
Modeling System Requirements Using Use Cases
and Petri Nets

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence

Czech Republic
email: {koci,janousek}@fit.vutbr.cz

Abstract—The fundamental problem associated with software
development is a correct identification, specification and sub-
sequent implementation of the system requirements. To specify
requirement, designers often create use case diagrams from
Unified Modeling Language (UML). These models are then
developed by further UML models. To validate requirements,
its executable form has to be obtained or the prototype has tobe
developed. It can conclude in wrong requirement implementations
and incorrect validation process. The approach presented in this
work focuses on formal requirement modeling combining the
classic models for requirements specification (use case diagrams)
with models having a formal basis (Petri Nets). Created models
can be used in all development stages including requirements
specification, verification, and implementation. All design and
validation steps are carries on the same models, which avoids
mistakes caused by model implementation.

Keywords–Object Oriented Petri Nets; Use Cases; requirement
specification; requirement implementation.

I. I NTRODUCTION

This paper is part of theSystem in Simulation Development
(SiS) work [1] based on the formalism of Object Oriented Petri
Nets (OOPN) [2]. One of the fundamental problems associated
with software development is an identification, specification
and subsequent implementation of the system requirements [3].
The use case diagram from UML is often used for requirements
specification, which is then developed by further UML models
[4]. The disadvantage is the inability to validate a specification
modeled by that method and it is usually necessary to develop
a prototype, which is no longer used after fulfilling its purpose.

Utilization of OOPN enables the simulation (i.e., execute
the model), as well as direct integration into a real surround-
ings, which solves mentioned disadvantage. All changes in the
validation process are entered directly into the model, andit
is therefore not necessary to implement or transform models.
The approach presented in this paper is based on the use cases
that are specified by the OOPN formalism. This approach can
therefore be mapped to commonly used modeling techniques.

There are methods working with modified UML models
that can be executed and, therefore, validated by simulation.
An example is the Model Driven Architecture (MDA) method-
ology [5], language Executable UML (xUML) [6], or Founda-
tional Subset for xUML [7]. These methods are faced with a
problem of model transformations. It is complicated to validate
proposed requirements through models in real conditions. They
either have to implement a prototype or transform models into

executable form, which can then be tested and debugged. All
changes that result from validation process are hard to transfer
back into the models. It is a problem because the models
become useless over the development time.

Similar work based on ideas of model-driven develop-
ment deals with gaps between different development stages
and focuses on the usage of conceptual models during the
simulation model development process—these techniques are
called model continuity [8]. While it works with simulation
models during design stages, the approach proposed in this
paper focuses onlive models that can be used in the deployed
system.

The paper is organized as follows. Section II summarizes
concepts of modeling requirements using use cases from UML
and describes our extension to one special relationship. Section
III deals with use case specification using OOPN. Modeling
use case relationships is discussed in Section IV and the way
of actor modeling is described in Section V. The summary and
future work is described in Section VI.

II. U SE CASE DIAGRAMS

Use case diagrams (UCDs) are used in the process of
software system design for modeling functional requirements.
The system is considered as a black-box, where only external
features are taken into account. The objective of UCDs is
identify system users, user requirements, and how the user
interacts with the system. The model consists ofactors and
use cases.

A. Actor

Actor is an external entity working with the software
system, so that actor is not part of the system, but it is a
generator of input stimulus and data for the system. Actor
models a group of real users, whereas all members of the
group work with the system by the same way. Therefore, actor
representsa role of the user in the system. A real user can
play multiple roles. Let us consider the example of conference
system with actorsauthor and reviewer. These actors model
two roles, each of them defines a set of functions (use cases)
the user can initiate or can participate on. The real user can
either be author or reviewer, or can work with the system in
both roles.

Now, let us consider the example of a system of garage
gate handling. The system consists of actuators (garage gate),

160Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

sensors (driving sensor, card scanner), and control software. It
is closed autonomous system with which two groups of real
users can work—driver andreception clerk. The driver comes
to the garage gate, applies a card to the scanner, and the system
opens the gate. If the user does not have a card, he can ask
reception clerk, who opens the gate. From system point of
view, actuators, sensors, and control software are internal parts
of the system. From the software engineering point of view,
actuators and sensors areexternal items the system can handle.

