This work was supported by the internal BUT project

always conditioned by an actor workflow and a net of currentlyzT.5-14-2486 and The Ministry of Education, Youth and
synchronized use case. Model shows the workflow of the usgports of the Czech Republic from the National Programme

casestart, which starts by calling a synchronous petart. It

of Sustainability (NPU Il); project IT4lnnovations exastice

invocates the use castart (the syntactically simpler notation 5 science - LQ1602.

is used, it is semantically identical to invocation shown in
Fig. 5). Using the methodetList is possible to obtain a list
of algorithms. Allowed actions can be executed by one of the
defined synchronous porsslect: andcancel. 1]
B. Modeling Real Actors

Real actor can hold many roles that are modeled by actors
in the system. Each of these roles always has a commor?]
base, that is a representation of the real actor, whetheera us
system, or device. The model has to capture this fact. For[3]
terminological reasons, in order to remove potential csiafiul
of termsactor andreal actor, we denote a real actor by the 4]
termsubject. The subject is basically an interface to a real form
of the actor or to stored data. Therefore, it can be modeled i[5
different ways that can be synchronized with Petri nets. due
the nature of the used nets, there can be used Petri nets, othe
kind of formalism (e.g., DEVS), or programming language [©]
(Smalltalk until now).

For instance, the subject of the acRobot can be modeled [7]
as an external component, which is linked with the actor
through thecomponent interface consisting of one input port
distance and one output pontequest (shown in Fig. 8). These
ports are modeled as common place, so that the common né%ﬂ
can serve for component interfacing [11]. The subject of the
actorUser can be modeled as a Smalltalk class, whose object
can access OOPN obijects directly [12]. The following pseudo [9]
code shows a simple example of accessing model from the
subject implemented in programming language. First, isask
a common net to get a role of user, then invokes synchronod%ol
port start, a methodgetList, and finally select first algorithm
from the list.

usr < common.newU ser();

usr.asPort.start(); [12]
st < usr.getList();

usr.asPort.select(lst.at(1));

[11]

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

REFERENCES

R. Koti and V. Janousek, “Modeling and SimulationsBd Design
Using Object-Oriented Petri Nets: A Case Study,” in Procegpadf the
International Workshop on Petri Nets and Software Enginge2012,
vol. 851. CEUR, 2012, pp. 253-266.

M. Ceska, V. Janousek, and T. \ojnar, PNtalk — a computertpet!
for Object oriented Petri nets modelling, ser. Lecture NateComputer
Science. Springer Verlag, 1997, vol. 1333, pp. 591-610.

K. Wiegers and J. Beatty, Software Requirements. Micfofress,
2014.

N. Daoust, Requirements Modeling for Bussiness AnalysfTechnics
Publications, LLC, 2012.

R. France and B. Rumpe, “Model-driven development of plax soft-
ware: A research roadmap,” in Proc. of Future of Softwareifaeying,
FOSE, 2007, pp. 37-54.

C. Raistrick, P. Francis, J. Wright, C. Carter, and |. k| Model
Driven Architecture with Executable UML. Cambridge Unisity
Press, 2004.

S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “Aafnework for
testing uml activities based on fuml,” in Proc. of 10th Intokkshop
on Model Driven Engineering, Verification, and Validatiorgl. 1069,
2013, pp. 1-10.

D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuitin
discrete event simulation: A framework for model-drivervelepment
of simulation models,” ACM Transactions on Modeling and Quuter
Simulation, vol. 25, no. 3, 2015, pp. 1-15.

H. Gomma, Designing Software Product Lines with UML: Fro
Use Cases to Pattern-Based Software Architecture. Addidesiey
Professional, 2004.

D. S. Frankel, Model Driven Architecture: Applying MDi& Enterprise
Computing, ser. 17 (MS-17). John Wiley & Sons, 2003.

R. Kot¢i and V. Janousek, “The Object Oriented Petet IComponent
Model,” in The Tenth International Conference on SoftwangiBeering
Advances. Xpert Publishing Services, 2015, pp. 309-315.

R. Koti and V. Janousek, “Formal Models in SoftwarevBlopment
and Deployment: A Case Study,” International Journal onakabes in
Software, vol. 7, no. 1, 2014, pp. 266-276.

165