So, if actuators and sensors are not internal parts, could
we model them using actor concept? Actors represent human
users in many information systems (human actors), but they
can also be used to model other subsystems such as sensors
or devices (system actors). The system has to communicate to
such subsystems, nevertheless they need not to be parts of the
modeled software system.

B. Use Case

An important part of functional requirements analysis is to
identify sequences of interaction between actors and modeled
system. Each such a sequence covers different functional
requirement on the system. The sequence of interactions is
modeled by a use case. The use case describes a main
sequence of interactions and is invoked (its execution starts)
by input stimulus from theactor. The main sequence can be
supplemented by alternative sequences describing less com-
monly used interactions. Their invocation depends on specified
conditions, e.g., wrong information input or abnormal system
conditions. Each sequence (the main or alternative one) is
called scenario. Scenario is complete implementation of a
specific sequence of interactions within the use case.

Figure 1. First Use Case Diagram for the robotic system.

We will demonstrate basic principles and problems of use
case modeling on the simplified example of robotic system.
The example works with a robot, which is controlled by the
algorithm. Users can handle algorithms for controlling the
robot (he/she can start or stop an algorithm or choose one
of them for handling). The first use case diagram is shown in
Fig. 1. Model contains two actors, anUser (human actor) and
a Robot (system actor). We can also see the software system
boundary and basic use cases arising from specification,start,
stop, calibrate the basic settings, andchoose algorithm for
execution.Robot is viewed as another system with which
modeled system works.

C. Relationships Between Use Cases

Among the different use cases you can use two defined
relationships,include and extend. The aim of these relations
is to maximize extensibility and reusability of use cases if
the model becomes too complex. A secondary effect of using
of these relationships is to emphasize the dependence of the
individual use case scenarios, structuring too long scenarios to
more lower level use cases, or highlighting selected activities.

1) Relationship extend: Relationship extend reflects al-
ternative scenarios for basic use case. In cases where the
specification of a use case is too complicated and contains
many different scenarios, it is possible to model a chosen
alternative for new use case, which is calledextension use
case. This use case then extends the basic use case that
defines a location (point of extension) in the sequence of
interactions and conditions under which the extension use case
is invoked. The relationshipextend is illustrated in Fig. 1. The
use casecalibrate has to stop the running algorithm first, then
to calibrate the system and, finally, to start it. Use casesstart
and stop can thus expand the base case scenariocalibrate.

2) Relationship include: Relationshipinclude reflects the
scenarios that can be shared by more than one use case.
Common sequence can be extracted from the original use cases
and modeled by a new use case, which we will callinclusion
use case. Such use case can then be used in various basic use
cases that determine the location (point of insertion) in the
sequence of interactions for inclusion. The relationshipinclude
is illustrated in Fig. 1. Now, we adjust the original sequence of
interactions with the use casestart, which will need to select
the algorithm to be executed first. Use casestart thus includes
the use casechoose algorithm.

D. Generalization use cases

The activities related to interactions between the software
system and a robot were not highlighted yet. One possibility
is to defineinclusion use case describing these interactions,
i.e., the algorithm. However, this method supposes only one
algorithm, which contradicts the specified option to choose
algorithm. Second possibility is to defineextension use cases,
everyone for various algorithms. The disadvantage of this
solution is its ambiguity; there is no obvious the problem and
the appropriate solution.

Figure 2. Specialization of the use caseexecute and the relationship affect.

Use case diagram offers the possibility to generalize cases.
This feature is similar to the generalization (inheritance) in an
object-oriented environment. In the context of the use casedi-
agrams, generalization primarily reflects the interchangeability

161Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

of the base-case for derived cases. Although there are methods
that consider generalization as abstruse [9] and recommend
replacing it with relationextend, generalization has a unique
importance in interpreting the use case diagram. Relation
extend allows to invoke more extension use cases, whereas
generalization clearly expresses the idea that casestart works
with one of casesexecute (the model is shown in Fig. 2). The
model can also be easily extended without having to modify
already existing cases.

E. Use Case Diagram Extension

The present example shows one situation that is not cap-
tured in the diagram and use case diagrams do not provide
resources for its proper modeling. This is the casestop, which
affects the use caseexecute (or possibly derived cases), but
does not form its basis (the caseexecute is neither part of
it nor its extension). Nevertheless, its execution affectsthe
sequence of interactions, which is modeled by use caseexecute
(it stops its activity). In the classical chart this situation would
only be described in the specification of individual cases,
however, we introduce a simple extensionaffect, as shown in
Fig. 2. Relationaffect represents a situation, where the base
use case execution has a direct impact on other, dependent use
case. This relation is useful to model synchronization between
cases in such a system, which suppose autonomous activities
modeled by use cases.

III. U SE CASE SPECIFICATION USING PETRI NETS

Use case specification format is not prescribed and can
have a variety of expressive and modeling means, e.g., plain
text, structured text, or any of the models. UML offers an
activity diagram, a state diagram, etc. These charts allow
precise description based on modeling elements with clear
semantics, but their validation can be problematic because
of impossibility to check models either by formal means or
by simulation. Of course, there are tools and methods [6][10]
that allow to simulate modified UML diagrams. Nevertheless,
there is still a strict border betweendesign andimplementation
phases. Another way is to use some of the formal models. In
this section, we introduce Object Oriented Petri Nets (OOPN)
for specifyinguse case, i.e., interactions between the system
and the actors. Let’s walk through the previous example of use
casealg1 shown in Fig. 3.

A. States and Transitions Declaration

The system state is represented by places in the OOPN
formalism. System is in a particular state if an appropriate
place contains atoken. Actions taken in a particular state is
modeled as part of the transition whose execution is condi-
tioned by a presence of tokens in that state. The transition is
modeled as an element that moves the tokens between places.
Except the input places, the transition firing is conditioned by
a guard. The guard contains conditions or synchronous ports.
The transition can be fired only if the guard is evaluated as
true. If the transition fires, it executes the guard, which can
have a side effect, e.g., the executed synchronous port can
change a state of the other case.

B. Common Net and Common Places

For modeling the workflow that includes multiple separate
synchronized nets may need to share a single network to other
networks. For this purpose, the synchronous ports are used.
Nevertheless, it can be difficult to read the basic model of
the flow of events, because of the need for explicit model-
ing synchronous ports for data manipulation. Therefore, we
introduce the concept ofcommon net andcommon place. It is
not a new concept, only the syntactic coating certain patterns
using synchronous ports. For each model, we introduce one
common net represented by the classCommonNet that for
each running model has exactly one instance identified by the
namecommon. The object net ofCommonNet may contain
common places, i.e., place whose content is available through
standard mechanisms (e.g., synchronous ports). Difference to
the ordinary usage lies in the fact that access mechanisms are
hidden and access to the common places from other nets is
modeled bymapping—the place marked as common in the
other net is mapped onto common place defined in the common
net.

C. Modeling of Interaction Sequences

The statestesting, walking, and turnRight are represented
by places. StateturnRight is only temporal and the activity
goes through these ones to the one of stable states (e.g.,
walking).

walking

r isCloseToObstacle.

t1

r stop.
r turnRight.

r

r
turnRight

r

r isClearRoad.

t11

r

r

r go.

testing
r isClearRoad.

t10

r go.

r

r

r

≥{Robot}

Figure 3. Petri net modeling the use caseAlgorithm1 (alg1).

Control flow is modeled by the sequence of transitions,
where each transition execution is conditioned by events rep-
resenting the state of the robot. Let us take one example for all,
the statetesting and linked transitionst10 andt1. The transition
t1 is fireable, if the condition (modeled by the synchronous
port) isCloseToObstacle is met. When firing this transition,
actions to stop the robot (stop) and to turn right (turnRight) are
performed and the system moves to the state ofturnRight. The
transition t10 is fireable, if the condition (synchronous port)
isClearRoad is met. When firing this transition, the action to
go straight (go) is performed and the system moves into the
statewalking.

Both testing condition and messaging represent the interac-
tion of the system with the robot. The robot moves the control
flow astoken, which allows interaction at the appropriate point
of control flow and at the same time defines the state of its
location in one of the places. To achieve correct behavior, it
is useful to define type constraints on tokens (see≥ {Robot};

162Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

it means the token should be of a typeRobot). Even as, it
clearly showswhich actor (and derived actors) interacts in
those scenarios.

D. Alternative Scenarios Modeling

Alternative scenarios, i.e., scenarios that supplement the
basic scenario, is modeled by synchronous ports (perhaps even
methods) to handle a response to an external event. We show a
variant of the suspension of the algorithm, i.e., removal ofthe
token from the current state and restoring algorithm, i.e.,return
the token back to the correct place. We introduce a new state
(place)paused representing suspended algorithm. Because the
formalism of OOPN does not have a mechanism for working
with composite states, we should declare auxiliary transitions
or ports for each state we want to manipulate with.

walking
r

r

turnRight
r

r

pauseC

resumeC

pauseC

resumeC

paused

pauseV

resumeV
r

r

Figure 4. Composite state manipulation in OOPN.

This way of modeling is clear, however, confusing for
readability. Furthermore, to work with a larger set of states
is almost unusable. Nevertheless, there is the same patternfor
each state, so that the concept of collective work with the states
is introduced. It wraps the syntax of the original net. This
will improve the readability of the model, while preserving
the exactness of modeling by Petri nets including testing
models. The example is shown in Fig. 4. The synchronous
port is divided into two parts—thecommon part (C-part)
and thevariable-join part (V-part). The C-part represents all
synchronous ports, that should be called from the composite
port. TheV-part represents a way how to work with theC-
part—it is fireable, if at least one item of theC-part is fireable.

IV. RELATIONSHIPSMODELING

We turn now to a method of modeling the relationships
between use cases. As we have already defined, we distinguish
relationsinclude, extend, affect, andgeneralization.

A. Modeling of the relation include

We will continue our example and create models of use
casesstart and choose algorithm, which is inclusion case to
the casestart. Casestart is activated by actoruser, connected
by a mutual interaction. Actoruser is the primary actor, so it
generates stimulus to that the case has to respond. It implies a
method of modeling events in the sequence of interactions.
Responses to actor’s requirements have to be modeled as
an external event, i.e., using a synchronous port. Another
significant issue is a place of inclusion into the basic sequence
of interactions and invocation activities of the integrated case.

The model of use casestart is shown in Fig. 5. The inclu-
sion use case is stored in a placeinclusion and the insertion

<common>
 robot

(r, incl)

inclusion

incl_point

(incl, r)

select: incl

na := a new forRole: r.

incl selected: a

(incl, r)

incl canceled

(incl, r)

<common> running_alg

na

incl := Incl new.
(r,incl)

Incl

r
include

tSelected tFail

init: {chooseAlg}

Figure 5. Petri net specification of the use casestart.

point is modeled by internal event (transition)include with a
link to a placeincl point. Invoking the use case corresponds
to instantiate the appropriate net (see the callingnew in the
transitioninclude). The following external event (synchronous
port) select: initiates the interaction of the actoruser with
integrated activity. The event binds the inclusion case to the
free variableincl, and simultaneously stores it to an auxiliary
place. Conditional branching is modeled by internal activities
(transitions) tSelected and tFail. Their execution is subject
to a state of inclusion case, which is tested by synchronous
ports in guards. In case of success (transitiontSelected), the
synchronous portselected: binds the selected algorithm to the
free variablea and stores it to the common placerunning alg.

init

<L> lst
algorithms

waiting

list: lst

selected_alg

na

cancel select: a

a

selected: acanceled

canceled

aa

init: ≥{execute}

Figure 6. Petri net specification of the use casechoose algorithm.

The use casechoose algorithm specification is shown in
Fig. 6. The basic sequence (to obtain algorithm list and select
one of them) is supplemented with an alternative sequence (the
user does not select any algorithm) and a condition (empty list
corresponds to the situation when a user selects no algorithm).
Inclusion case is viewed from stimuli generation point of view
as secondary element; its activities are synchronized by basic

163Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

case or actor, which works to the base case. Synchronization
points are therefore modeled as external events, i.e., using
synchronous ports. The case does not work with any secondary
actor, so that to define the status of the net is sufficient type-
free token (modeled as dot). The first external event is to obtain
a list of algorithms (synchronous portlist:); the variablelst
binds the entire content of the placealgorithms. This place
is initialized by a set of cases (nets) derived from the case
(net) execute. Now, the case waits for actor decision, which
may be two. A user selects either no algorithm (external event
cancel), or select a specific algorithm from the list, which has
to match the algorithm from the placealgorithms (external
eventselect:). Token location into one of the placescanceled
or selected alg represents possible states after a sequence of
interactions. These conditions can be tested by synchronous
portsunselected and selected:.

B. Modeling of the relation extend

Relation extend exists between casesstart and execute,
whereexecute is the extension use case. This relationship ex-
presses the possibility of execution of the algorithm, provided
that some algorithm was chosen. Since this is an alternative,
it is expressed by branches beginning transitiontSelected,
as we can see in Fig. 5. The transitiontSelected represents
the insertion point of the extension of the basic sequence of
interactions.

C. Modeling of the relation affect

Relationshipaffect exists between casesstop andexecute,
wherestop influences the sequence of interactions of the case
execute, respectively any inherited cases. Petri nets model for
this use case is shown in Fig. 7. The activity begins from
the common placerunning alg and branches in three variants
(transitions t1, t2, and t3). Branch t1 says no algorithm is
running; common placerunning alg is empty. Because OOPN
do not have inhibitors, the negative predicateempty is used to
test conditions, which is feasible, if it is impossible to bind
any object to the variablea.

a pauseFail.

<common>
running_alg

self empty. a pause.

a a a

a
empty

t1 t2 t3

Figure 7. Petri net specification of the use casestop.

Branch t2 says an algorithm is invocated and run; the
common placerunning alg contains an active algorithm.
Synchronous portpause (see Fig. 4) called on the running
algorithm is evaluated as true and when performed, it moves
the algorithm intostopped state. Brancht3 saysan algorithm
is invocated and not running; the common placerunning alg
contains an active algorithm. Synchronous portpauseFail
called on the running algorithm is evaluated as true and when
perform, it has no side effect.

This model is purely declarative. We declare three possible
variants that may arise, and simultaneously declare targetindi-
vidual options to be done. Only one variant can be performed
at a time. We can define other activities related to these
variants. We can see that it does not invoke the use case
execute, i.e., there is no instantiating a net, but this activity is
affected. It is therefore not appropriate to model this situation
with the relationsinclude or extend. After all, it is appropriate
to model that relationship.

D. Modeling of the relation generalization

This relationship demonstrates, that it is possible to use
any inherited case instead of the base case. If there is a point
defining the relationshipinclude or extend to a base casec, we
can work with any case inherited from the base casec. In our
example, this situation is shown on the use case modelchoose
algorithm (Fig. 6). The placealgorithm contains all possible
algorithms that can be provided, i.e., nets inherited from base
use caseexecute. Wherever the caseexecuted is used in the
model, it is possible to use any inherited case.

V. ACTOR SPECIFICATION

Until now we have neglected the essence of the token that
provides interaction with the actors and defines the system
state by its position. As mentioned, actor representsrole of
the user or device (i.e., a real actor), which can hold in the
system. One real actor may hold multiple roles, can thus be
modeled by various actors. Actor defines a subset of use cases
allowed for such a role. For instance, therobot is not allowed
to choose algorithm to execute, so its model does not contain
any interaction to that use case.

A. Modeling Roles

An actor is modeled as a use case, i.e., by Petri nets.
Interactions between use cases and actors are synchronized
through synchronous ports that test conditions, convey the
necessary data and can initiate an alternative scenario forboth
sides. Use case can then send instructions through messages
too.

<common>
 distance

100
isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad
d > 10.

d

d

oldD

<common>
 request

t2

Figure 8. Petri net specification of the actorRobot.

In our example, we will model the secondary actorRobot,
whose basic model is shown in Fig. 8. Scenarios of theexecute
use cases are synchronized using synchronous portsisClose-
ToObstacle and isClearRoad whose definition is simple—to
test the distance to the nearest obstacle, which is stored inthe
placedistanceToObstacle. Its content is periodically refreshed

164Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

with a new value coming through the common placedistance.
The net can define methods for controlling a real actor too.

uc

(uc, ucsel)

select: a

init: {start}

start

uc select: ucsel

ucsel select: a
cancel

ucsel cancel

(uc, ucsel)

(uc, ucsel)
return

getList

ucsel list: lst.

lst
ucsel

Figure 9. Petri net specification of the use caseUser.

Model of the next actorUser is shown in Fig. 9. The
primary actor defines stimuli (modeled as synchronous ports
and methods) that can perform a real actor. Their execution is
always conditioned by an actor workflow and a net of currently
synchronized use case. Model shows the workflow of the use
casestart, which starts by calling a synchronous portstart. It
invocates the use casestart (the syntactically simpler notation
is used, it is semantically identical to invocation shown in
Fig. 5). Using the methodgetList is possible to obtain a list
of algorithms. Allowed actions can be executed by one of the
defined synchronous portsselect: andcancel.

B. Modeling Real Actors

Real actor can hold many roles that are modeled by actors
in the system. Each of these roles always has a common
base, that is a representation of the real actor, whether a user,
system, or device. The model has to capture this fact. For
terminological reasons, in order to remove potential confusion
of termsactor and real actor, we denote a real actor by the
termsubject. The subject is basically an interface to a real form
of the actor or to stored data. Therefore, it can be modeled in
different ways that can be synchronized with Petri nets. Dueto
the nature of the used nets, there can be used Petri nets, other
kind of formalism (e.g., DEVS), or programming language
(Smalltalk until now).

For instance, the subject of the actorRobot can be modeled
as an external component, which is linked with the actor
through thecomponent interface consisting of one input port
distance and one output portrequest (shown in Fig. 8). These
ports are modeled as common place, so that the common net
can serve for component interfacing [11]. The subject of the
actorUser can be modeled as a Smalltalk class, whose object
can access OOPN objects directly [12]. The following pseudo-
code shows a simple example of accessing model from the
subject implemented in programming language. First, it asks
a common net to get a role of user, then invokes synchronous
port start, a methodgetList, and finally select first algorithm
from the list.

usr ← common.newUser();
usr.asPort.start();
lst← usr.getList();
usr.asPort.select(lst.at(1));

VI. CONCLUSION

The paper presented the concept of modeling software
system requirements, which combines commonly used use
case diagrams with not so commonly used Petri nets. The
relationship between actors, use cases, and Petri nets has been
introduced. Use case diagram is used for the initial specifi-
cation of functional requirements while Petri nets serve for
use case scenario descriptions allowing to model and validate
requirement specifications in real surroundings. This approach
does not need to transform models or implement requirements
in a programming language and prevents the validation process
from mistakes caused by model transformations.

At present, we have developed the tool supporting pre-
sented approach. In the future, we will focus on the tool
completion, a possibility to interconnect model with other
formalisms and languages, and feasibility study for different
kinds of usage.

ACKNOWLEDGMENT

This work was supported by the internal BUT project
FIT-S-14-2486 and The Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme
of Sustainability (NPU II); project IT4Innovations excellence
in science - LQ1602.

REFERENCES

[1] R. Kočı́ and V. Janoušek, “Modeling and Simulation-Based Design
Using Object-Oriented Petri Nets: A Case Study,” in Proceeding of the
International Workshop on Petri Nets and Software Engineering 2012,
vol. 851. CEUR, 2012, pp. 253–266.

[2] M. Češka, V. Janoušek, and T. Vojnar, PNtalk — a computerizedtool
for Object oriented Petri nets modelling, ser. Lecture Notes in Computer
Science. Springer Verlag, 1997, vol. 1333, pp. 591–610.

[3] K. Wiegers and J. Beatty, Software Requirements. Microsoft Press,
2014.

[4] N. Daoust, Requirements Modeling for Bussiness Analysts. Technics
Publications, LLC, 2012.

[5] R. France and B. Rumpe, “Model-driven development of complex soft-
ware: A research roadmap,” in Proc. of Future of Software Engineering,
FOSE, 2007, pp. 37–54.

[6] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model
Driven Architecture with Executable UML. Cambridge University
Press, 2004.

[7] S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “A framework for
testing uml activities based on fuml,” in Proc. of 10th Int. Workshop
on Model Driven Engineering, Verification, and Validation,vol. 1069,
2013, pp. 1–10.

[8] D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuityin
discrete event simulation: A framework for model-driven development
of simulation models,” ACM Transactions on Modeling and Computer
Simulation, vol. 25, no. 3, 2015, pp. 1–15.

[9] H. Gomma, Designing Software Product Lines with UML: From
Use Cases to Pattern-Based Software Architecture. Addison-Wesley
Professional, 2004.

[10] D. S. Frankel, Model Driven Architecture: Applying MDAto Enterprise
Computing, ser. 17 (MS-17). John Wiley & Sons, 2003.

[11] R. Kočı́ and V. Janoušek, “The Object Oriented Petri Net Component
Model,” in The Tenth International Conference on Software Engineering
Advances. Xpert Publishing Services, 2015, pp. 309–315.

[12] R. Kočı́ and V. Janoušek, “Formal Models in Software Development
and Deployment: A Case Study,” International Journal on Advances in
Software, vol. 7, no. 1, 2014, pp. 266–276.

165Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

